Simple Alloy constraint doesn't work as expected - alloy

The following model produces instances with exactly 2 address relations when the number of Books is limited to 1, however, if more Books are allowed it will create instances with 0-3 address relations. My misunderstanding of how Alloy works?
sig Name{}
sig Addr{}
sig Book { addr: Name -> lone Addr }
pred show(b:Book) { #b.addr = 2 }
// nr. of address relations in every Book should be 2
run show for 3 but 2 Book
// works as expected with 1 Book

Each instance of show should include one Book, labeled as being the b of show, which has two address pairs. But show does not say that every book must have two address pairs, only that at least one must have two address pairs.
[Postscript]
When you ask Alloy to show you an instance of a predicate, for example by the command run show, then Alloy should show you an instance: that is (quoting section 5.2.1 of Software abstractions, which you already have open) "an assignment of values to the variables of the constraint for which the constraint evaluates to true." In any given universe, there may be many other possible assignments of values to the variables for which the constraint evaluates to false; the existence of such possible non-suitable assignments is unavoidable in any universe with more than one atom.
Informally, we can think of a run command for a predicate P with arguments X, Y, Z as requesting that Alloy show us universes which satisfy the expression
some X, Y, Z : univ | P[X, Y, Z]
The run command does not amount to the expression
all X, Y, Z : univ | P[X, Y, Z]
If you want to see only universes in which every book has two pairs in its addr relation, then say so:
pred all_books_have_2 { all b : Book | #b.addr = 2 }
I think it's better that run have implicit existential quantification, rather than implicit universal quantification. One way to see why is to imagine a model that defines trees, such as:
sig Node { parent : lone Node }
fact parent_acyclic { no n : Node | n in n.^parent }
Suppose we get tired of seeing universes in which every tree is trivial and contains a single node. I'd like to be able to define a predicate that guarantees at least one tree with depth greater than 1, by writing
pred nontrivial[n : Node]{ some n.parent }
Given the constraint that trees be acyclic, there can never be a non-empty universe in which the predicate nontrivial holds for all nodes. So if run and pred had the semantics you have been supposing, we could not use nontrivial to find universes containing non-trivial trees.
I hope this helps.

Related

higher-order quantification that cannot be skolemized

I'm learning Alloy and experimenting with creating predicates for relations being injective and surjective. I tried this in Alloy using the following model:
sig A {}
sig B {}
pred injective(r: A -> B) {
all disj a, a': r.B | no (a.r & a'.r)
}
pred inj {
no r: A -> B | injective[r]
}
run inj for 8
However, I get this error on no r:
Analysis cannot be performed since it requires higher-order
quantification that could not be skolemized.
I've read the portions of Software Abstractions about skolemization and some other SO questions but it's not clear to me what the issue is here. Can I fix this by rephrasing or have I hit a fundamental limitation?
EDIT:
After some experimenting the issue seems to be associated with the negation. Asking for some r: A -> B | injective[r] immediately produces an injective example. This makes conceptual sense as a generally harder problem, but they seem like more or less isomorphic questions in a small scope.
EDIT2:
I've found using the following model that Alloy gives me examples which also satisfy the commented predicate that gives me the error.
sig A {}
sig B {}
pred injective(r: A -> B) {
all disj a, a': r.B | no (a.r & a'.r)
}
pred surjective(r: A -> B) {
B = A.r
}
pred function(f: A -> B) {
all a: f.B | one a.f
}
pred inj {
some s: A -> B | function[s] && surjective[s]
// no r: A -> B | function[r] && injective[r]
}
run inj for 8
Think of it like this: every Alloy analysis involves model finding, in which the solution is a model (called an instance in Alloy) that maps names to relations. To show that no model exists at all for a formula, you can run it and if Alloy finds no solution, then there is no model (in that scope). So if you run
some s: A -> B | function[s] && surjective[s]
and you get no solution, you know there is no surjective function in that scope.
But if you ask Alloy to find a model such that no relation exists with respect to that model, that's a very different question, and requires a higher order analysis, because the solver can't just find a solution: it needs to show that there is no extension of that solution satisfying the negated constraint. Your initial example is like that.
So, yes, it's a fundamental limitation in the sense that higher order logic is fundamentally less tractable. But whether that's a limitation for you in practice is another matter. What analysis do you actually need?
One compelling use of higher order formulas is synthesis. A typical synthesis problem takes the form "find me a program structure P such that there is no counterexample to the specification S". This requires higher order analysis, and is the kind of problem that Alloy* was designed to solve.
But there's generally no reason to use Alloy* for standard verification/simulation problems.

Alloy - set difference leading to vars and clauses, set union does not

I'm curious as to when evaluation sets in, apparently certain operators are rather transformed into clauses than evaluated:
abstract sig Element {}
one sig A,B,C extend Element {}
one sig Test {
test: set Element
}
pred Test1 { Test.test = A+B }
pred Test2 { Test.test = Element-C }
and run it for Test1 and Test2 respectively will give different number of vars/clauses, specifically:
Test1: 0 vars, 0 primary vars, 0 clauses
Test2: 5 vars, 3 primary vars, 4 clauses
So although Element is abstract and all its members and their cardinalities are known, the difference seems not to be computed in advance, while the sum is. I don't want to make any assumptions, so I'm interested in why that is. Is the + operator special?
To give some context, I tried to limit the domain of a relation and found, that using only + seems to be more efficient, even when the sets are completely known in advance.
To give some context, I tried to limit the domain of a relation and found, that using only + seems to be more efficient, even when the sets are completely known in advance.
That is pretty much the right conclusion. The reason is the fact that the Alloy Analyzer tries to infer relation bounds from certain Alloy idioms. It uses a conservative approximation that is always sound for set union and product, but not for set difference. That's why for Test1 in the example above the Alloy Analyzer infers a fixed bound for the test relation (this/Test.test: [[[A$0], [B$0]]]) so no solver needs to be invoked; for Test2, the bound for the test relation cannot be shrunk so is set to be the most permissive (this/Test.test: [[], [[A$0], [B$0], [C$0]]]), thus a solver needs to be invoked to find a solution satisfying the constraints given the bounds.

Solving maximizing problems in Alloy (or other optimization problems)

I've bought and read the Software Abstractions book (great book actually) a couple of months if not 1.5 years ago. I've read online tutorials and slides on Alloy, etc. Of course, I've also done exercises and a few models of my own. I've even preached for Alloy in some confs. Congrats for Alloy btw!
Now, I am wondering if one can model and solve maximizing problems over integers in Alloy. I don't see how it could be done but I thought asking real experts could give me a more definitive answer.
For instance, say you have a model similar to this:
open util/ordering[State] as states
sig State {
i, j, k: Int
}{
i >= 0
j >= 0
k >= 0
}
pred subi (s, s': State) {
s'.i = minus[s.i, 2]
s'.j = s.j
s'.k = s.k
}
pred subj (s, s': State) {
s'.i = s.i
s'.j = minus[s.j, 1]
s'.k = s.k
}
pred subk (s, s': State) {
s'.i = s.i
s'.j = s.j
s'.k = minus[s.k, 3]
}
pred init (s: State) {
// one example
s.i = 10
s.j = 8
s.k = 17
}
fact traces {
init[states/first]
all s: State - states/last | let s' = states/next[s] |
subi[s, s'] or subj[s, s'] or subk[s, s']
let s = states/last | (s.i > 0 => (s.j = 0 and s.k = 0)) and
(s.j > 0 => (s.i = 0 and s.k = 0)) and
(s.k > 0 => (s.i = 0 and s.j = 0))
}
run {} for 14 State, 6 Int
I could have used Naturals but let's forget it. What if I want the trace which leads to the maximal i, j or k in the last state? Can I constrain it?
Some intuition is telling me I could do it by trial and error, i.e., find one solution and then manually add a constraint in the model for the variable to be stricly greater than the one value I just found, until it is unsatisfiable. But can it be done more elegantly and efficiently?
Thanks!
Fred
EDIT: I realize that for this particular problem, the maximum is easy to find, of course. Keep the maximal value in the initial state as-is and only decrease the other two and you're good. But my point was to illustrate one simple problem to optimize so that it can be applied to harder problems.
Your intuition is right: trial and error is certainly a possible approach, and I use it regularly in similar situations (e.g. to find minimal sets of axioms that entail the properties I want).
Whether it can be done more directly and elegantly depends, I think, on whether a solution to the problem can be represented by an atom or must be a set or other non-atomic object. Given a problem whose solutions will all be atoms of type T, a predicate Solution which is true of atomic solutions to a problem, and a comparison relation gt which holds over atoms of the appropriate type(s), then you can certainly write
pred Maximum[ a : T ] {
Solution[a]
and
all s : T | Solution[s] implies
(gt[a,s] or a = s)
}
run Maximum for 5
Since Alloy is resolutely first-order, you cannot write the equivalent predicate for solutions which involve sets, relations, functions, paths through a graph, etc. (Or rather, you can write them, but the Analyzer cannot analyze them.)
But of course one can also introduce signatures called MySet, MyRelation, etc., so that one has one atom for each set, relation, etc., that one needs in a problem. This sometimes works, but it does run into the difficulty that such problems sometimes need all possible sets, relations, functions, etc., to exist (as in set theory they do), while Alloy will not, in general, create an atom of type MySet for every possible set of objects in univ. Jackson discusses this technique in sections 3.2.3 (see "Is there a loss of expressive power in the restriction to flat relations?"), 5.2.2 "Skolemization", and 5.3 "Unbounded universal quantifiers" of his book, and the discussion has thus far repaid repeated rereadings. (I have penciled in an additional index entry in my copy of the book pointing to these sections, under the heading 'Second-order logic, faking it', so I can find them again when I need them.)
All of that said, however: in section 4.8 of his book, Jackson writes "Integers are not actually very useful. If you think you need them, think again; ... Of course, if you have a heavily numerical problem, you're likely to need integers (and more), but then Alloy is probably not suitable anyway."

Is there a language with constrainable types?

Is there a typed programming language where I can constrain types like the following two examples?
A Probability is a floating point number with minimum value 0.0 and maximum value 1.0.
type Probability subtype of float
where
max_value = 0.0
min_value = 1.0
A Discrete Probability Distribution is a map, where: the keys should all be the same type, the values are all Probabilities, and the sum of the values = 1.0.
type DPD<K> subtype of map<K, Probability>
where
sum(values) = 1.0
As far as I understand, this is not possible with Haskell or Agda.
What you want is called refinement types.
It's possible to define Probability in Agda: Prob.agda
The probability mass function type, with sum condition is defined at line 264.
There are languages with more direct refinement types than in Agda, for example ATS
You can do this in Haskell with Liquid Haskell which extends Haskell with refinement types. The predicates are managed by an SMT solver at compile time which means that the proofs are fully automatic but the logic you can use is limited by what the SMT solver handles. (Happily, modern SMT solvers are reasonably versatile!)
One problem is that I don't think Liquid Haskell currently supports floats. If it doesn't though, it should be possible to rectify because there are theories of floating point numbers for SMT solvers. You could also pretend floating point numbers were actually rational (or even use Rational in Haskell!). With this in mind, your first type could look like this:
{p : Float | p >= 0 && p <= 1}
Your second type would be a bit harder to encode, especially because maps are an abstract type that's hard to reason about. If you used a list of pairs instead of a map, you could write a "measure" like this:
measure total :: [(a, Float)] -> Float
total [] = 0
total ((_, p):ps) = p + probDist ps
(You might want to wrap [] in a newtype too.)
Now you can use total in a refinement to constrain a list:
{dist: [(a, Float)] | total dist == 1}
The neat trick with Liquid Haskell is that all the reasoning is automated for you at compile time, in return for using a somewhat constrained logic. (Measures like total are also very constrained in how they can be written—it's a small subset of Haskell with rules like "exactly one case per constructor".) This means that refinement types in this style are less powerful but much easier to use than full-on dependent types, making them more practical.
Perl6 has a notion of "type subsets" which can add arbitrary conditions to create a "sub type."
For your question specifically:
subset Probability of Real where 0 .. 1;
and
role DPD[::T] {
has Map[T, Probability] $.map
where [+](.values) == 1; # calls `.values` on Map
}
(note: in current implementations, the "where" part is checked at run-time, but since "real types" are checked at compile-time (that includes your classes), and since there are pure annotations (is pure) inside the std (which is mostly perl6) (those are also on operators like *, etc), it's only a matter of effort put into it (and it shouldn't be much more).
More generally:
# (%% is the "divisible by", which we can negate, becoming "!%%")
subset Even of Int where * %% 2; # * creates a closure around its expression
subset Odd of Int where -> $n { $n !%% 2 } # using a real "closure" ("pointy block")
Then you can check if a number matches with the Smart Matching operator ~~:
say 4 ~~ Even; # True
say 4 ~~ Odd; # False
say 5 ~~ Odd; # True
And, thanks to multi subs (or multi whatever, really – multi methods or others), we can dispatch based on that:
multi say-parity(Odd $n) { say "Number $n is odd" }
multi say-parity(Even) { say "This number is even" } # we don't name the argument, we just put its type
#Also, the last semicolon in a block is optional
Nimrod is a new language that supports this concept. They are called Subranges. Here is an example. You can learn more about the language here link
type
TSubrange = range[0..5]
For the first part, yes, that would be Pascal, which has integer subranges.
The Whiley language supports something very much like what you are saying. For example:
type natural is (int x) where x >= 0
type probability is (real x) where 0.0 <= x && x <= 1.0
These types can also be implemented as pre-/post-conditions like so:
function abs(int x) => (int r)
ensures r >= 0:
//
if x >= 0:
return x
else:
return -x
The language is very expressive. These invariants and pre-/post-conditions are verified statically using an SMT solver. This handles examples like the above very well, but currently struggles with more complex examples involving arrays and loop invariants.
For anyone interested, I thought I'd add an example of how you might solve this in Nim as of 2019.
The first part of the questions is straightfoward, since in the interval since since this question was asked, Nim has gained the ability to generate subrange types on floats (as well as ordinal and enum types). The code below defines two new float subranges types, Probability and ProbOne.
The second part of the question is more tricky -- defining a type with constrains on a function of it's fields. My proposed solution doesn't directly define such a type but instead uses a macro (makePmf) to tie the creation of a constant Table[T,Probability] object to the ability to create a valid ProbOne object (thus ensuring that the PMF is valid). The makePmf macro is evaluated at compile time, ensuring that you can't create an invalid PMF table.
Note that I'm a relative newcomer to Nim so this may not be the most idiomatic way to write this macro:
import macros, tables
type
Probability = range[0.0 .. 1.0]
ProbOne = range[1.0..1.0]
macro makePmf(name: untyped, tbl: untyped): untyped =
## Construct a Table[T, Probability] ensuring
## Sum(Probabilities) == 1.0
# helper templates
template asTable(tc: untyped): untyped =
tc.toTable
template asProb(f: float): untyped =
Probability(f)
# ensure that passed value is already is already
# a table constructor
tbl.expectKind nnkTableConstr
var
totprob: Probability = 0.0
fval: float
newtbl = newTree(nnkTableConstr)
# create Table[T, Probability]
for child in tbl:
child.expectKind nnkExprColonExpr
child[1].expectKind nnkFloatLit
fval = floatVal(child[1])
totprob += Probability(fval)
newtbl.add(newColonExpr(child[0], getAst(asProb(fval))))
# this serves as the check that probs sum to 1.0
discard ProbOne(totprob)
result = newStmtList(newConstStmt(name, getAst(asTable(newtbl))))
makePmf(uniformpmf, {"A": 0.25, "B": 0.25, "C": 0.25, "D": 0.25})
# this static block will show that the macro was evaluated at compile time
static:
echo uniformpmf
# the following invalid PMF won't compile
# makePmf(invalidpmf, {"A": 0.25, "B": 0.25, "C": 0.25, "D": 0.15})
Note: A cool benefit of using a macro is that nimsuggest (as integrated into VS Code) will even highlight attempts to create an invalid Pmf table.
Modula 3 has subrange types. (Subranges of ordinals.) So for your Example 1, if you're willing to map probability to an integer range of some precision, you could use this:
TYPE PROBABILITY = [0..100]
Add significant digits as necessary.
Ref: More about subrange ordinals here.

alloy model for hydrocarbons

i need to model hydrocarbon structure using alloy
basically i need to design alkane, alkene and alkyne groups
i have created following signatures(alkene example)
sig Hydrogen{}
sig Carbon{}
sig alkenegrp{
c:one Carbon,
h:set Hydrogen,
doublebond:lone alkenegrp
}
sig alkene{
unit : set alkenegrp
}
fact{
all a:alkenegrp|a not in a.doublebond.*doublebond
all a:alkenegrp|#a.h=mul[#(a.c),2]
}
pred show_alkene{
#alkene>1
}
run show_alkene
this works from alkene but when ever i try to design the same for alkane or alkyne by changing the fact like all a:alkynegrp|#a.h=minus[mul[#(a.c),2],2] it doesnt work.
Can anyone suggest how do i implement it?
My problem statement is
In Organic chemistry saturated hydrocarbons are organic compound composed entirely of single
bonds and are saturated with hydrogen. The general formula for saturated hydrocarbons is
CnH2n+2(assuming non-cyclic structures). Also called as alkanes. Unsaturated hydrocarbons
have one or more double or triple bonds between carbon atoms. Those with double bond are
called alkenes. Those with one double bond have the formula CnH2n (assuming non-cyclic
structures). Those containing triple bonds are called alkynes, with general formula CnH2n-2.
Model hydrocarbons and give predicates to generate instances of alkane, alkene and alkyne.
We have tried as:
sig Hydrogen{}
sig Carbon{}
sig alkane{
c:one Carbon,
h:set Hydrogen,
n:lone alkane
}
fact{
//(#h)=add [mul[(#c),2],2]
//all a:alkane|a not in a.*n
all a:alkane|#a.h=mul[#(a.c),2]
}
pred show_alkane(){}
run show_alkan
e
General formula for alkane is CnH2n+2,for multiplication we can use mul inbuilt function but we can not write for addtion as we have to do CnH2n+2.What should we write so that it can work for alkane
I understand alkanes, alkenes, and alkynes a little better now, but I still don't understand why you think your Alloy model doesn't work.
To express the CnH2n-2 constraint, you can certainly write what you suggested
all a:alkynegrp |
#a.h = minus[mul[#(a.c), 2], 2]
The problem is only that in your alkane sig declaration you said c: one Carbon, which is going to fix the number of carbon atoms to exactly 1, so minus[mul[#(a.c), 2], 2] is always going to evaluate to exactly 0. I assume you want to alloy for any number of carbons (since Cn) so you should change it from c: one Carbon to c: set Carbon. If you then run the show_alkane predicate, you should get some instances where the number of carbons is greater than 1 and thus, the number of hydrogens is greater than 0.
Also, for the alkane formula
all a:alkynegrp |
#a.h = plus[mul[#(a.c), 2], 2]
the default scope of 3 will not suffice, because you will need at least 4 atoms of hydrogen when a.c is non-empty, but you can fix that by explicitly giving a scope
run show_alkane for 8
If this wasn't the problem you were talking about, please be more specific about why you think "it doesn't work", i.e., what is it that you expect Alloy to do and what is it that Alloy actually does.

Resources