Backpropagation neural network - python-3.x

I need to use Backpropagation Neural Netwrok for multiclass classification purposes in my application. I have found this code and try to adapt it to my needs. It is based on the lections of Machine Learning in Coursera from Andrew Ng.
I have tested it in IRIS dataset and achieved good results (accuracy of classification around 0.96), whereas on my real data I get terrible results. I assume there is some implementation error, because the data is very simple. But I cannot figure out what exactly is the problem.
What are the parameters that it make sense to adjust?
I tried with:
number of units in hidden layer
generalization parameter (lambda)
number of iterations for minimization function
Built-in minimization function used in this code is pretty much confusing me. It is used just once, as #goncalopp has mentioned in comment. Shouldn't it iteratively update the weights? How it can be implemented?
Here is my training data (target class is in the last column):
65535, 3670, 65535, 3885, -0.73, 1
65535, 3962, 65535, 3556, -0.72, 1
65535, 3573, 65535, 3529, -0.61, 1
3758, 3123, 4117, 3173, -0.21, 0
3906, 3119, 4288, 3135, -0.28, 0
3750, 3073, 4080, 3212, -0.26, 0
65535, 3458, 65535, 3330, -0.85, 2
65535, 3315, 65535, 3306, -0.87, 2
65535, 3950, 65535, 3613, -0.84, 2
65535, 32576, 65535, 19613, -0.35, 3
65535, 16657, 65535, 16618, -0.37, 3
65535, 16657, 65535, 16618, -0.32, 3
The dependencies are so obvious, I think it should be so easy to classify it...
But results are terrible. I get accuracy of 0.6 to 0.8. This is absolutely inappropriate for my application. Can someone please point out possible improvements I could make in order to achieve better results.
Here is the code:
import numpy as np
from scipy import optimize
from sklearn import cross_validation
from sklearn.metrics import accuracy_score
import math
class NN_1HL(object):
def __init__(self, reg_lambda=0, epsilon_init=0.12, hidden_layer_size=25, opti_method='TNC', maxiter=500):
self.reg_lambda = reg_lambda
self.epsilon_init = epsilon_init
self.hidden_layer_size = hidden_layer_size
self.activation_func = self.sigmoid
self.activation_func_prime = self.sigmoid_prime
self.method = opti_method
self.maxiter = maxiter
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def sigmoid_prime(self, z):
sig = self.sigmoid(z)
return sig * (1 - sig)
def sumsqr(self, a):
return np.sum(a ** 2)
def rand_init(self, l_in, l_out):
self.epsilon_init = (math.sqrt(6))/(math.sqrt(l_in + l_out))
return np.random.rand(l_out, l_in + 1) * 2 * self.epsilon_init - self.epsilon_init
def pack_thetas(self, t1, t2):
return np.concatenate((t1.reshape(-1), t2.reshape(-1)))
def unpack_thetas(self, thetas, input_layer_size, hidden_layer_size, num_labels):
t1_start = 0
t1_end = hidden_layer_size * (input_layer_size + 1)
t1 = thetas[t1_start:t1_end].reshape((hidden_layer_size, input_layer_size + 1))
t2 = thetas[t1_end:].reshape((num_labels, hidden_layer_size + 1))
return t1, t2
def _forward(self, X, t1, t2):
m = X.shape[0]
ones = None
if len(X.shape) == 1:
ones = np.array(1).reshape(1,)
else:
ones = np.ones(m).reshape(m,1)
# Input layer
a1 = np.hstack((ones, X))
# Hidden Layer
z2 = np.dot(t1, a1.T)
a2 = self.activation_func(z2)
a2 = np.hstack((ones, a2.T))
# Output layer
z3 = np.dot(t2, a2.T)
a3 = self.activation_func(z3)
return a1, z2, a2, z3, a3
def function(self, thetas, input_layer_size, hidden_layer_size, num_labels, X, y, reg_lambda):
t1, t2 = self.unpack_thetas(thetas, input_layer_size, hidden_layer_size, num_labels)
m = X.shape[0]
Y = np.eye(num_labels)[y]
_, _, _, _, h = self._forward(X, t1, t2)
costPositive = -Y * np.log(h).T
costNegative = (1 - Y) * np.log(1 - h).T
cost = costPositive - costNegative
J = np.sum(cost) / m
if reg_lambda != 0:
t1f = t1[:, 1:]
t2f = t2[:, 1:]
reg = (self.reg_lambda / (2 * m)) * (self.sumsqr(t1f) + self.sumsqr(t2f))
J = J + reg
return J
def function_prime(self, thetas, input_layer_size, hidden_layer_size, num_labels, X, y, reg_lambda):
t1, t2 = self.unpack_thetas(thetas, input_layer_size, hidden_layer_size, num_labels)
m = X.shape[0]
t1f = t1[:, 1:]
t2f = t2[:, 1:]
Y = np.eye(num_labels)[y]
Delta1, Delta2 = 0, 0
for i, row in enumerate(X):
a1, z2, a2, z3, a3 = self._forward(row, t1, t2)
# Backprop
d3 = a3 - Y[i, :].T
d2 = np.dot(t2f.T, d3) * self.activation_func_prime(z2)
Delta2 += np.dot(d3[np.newaxis].T, a2[np.newaxis])
Delta1 += np.dot(d2[np.newaxis].T, a1[np.newaxis])
Theta1_grad = (1 / m) * Delta1
Theta2_grad = (1 / m) * Delta2
if reg_lambda != 0:
Theta1_grad[:, 1:] = Theta1_grad[:, 1:] + (reg_lambda / m) * t1f
Theta2_grad[:, 1:] = Theta2_grad[:, 1:] + (reg_lambda / m) * t2f
return self.pack_thetas(Theta1_grad, Theta2_grad)
def fit(self, X, y):
num_features = X.shape[0]
input_layer_size = X.shape[1]
num_labels = len(set(y))
theta1_0 = self.rand_init(input_layer_size, self.hidden_layer_size)
theta2_0 = self.rand_init(self.hidden_layer_size, num_labels)
thetas0 = self.pack_thetas(theta1_0, theta2_0)
options = {'maxiter': self.maxiter}
_res = optimize.minimize(self.function, thetas0, jac=self.function_prime, method=self.method,
args=(input_layer_size, self.hidden_layer_size, num_labels, X, y, 0), options=options)
self.t1, self.t2 = self.unpack_thetas(_res.x, input_layer_size, self.hidden_layer_size, num_labels)
np.savetxt("weights_t1.txt", self.t1, newline="\n")
np.savetxt("weights_t2.txt", self.t2, newline="\n")
def predict(self, X):
return self.predict_proba(X).argmax(0)
def predict_proba(self, X):
_, _, _, _, h = self._forward(X, self.t1, self.t2)
return h
##################
# IR data #
##################
values = np.loadtxt('infrared_data.txt', delimiter=', ', usecols=[0,1,2,3,4])
targets = np.loadtxt('infrared_data.txt', delimiter=', ', dtype=(int), usecols=[5])
X_train, X_test, y_train, y_test = cross_validation.train_test_split(values, targets, test_size=0.4)
nn = NN_1HL()
nn.fit(values, targets)
print("Accuracy of classification: "+str(accuracy_score(y_test, nn.predict(X_test))))

The most obvious problem is that your training dataset is very small.
Since you're using scipy.optimize.minimize instead of the usual iterative gradient descent, I think it's also likely you're overfitting your model to your training data. Possibly a iterative algorithm works better, here. Don't forget to carefully monitor the validation error.
If you try backpropagation with gradient descent, notice that, depending on the parameters used on backpropagation, neural networks take a while to converge
You can try to feed the network the same training data multiple times or tweak the learning rate but ideally you should use more diverse data.

Correctly normalizing the data solved the problem. I used preprocessing module from sklearn. Here is example:
from sklearn import preprocessing
import numpy as np
X_train = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
min_max_scaler = preprocessing.MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(X_train)
print(X_train_minmax)
X_test = np.array([[ -3., -1., 4.]])
X_test_minmax = min_max_scaler.transform(X_test)
print(X_test_minmax)
And the output is:
[[ 0.5 0. 1. ]
[ 1. 0.5 0.3333]
[ 0. 1. 0. ]]
[[-1.5 0. 1.6667]]

Related

Numpy implementation for regression using NN

I am implementing my own Neural Network model for regression using only NumPy, and I'm getting really weird results when I'm testing my model on m > 1 samples (for m=1 it works fine).. It seems like the model collapses and predicts only specific values for the whole batch:
Input:
X [[ 7.62316802 -6.12433912]
[ 1.11048966 4.97509421]]
Expected Output:
Y [[16.47952332 12.50288412]]
Model Output
y_hat [[10.42446234 10.42446234]]
Any idea what might cause this issue?
My code:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# np.seterr(all=None, divide=None, over=None, under=None, invalid=None)
data_x = np.random.uniform(0, 10, size=(2, 1))
data_y = (2 * data_x).sum(axis=0, keepdims=True)
# data_y = data_x[0, :] ** 2 + data_x[1, :] ** 2
# data_y = data_y.reshape((1, -1))
# # fig = plt.figure()
# # ax = fig.add_subplot(111, projection='3d')
# # ax.scatter(data_x[0, :], data_x[1, :], data_y)
# # plt.show()
memory = dict()
nn_architecture = [
{"input_dim": 2, "output_dim": 6, "activation": "sigmoid", "bias": True},
{"input_dim": 6, "output_dim": 4, "activation": "sigmoid", "bias": True},
{"input_dim": 4, "output_dim": 1, "activation": "relu", "bias": True}
]
def init_network_parameters(nn_architecture):
parameters = []
for idx, layer in enumerate(nn_architecture):
layer_params = {}
input_dim, output_dim, activation, bias = layer.values()
W = np.random.uniform(0, 1, (output_dim, input_dim))
B = np.zeros((output_dim, 1))
if bias:
B = np.ones((output_dim, 1))
activation_func = identity
backward_activation_func = identity_backward
if activation is 'sigmoid':
activation_func = sigmoid
backward_activation_func = sigmoid_backward
elif activation is 'relu':
activation_func = relu
backward_activation_func = relu_backward
else:
print(f"Activation function set to identity for layer {idx}")
layer_params[f"W"] = W
layer_params[f"B"] = B
layer_params[f"activation"] = activation_func
layer_params[f"backward_activation"] = backward_activation_func
layer_params[f"bias"] = bias
parameters.append(layer_params)
return parameters
def identity(z):
return z
def sigmoid(z):
return np.clip(1 / (1 + np.exp(-z)), -100, 100)
def relu(z):
output = np.array(z, copy=True)
output[z <= 0] = 0
return output
def identity_backward(z, dA):
return dA
def sigmoid_backward(z, dA):
return np.clip(z * (1-z) * dA, -100, 100)
def relu_backward(z, dA):
output = np.ones(z.shape)
output[z <= 0] = 0
return output * dA
def forward_single_layer(prev_A, parameters, idx):
W = parameters[f"W"]
B = parameters[f"B"]
activation = parameters[f"activation"]
if parameters["bias"]:
curr_Z = W.dot(prev_A) + B
else:
curr_Z = W.dot(prev_A)
curr_A = activation(curr_Z)
memory[f"Z{idx+1}"] = curr_Z
memory[f"A{idx+1}"] = curr_A
return curr_Z, curr_A
def forward(X, parameters):
prev_A = X
memory["A0"] = prev_A
for idx, layer_params in enumerate(parameters):
curr_Z, prev_A = forward_single_layer(prev_A=prev_A, parameters=layer_params, idx=idx)
return prev_A
def criteria(y_hat, y):
assert y_hat.shape == y.shape
n = y_hat.shape[0]
m = y_hat.shape[1]
loss = np.sum(y_hat - y, axis=1) / m
dA = (y_hat - y) / m
return loss, dA
def backward_single_layer(prev_A, dA, curr_W, curr_Z, backward_activation, idx):
m = prev_A.shape[1]
dZ = backward_activation(z=curr_Z, dA=dA)
dW = np.dot(dZ, prev_A.T) / m
dB = np.sum(dZ, axis=1, keepdims=True) / m
dA = np.dot(curr_W.T, dZ)
return dA, dW, dB
def backpropagation(parameters, dA):
grads = {}
for idx in reversed(range(len(parameters))):
layer = parameters[idx]
prev_A = memory[f"A{idx}"]
curr_Z = memory[f"Z{idx+1}"]
curr_W = layer["W"]
backward_activation = layer["backward_activation"]
dA, dW, dB = backward_single_layer(prev_A, dA, curr_W, curr_Z, backward_activation, idx)
grads[f"W{idx}"] = dW
grads[f"B{idx}"] = dB
return grads
def update_params(parameters, grads, lr=0.001):
new_params = []
for idx, layer in enumerate(parameters):
layer["W"] -= lr*grads[f"W{idx}"]
layer["B"] -= lr*grads[f"B{idx}"]
new_params.append(layer)
return new_params
X = np.random.uniform(-10, 10, (2, 2))
Y = 2*X[0, :] + X[1, :] ** 2
Y = Y.reshape((1, X.shape[1]))
parameters = init_network_parameters(nn_architecture)
n_epochs = 1000
lr = 0.01
loss_history = []
for i in range(n_epochs):
y_hat = forward(X, parameters)
loss, dA = criteria(y_hat, Y)
loss_history.append(loss)
grads = backpropagation(parameters, dA)
parameters = update_params(parameters, grads, lr)
if not i % 10:
print(f"Epoch {i}/{n_epochs} loss={loss}")
print("X", X)
print("Y", Y)
print("y_hat", y_hat)
There wasn't a problem with my implementation, just overfitting.
More information can be found here.

How to create my own loss function in Pytorch?

I'd like to create a model that predicts parameters of a circle (coordinates of center, radius).
Input is an array of points (of arc with noise):
def generate_circle(x0, y0, r, start_angle, phi, N, sigma):
theta = np.linspace(start_angle*np.pi/180, (start_angle + phi)*np.pi/180, num=N)
x = np.array([np.random.normal(r*np.cos(t) + x0 , sigma, 1)[0] for t in theta])
y = np.array([np.random.normal(r*np.sin(t) + y0 , sigma, 1)[0] for t in theta])
return x, y
n_x = 1000
start_angle = 0
phi = 90
N = 100
sigma = 0.005
x_full = []
for i in range(n_x):
x0 = np.random.normal(0 , 10, 1)[0]
y0 = np.random.normal(0 , 10, 1)[0]
r = np.random.normal(0 , 10, 1)[0]
x, y = generate_circle(x0, y0, r, start_angle, phi, N, sigma)
x_full.append(np.array([ [x[i], y[i]] for i in range(len(x))]))
X = torch.from_numpy(np.array(x_full))
print(X.size()) # torch.Size([1000, 100, 2])
Output: [x_c, y_c, r]
As a loss function I need to use this one:
I tried to implement something like the following:
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
# It doesn't work, it's just an idea
def my_loss(point, params):
arr = ((point[:, 0] - params[:, 0])**2 + (point[:, 1] - params[:, 1])**2 - params[:, 2]**2)**2
loss = torch.sum(arr)
return loss
# For N pairs (x, y) model predicts parameters of circle
net = Net(n_feature=N*2, n_hidden=10, n_output=3)
optimizer = torch.optim.SGD(net.parameters(), lr=1e-4)
for t in range(1000):
prediction = net(X.view(n_x, N*2).float())
loss = my_loss(X, prediction)
print(f"loss: {loss}")
optimizer.zero_grad()
loss.backward()
optimizer.step()
So, the question is how to correctly implement my own loss function in terms of Pytorch in this case?
Or how to change the model's structure to get expected results?
You're trying to create a loss between the predicted outputs and the inputs instead of between the predicted outputs and the true outputs. To do this you need to save the true values of x0, y0, and r when you generate them.
n_x = 1000
start_angle = 0
phi = 90
N = 100
sigma = 0.005
x_full = []
targets = [] # <-- Here
for i in range(n_x):
x0 = np.random.normal(0 , 10, 1)[0]
y0 = np.random.normal(0 , 10, 1)[0]
r = np.random.normal(0 , 10, 1)[0]
targets.append(np.array([x0, y0, r])) # <-- Here
x, y = generate_circle(x0, y0, r, start_angle, phi, N, sigma)
x_full.append(np.array([ [x[i], y[i]] for i in range(len(x))]))
X = torch.from_numpy(np.array(x_full))
Y = torch.from_numpy(np.array(targets)) # <-- Here
print(X.size()) # torch.Size([1000, 100, 2])
print(Y.size()) # torch.Size([1000, 3])
Now, when you call my_loss you should use:
loss = my_loss(Y, prediction)
You are passing in all your data points every iteration of your for loop, I would split your data into smaller sections so that your model doesn't just learn to output the same values every time. e.g. you have generated 1000 points so pass in a random selection of 100 in each iteration using something like random.sample(...)
Your input numbers are pretty large which means your loss will be huge, so generate inputs between 0 and 1 and then if you need the value to be between 0 and 10 you can just multiply by 10.

Weights are not getting updated while training logistic regression by using iris dataset

Python code:
I have used the Python code as below. Here, machine is trained by using Logistic Regression algorithm and wine dataset. Here, problem is that weights are not getting updated. I don't understand where is the problem.
from sklearn import datasets
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
dataset = datasets.load_wine()
x = dataset.data
y = dataset.target
y = y.reshape(178,1)
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.15,shuffle=True)
print(x_train.shape)
class log_reg():
def __init__(self):
pass
def sigmoid(self,x):
return 1 / (1 + np.exp(-x))
def train(self,x,y,w1,w2,alpha,iterations):
cost_history = [0] * iterations
Y_train = np.zeros([y.shape[0],3])
for i in range(Y_train.shape[0]):
for j in range(Y_train.shape[1]):
if(y[i] == j):
Y_train[i,j] = 1
for iteration in range(iterations):
z1 = x.dot(w1)
a1 = self.sigmoid(z1)
z2 = a1.dot(w2)
a2 = self.sigmoid(z2)
sig_sum = np.sum(np.exp(a2),axis=1)
sig_sum = sig_sum.reshape(a2.shape[0],1)
op = np.exp(a2) / sig_sum
loss = (Y_train * np.log(op))
dl = (op-Y_train)
dz1 = ((dl*(self.sigmoid(z2))*(1-self.sigmoid(z2))).dot(w2.T))*(self.sigmoid(z1))*(1-self.sigmoid(z1))
dz2 = (dl * (self.sigmoid(z2))*(1-self.sigmoid(z2)))
dw1 = x.T.dot(dz1)
dw2 = a1.T.dot(dz2)
w1 += alpha * dw1
w2 += alpha * dw2
cost_history[iteration] = (np.sum(loss)/len(loss))
return w1,w2,cost_history
def predict(self,x,y,w1,w2):
z1 = x.dot(w1)
a1 = self.sigmoid(z1)
z2 = a1.dot(w2)
a2 = self.sigmoid(z2)
sig_sum = np.sum(np.exp(a2),axis=1)
sig_sum = sig_sum.reshape(a2.shape[0],1)
op = np.exp(a2) / sig_sum
y_preds = np.argmax(op,axis=1)
acc = self.accuracy(y_preds,y)
return y_preds,acc
def accuracy(self,y_preds,y):
y_preds = y_preds.reshape(len(y_preds),1)
correct = (y_preds == y)
accuracy = (np.sum(correct) / len(y)) * 100
return (accuracy)
if __name__ == "__main__":
network = log_reg()
w1 = np.random.randn(14,4) * 0.01
w2 = np.random.randn(4,3) * 0.01
X_train = np.ones([x_train.shape[0],x_train.shape[1]+1])
X_train[:,:-1] = x_train
X_test = np.ones([x_test.shape[0],x_test.shape[1]+1])
X_test[:,:-1] = x_test
new_w1,new_w2,cost = network.train(X_train,y_train,w1,w2,0.0045,10000)
y_preds,accuracy = network.predict(X_test,y_test,new_w1,new_w2)
print(y_preds,accuracy)
In the above code, parameters are mentioned as below
x--training set,
y--target(output),
w1--weights for first layer,
w2--weights for second layer,
I used logistic regression with 2 hidden layers.
I am trying to train dataset wine from sklearn.I don't know where the problem is, but weights are not updating. Any help would be appreciated.
Your weights are updating , but I think you cant see them changing because you are printing them after execution. Python has a object reference method for numpy arrays so when you passed w1 , its values change values too so new_w1 and w1 become the same .
Take this example
import numpy as np
x=np.array([1,2,3,4])
def change(x):
x+=3
return x
print(x)
change(x)
print(x)
if you see the output it comes out as
[1 2 3 4]
[4 5 6 7]
I recommend that you add a bias and fix your accuracy function as I get my accuracy as 1000.
My execution when i run the code
the w1 and w2 values are indeed changing .
the only thing i changed was the main code and enabled the original data set , please do the same and tell if your weights are still not updating
if __name__ == "__main__":
network = log_reg()
w1 = np.random.randn(13,4) * 0.01
w2 = np.random.randn(4,3) * 0.01
print(w1)
print(" ")
print(w2)
print(" ")
new_w1,new_w2,cost = network.train(x_train,y_train,w1,w2,0.0045,10000)
print(w1)
print(" ")
print(w2)
print(" ")
y_preds,accuracy = network.predict(x_test,y_test,new_w1,new_w2)
print(y_preds,accuracy)

Why tensorflow1.1 gets slower and slower when training? Is it memory leak or queue starvation?

I trained a ESPCN in tensorflow1.1, the costed time per patch increase nearly linearly when training. The first 100 epoch takes only 4-5 seconds, but the 70th epoch takes about half a minute. See the training result below:
I've searched the same question on Google and Stack-overflow, and tried the solutions below, but seemed no work:
1.add tf.reset_default_graph() after every sess.run();
2.add time.sleep(5) to prevent queue starvation;
I know the general idea, that is to reduce the operations in Session(). But how? Anyone have the solution?
Here's part of my code:
L3, var_w_list, var_b_list = model_train(IN, FLAGS)
cost = tf.reduce_mean(tf.reduce_sum(tf.square(OUT - L3), reduction_indices=0))
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(FLAGS.base_lr, global_step * FLAGS.batch_size, FLAGS.decay_step, 0.96, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost, global_step = global_step, var_list = var_w_list + var_b_list)
# optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(cost, var_list = var_w_list + var_b_list)
cnt = 0
with tf.Session() as sess:
init_op = tf.initialize_all_variables()
sess.run(init_op)
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
print('\n\n\n =========== All initialization finished, now training begins ===========\n\n\n')
t_start = time.time()
t1 = t_start
for i in range(1, FLAGS.max_Epoch + 1):
LR_batch, HR_batch = batch.__next__()
global_step += 1
[_, cost1] = sess.run([optimizer, cost], feed_dict = {IN: LR_batch, OUT: HR_batch})
# tf.reset_default_graph()
if i % 100 == 0 or i == 1:
print_step = i
print_loss = cost1 / FLAGS.batch_size
test_LR_batch, test_HR_batch = test_batch.__next__()
test_SR_batch = test_HR_batch.copy()
test_SR_batch[:,:,:,0:3] = sess.run(L3, feed_dict = {IN: test_LR_batch[:,:,:,0:3]})
# tf.reset_default_graph()
psnr_tmp = 0.0
ssim_tmp = 0.0
for k in range(test_SR_batch.shape[0]):
com1 = test_SR_batch[k, :, :, 0]
com2 = test_HR_batch[k, :, :, 0]
psnr_tmp += get_psnr(com1, com2, FLAGS.HR_size, FLAGS.HR_size)
ssim_tmp += get_ssim(com1, com2, FLAGS.HR_size, FLAGS.HR_size)
psnr[cnt] = psnr_tmp / test_SR_batch.shape[0]
ssim[cnt] = ssim_tmp / test_SR_batch.shape[0]
ep[cnt] = print_step
t2 = time.time()
print_time = t2 - t1
t1 = t2
print(("[Epoch] : {0:d} [Current cost] : {1:5.8f} \t [Validation PSNR] : {2:5.8f} \t [Duration time] : {3:10.8f} s \n").format(print_step, print_loss, psnr[cnt], print_time))
# tf.reset_default_graph()
cnt += 1
if i % 1000 == 0:
L3_test = model_test(IN_TEST, var_w_list, var_b_list, FLAGS)
output_img = single_HR.copy()
output_img[:,:,:,0:3] = sess.run(L3_test, feed_dict = {IN_TEST:single_LR[:,:,:,0:3]})
tf.reset_default_graph()
subname = FLAGS.img_save_dir + '/' + str(i) + ".jpg"
img_gen(output_img[0,:,:,:], subname)
print(('================= Saving model to {}/model.ckpt ================= \n').format(FLAGS.checkpoint_dir))
time.sleep(5)
# saver.save(sess, FLAGS.checkpoint_dir + '/model.ckpt', print_step)
t_tmp = time.time() - t_start
My configuration is: windows10 + tf1.1 + python3.5 + cuda8.0 + cudnn5.1
================================================================
Besides, I used pixel-shuffle(PS) layer instead of deconvolution in the last layer. I copied the PS code from others, which is shown below:
def _phase_shift(I, r):
bsize, a, b, c = I.get_shape().as_list()
bsize = tf.shape(I)[0] # Handling Dimension(None) type for undefined batch dim
X = tf.reshape(I, (bsize, a, b, r, r))
X = tf.transpose(X, (0, 1, 2, 4, 3)) # bsize, a, b, 1, 1
X = tf.split(X, a, 1) # a, [bsize, b, r, r]
X = tf.concat([tf.squeeze(x, axis=1) for x in X], 2) # bsize, b, a*r, r
X = tf.split(X, b, 1) # b, [bsize, a*r, r]
X = tf.concat([tf.squeeze(x, axis=1) for x in X], 2) # bsize, a*r, b*r
return tf.reshape(X, (bsize, a*r, b*r, 1))
def PS(X, r, color=False):
if color:
Xc = tf.split(X, 3, 3)
X = tf.concat([_phase_shift(x, r) for x in Xc], 3)
else:
X = _phase_shift(X, r)
return X
Which X is the 4-dimensional image tensor, r means the up-scaling factor, color determine whether the channel of images is 3(Ycbcr format) or 1(Grayscale format).
To use the layer is very simple, just like the tf.nn.relu() does:
L3_ps = PS(L3, scale, True)
Now I'm wondering whether this layer caused the slowing-down, because the program goes well when using deconvolution layer. Using deconvolution layer may be a solution, but I have to use PS layer for some reason.
I suspect this line is causing a memory leak (although without seeing the code, I can't say for certain):
L3_test = model_test(IN_TEST, var_w_list, var_b_list, FLAGS)
L3_test seems to be a tf.Tensor (because you later pass it to sess.run(), so it seems likely that model_test() is adding new nodes to the graph each time it is called (every 1000 steps), which causes more work to be done over time.
The solution is quite simple though: since model_test() does not depend on anything calculated in the training loop, you can move the call to outside the training loop, so it is only called once.

TensorFlow, losses after training the model are different than losses printed during the last Epoch of Stochastic Gradient Descent.

I'm trying to do binary classification on two spirals. For testing, I am feeding my neural network the exact spiral data with no noise, and the model seems to work as the losses near 0 during SGD. However, after using my model to infer the exact same data points after SGD has completed, I get completely different losses than what was printed during the last epoch of SGD.
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
np.set_printoptions(threshold=np.nan)
# get the spiral points
t_p = np.linspace(0, 4, 1000)
x1_p = t_p * np.cos(t_p*2*np.pi)
y1_p = t_p * np.sin(t_p*2*np.pi)
x2_p = t_p * np.cos(t_p*2*np.pi + np.pi)
y2_p = t_p * np.sin(t_p*2*np.pi + np.pi)
plt.plot(x1_p, y1_p, x2_p, y2_p)
# generate data points
x1_dat = x1_p
y1_dat = y1_p
x2_dat = x2_p
y2_dat = y2_p
def model_variable(shape, name, initializer):
variable = tf.get_variable(name=name,
dtype=tf.float32,
shape=shape,
initializer=initializer
)
tf.add_to_collection('model_variables', variable)
return variable
class Model():
#layer specifications includes bias nodes
def __init__(self, sess, data, nEpochs, learning_rate, layer_specifications):
self.sess = sess
self.data = data
self.nEpochs = nEpochs
self.learning_rate = learning_rate
if layer_specifications[0] != 2 or layer_specifications[-1] != 1:
raise ValueError('First layer only two nodes, last layer only 1 node')
else:
self.layer_specifications = layer_specifications
self.build_model()
def build_model(self):
# x is the two nodes that will be layer one, will input an x, y coordinate
# and need to classify which spiral is it on, the non phase shifted or the phase
# shifted one.
# y is the output of the model
self.x = tf.placeholder(tf.float32, shape=[2, 1])
self.y = tf.placeholder(tf.float32, shape=[])
self.thetas = []
self.biases = []
for i in range(1, len(self.layer_specifications)):
self.thetas.append(model_variable([self.layer_specifications[i], self.layer_specifications[i-1]], 'theta'+str(i), tf.random_normal_initializer(stddev=0.1)))
self.biases.append(model_variable([self.layer_specifications[i], 1], 'bias'+str(i), tf.constant_initializer()))
#forward propagation
intermediate = self.x
for i in range(0, len(self.layer_specifications)-1):
if i != (len(self.layer_specifications) - 2):
intermediate = tf.nn.elu(tf.add(tf.matmul(self.thetas[i], intermediate), self.biases[i]))
else:
intermediate = tf.add(tf.matmul(self.thetas[i], intermediate), self.biases[i])
self.yhat = tf.squeeze(intermediate)
self.loss = tf.nn.sigmoid_cross_entropy_with_logits(self.yhat, self.y);
def train_init(self):
model_variables = tf.get_collection('model_variables')
self.optim = (
tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate)
.minimize(self.loss, var_list=model_variables)
)
self.check = tf.add_check_numerics_ops()
self.sess.run(tf.initialize_all_variables())
# here is where x and y combine to get just x in tf with shape [2, 1] and where label becomes y in tf
def train_iter(self, x, y):
loss, _, _ = sess.run([self.loss, self.optim, self.check],
feed_dict = {self.x: x, self.y: y})
print('loss: {0} on:{1}'.format(loss, x))
# here x and y are still x and y coordinates, label is separate
def train(self):
for _ in range(self.nEpochs):
for x, y, label in self.data():
print(label)
self.train_iter([[x], [y]], label)
print("NEW ONE:\n")
# here x and y are still x and y coordinates, label is separate
def infer(self, x, y, label):
return self.sess.run((tf.sigmoid(self.yhat), self.loss), feed_dict={self.x : [[x], [y]], self.y : label})
def data():
#so first spiral is label 0, second is label 1
for _ in range(len(x1_dat)-1, -1, -1):
for dat in range(2):
if dat == 0:
yield x1_dat[_], y1_dat[_], 0
else:
yield x2_dat[_], y2_dat[_], 1
layer_specifications = [2, 100, 100, 100, 1]
sess = tf.Session()
model = Model(sess, data, nEpochs=10, learning_rate=1.1e-2, layer_specifications=layer_specifications)
model.train_init()
model.train()
inferrences_1 = []
inferrences_2 = []
losses = 0
for i in range(len(t_p)-1, -1, -1):
infer, loss = model.infer(x1_p[i], y1_p[i], 0)
if infer >= 0.5:
print('loss: {0} on point {1}, {2}'.format(loss, x1_p[i], y1_p[i]))
losses = losses + 1
inferrences_1.append('r')
else:
inferrences_1.append('g')
for i in range(len(t_p)-1, -1, -1):
infer, loss = model.infer(x2_p[i], y2_p[i], 1)
if infer >= 0.5:
inferrences_2.append('r')
else:
print('loss: {0} on point {1}, {2}'.format(loss, x2_p[i], y2_p[i]))
losses = losses + 1
inferrences_2.append('g')
print('total losses: {}'.format(losses))
plt.scatter(x1_p, y1_p, c=inferrences_1)
plt.scatter(x2_p, y2_p, c=inferrences_2)
plt.show()

Resources