Graphics: Creating a 3D cylinder - graphics

I have a problem with creating 3D cylinders (without OpenGL). I understand that a mesh is used to create the cylinder surface and triangle fans are used to create the top and bottom caps. I have already implemented the mesh but not the planar triangle fans, so currently my 3D object looks like a cylinder without the bottom and top cap.
I believe this is what I need to do in order to create the bottom and top caps. First, find the center point of the cylinder mesh. Second, find the vertices of the mesh. Third, using the center point and the 2 vertex points, create the triangle. Fourth, repeat the steps until a planar circle is created.
Are the above steps a sufficient way of creating the caps or is there a better way? And how do I find the vertices of the mesh so I can create the triangle fans?

First some notes:
you did not specify your platform
gfx interface
language
not enough info about your cylinder either
is it axis aligned?
what coordinate system (Cartesian/orthogonal/orthonormal)?
need additional dimensions like color or texture coordinates?
So I can provide just generic info then
Axis aligned cylinder
choose the granularity N
number of points along your cap's circle
usually 20-36 is OK but if you need higher precision then sometimes you need even 1000 points or more
all depends on the purpose,zoom, angle and distance of view ...
and performance issues
for now let N=32
you need BR (boundary representation)
you did not specify gfx interface but your text implies BR model (surface polygons)
also no pivot point position so I will choose middle point of cylinder to be (0,0,0)
z axis will be the height of cylinder
and the caps will be coplanar with xy plane
so for cylinder is enough set of 2 rings (caps)
so the points can be defined in C++ like this:
const int N=32; // mesh complexity
double p0[N][3],p1[N][3]; // rings`
double a,da,c,s,r,h2; // some temp variables
int i;
r =50.0; // cylinder radius
h2=100.0*0.5; // half height of cyliner
da=M_PI/double(N-1);
for (a=0.0,i=0;i<N;i++,a+=da)
{
c=r*cos(a);
s=r*sin(a);
p0[i][0]=c;
p0[i][1]=s;
p0[i][2]=+h2;
p1[i][0]=c;
p1[i][1]=s;
p1[i][2]=-h2;
}
the ring points are as closed loop (p0[0]==p0[N-1])
so you do not need additional lines to handle it...
now how to draw
cant write the code for unknown api but
'mesh' is something like QUAD_STRIP I assume
so just add points to it in this order:
QUAD_STRIP = { p0[0],p1[0],p0[1],p1[1],...p0[N-1],p1[N-1] };
if you have inverse normal problem then swap p0/p1
now for the fans
you do not need the middle point (unless you have interpolation aliasing issues)
so similar:
TRIANGLE_FAN0 = { p0[0],p0[1],...p0[N-1] };
TRIANGLE_FAN1 = { p1[0],p1[1],...p1[N-1] };
if you still want the middle point then:
TRIANGLE_FAN0 = { (0.0,0.0,+h2),p0[0],p0[1],...p0[N-1] };
TRIANGLE_FAN1 = { (0.0,0.0,-h2),p1[0],p1[1],...p1[N-1] };
if you have inverse normal problem then reverse the points order (middle point stays where it is)
Not axis aligned cylinder?
just use transform matrix on your p0[],p1[] point lists to translate/rotate to desired position
the rest stays the same

Related

How do you determine if a list of of points in 3D space are in clock-wise order?

point[0] = (0,1,1)
point[1] = (1,1,1)
point[2] = (0,0,1)
point[3] = (1,0,1)
For examples below, each point above maps to an index in the visualization below.
0----------1
| |
| |
| |
3----------2
You can't.
If the points are not coplanar, it is even impossible to define an orientation.
If the points are coplanar, you can look at their plane from both sides.
If you want this information with respect to an observer, project the vertices to the viewing plane (to reduce to 2D) and compute the algebraic area by the shoelace formula. The sign tells you the orientation.
You can but only in respect to some direction ...
taking your example if you are looking on it as is its CW however if you look at it from behind its CCW ... if you look from sides (perpendicularly so the face is projected to line) we can not tell.
So the usual approach is to do a cross product of the vertices. This will give you normal vector of the face but the direction is determined by the CW/CCW. Now the result compare to reference direction by dot product. So:
vec3 p0,p1,p2; // 3 vertexes of your face not on single line
vec3 dir; // reference direction
float winding = dot( cross( p1-p0 , p2-p1 ) , dir )
Now the winding sign tells you if the face is CW or CCW in respect to dir. Which one it is depends on your notations. However this works only for convex polygons (or in convex part of concave ones) !!!
In computer graphics the reference direction is usually camera view direction. So once in camera local space coordinate system the direction is z axis so inspecting the z coordinate of the cross product is enough. This is known as face culling (skipping polygons with wrong winding in GL set by GL_CULL_FACE)...
You can look at the reference dir as an axis of rotation aorund which you are determining if the points are CW or CCW ...

Collision detection & resolution: circle in a playfield of other circles and polygons

I am working on a game that has a player sprite surrounded by a collision circle of a known radius. The player sprite can move about a playfield that consists of other sprites with their own collision circles and other obstacles made up of polygons. The other obstacles are rectangles at a 45 degree angle.
In addition, I want the player to adjust its movement when it does collide. I want the player to try to "push through" past the object instead of being stopped by it.
For example, if the player were to collide with another sprite's bounding circle, it would be stopped if its vector was exactly perpendicular to the tangent of the two circles' intersection.
However, if not perfectly perpendicular, the player would be, slowly at first, then faster, pushed along the tangent of the circle until it can continue past it unimpeded.
This works similarly when encountering one of the 45 degree rectangles.
What I need help with is the following: I am trying to find an analytic solution to detect both other sprites and obsticles, have the player's movement adjusted, and possibly stopped when adjusted to wedge between two or more objects.
I can do the collision detection and deflection for one object type at a time, but am struggling to put everything together into a comprehensive algorithm. I am currently working on an iterative pairwise resolution approach that "tries" different locations to result in a best-guess solution, but I really want a mathematically analytic solution. I'm hoping to have a function something like what appears in this psuedocode.
x = [player's x location]
y = [player's y location]
r = [player's collision radius]
// Array of other sprites on the playfield,
spr = [other sprites array]
// which contains 3 parameters, x, y, r. E.g., spr[3].x or spr[3].r,
// for the x position or collision radius for the fourth sprite in the
// array.
// Array of 45 degree rectangles on the playfield,
rect = [array of rectangles]
// which contain 4 parameters, x1, y1, x2, y2, the two opposite points
// of the rectangle. E.g., rect[0].x1, for the x position of the first
// point of the first rectangle.
// For simplicity, assume the above variables are all directly accessable
// in the function below.
// requestX and requestY is the position to which the player would
// like to move the player sprite.
definefunction collisionAdjustor(requestX, requestY) {
// Here I'd like to adjust the requested position if needed because
// of an intersection with one or more other sprites or rectangles.
// Finally return the location at which the player will actually be
// arriving.
return destinationX, destinationY
}
Any advice or suggestions would be much appreciated.
--Richard

Vulkan right handed coordinate system become Left handed

Problem:
Vulkan right handed coordinate system became left handed coordinate system after applying projection matrix. How can I make it consistent with Vulkan coordinate system?
Details:
I know that Vulkan is right handed coordinate system where
X+ points toward right
Y+ points toward down
Z+ points toward inside the screen
I've this line in the vertex shader: https://github.com/AndreaCatania/HelloVulkan/blob/master/shaders/shader.vert#L23
gl_Position = scene.cameraProjection * scene.cameraView * meshUBO.model * vec4(vertexPosition, 1.0);
At this point: https://github.com/AndreaCatania/HelloVulkan/blob/master/main.cpp#L62-L68 I'm defining the position of camera at center of scene and the position of box at (4, 4, -10) World space
The result is this:
As you can see in the picture above I'm getting Z- that point inside the screen but it should be positive.
Is it expected and I need to add something more or I did something wrong?
Useful part of code:
Projection calculation: https://github.com/AndreaCatania/HelloVulkan/blob/master/VisualServer.cpp#L88-L98
void Camera::reloadProjection(){
projection = glm::perspectiveRH_ZO(FOV, aspect, near, far);
isProjectionDirty = false;
}
Camera UBO fill: https://github.com/AndreaCatania/HelloVulkan/blob/master/VisualServer.cpp#L403-L414
SceneUniformBufferObject sceneUBO = {};
sceneUBO.cameraView = camera.transform;
sceneUBO.cameraProjection = camera.getProjection();
I do not use or know Vulcan but perspective projection matrix (at lest in OpenGL) is looking in the Z- direction which inverts one axis of your coordinate system. That inverts the winding rule of the coordinate system.
If you want to preserve original winding than just invert Z axis vector in the matrix for more info see:
Understanding 4x4 homogenous transform matrices
So just scale the Z axis by -1 either by some analogy to glScale(1.0,1.0,-1.0); or by direct matrix cells access.
All the OpenGL left coordinate system vs Vulkan right coordinate system happens during the fragment shader in NDC space, it means your view matrix doesn't care.
If you are using glm, everything you do in world space or view space is done via a right handed coordinate system.
GLM, a very popular math library that every beginner uses, uses right-handed coordinate system by default.
Your view matrix must be set accordingly, the only way to get a right handed system with x from left to right and y from bottom to top is if to set your z looking direction looking down at the negative values. If you don't provide a right handed system to your glm::lookat call, glm will convert it with one of your axis getting flipped via a series of glm::cross see glm source code
the proper way:
glm::vec3 eye = glm::vec3(0, 0, 10);
glm::vec3 up = glm::vec3(0, 1, 0);
glm::vec3 center = glm::vec3(0, 0, 0);
// looking in the negative z direction
glm::mat4 viewMat = glm::lookAt(eye, up, center);
Personnaly I store all information for coordinate system conversion in the projection matrix because by default glm doest it for you for the z coordinate
from songho: http://www.songho.ca/opengl/gl_projectionmatrix.html
Note that the eye coordinates are defined in the right-handed coordinate system, but NDC uses the left-handed coordinate system. That is, the camera at the origin is looking along -Z axis in eye space, but it is looking along +Z axis in NDC. Since glFrustum() accepts only positive values of near and far distances, we need to NEGATE them during the construction of GL_PROJECTION matrix.
Because we are looking at the negative z direction glm by default negate the sign.
It turns out that the y coordinate is flipped between vulkan and openGL so everything will get turned upside down. One way to resolve the problem is to negate the y values aswell:
glm::mat4 projection = glm::perspective(glm::radians(verticalFov), screenDimension.x / screenDimension.y, near, far);
// Vulkan NDC space points downward by default everything will get flipped
projection[1][1] \*= -1.0f;
If you follow the above step you must end up with something very similar to old openGL applications and with the up vector of your camera with the same sign than most 3D models.

How to calculate correct plane-frustum intersection?

Question:
I need to calculate intersection shape (purple) of plane defined by Ax + By + Cz + D = 0 and frustum defined by 4 rays emitting from corners of rectangle (red arrows). The result shoud be quadrilateral (4 points) and important requirement is that result shape must be in plane's local space. Plane is created with transformation matrix T (planes' normal is vec3(0, 0, 1) in T's space).
Explanation:
This is perspective form of my rectangle projection to another space (transformation / matrix / node). I am able to calculate intersection shape of any rectangle without perspective rays (all rays are parallel) by plane-line intersection algorithm (pseudocode):
Definitions:
// Plane defined by normal (A, B, C) and D
struct Plane { vec3 n; float d; };
// Line defined by 2 points
struct Line { vec3 a, b; };
Intersection:
vec3 PlaneLineIntersection(Plane plane, Line line) {
vec3 ba = normalize(line.b, line.a);
float dotA = dot(plane.n, l.a);
float dotBA = dot(plane.n, ba);
float t = (plane.d - dotA) / dotBA;
return line.a + ba * t;
}
Perspective form comes with some problems, because some of rays could be parallel with plane (intersection point is in infinite) or final shape is self-intersecting. Its works in some cases, but it's not enough for arbitary transformation. How to get correct intersection part of plane wtih perspective?
Simply, I need to get visible part of arbitary plane by arbitary perspective "camera".
Thank you for suggestions.
Intersection between a plane (one Ax+By+Cx+D equation) and a line (two planes equations) is a matter of solving the 3x3 matrix for x,y,z.
Doing all calculations on T-space (origin is at the top of the pyramid) is easier as some A,B,C are 0.
What I don't know if you are aware of is that perspective is a kind of projection that distorts the z ("depth", far from the origin). So if the plane that contains the rectangle is not perpendicular to the axis of the fustrum (z-axis) then it's not a rectangle when projected into the plane, but a trapezoid.
Anyhow, using the projection perspective matrix you can get projected coordinates for the four rectangle corners.
To tell if a point is in one side of a plane or in the other just put the point coordinates in the plane equation and get the sign, as shown here
Your question seems inherently mathematic so excuse my mathematical solution on StackOverflow. If your four arrows emit from a single point and the formed side planes share a common angle, then you are looking for a solution to the frustum projection problem. Your requirements simplify the problem quite a bit because you define the plane with a normal, not two bounded vectors, thus if you agree to the definitions...
then I can provide you with the mathematical solution here (Internet Explorer .mht file, possibly requiring modern Windows OS). If you are thinking about an actual implementation then I can only direct you to a very similar frustum projection implementation that I have implemented/uploaded here (Lua): https://github.com/quiret/mta_lua_3d_math
The roadmap for the implementation could be as follows: creation of condition container classes for all sub-problems (0 < k1*a1 + k2, etc) plus the and/or chains, writing algorithms for the comparisions across and-chains as well as normal-form creation, optimization of object construction/memory allocation. Since each check for frustum intersection requires just a fixed amount of algebraic objects you can implement an efficient cache.

Number of points in UV sphere

I'm trying to generate a mesh from a sphere of radius r. My goal is to create a UV sphere such that every point on the polyhedron has distance from the sphere smaller than tol.
The following code creates a grid of points on the sphere. How can I compute parallels_count and meridians_count so that all the point of the mesh are within tolerance?
for j in parallels_count:
parallel = PI * (j+1) / parallels_count
for i in meridians_count:
meridian = 2.0 * PI * i / meridians_count
return spherical_to_cartesian(meridian, parallel)
The code comes from here, and this is a picture of the UV sphere:
The distance between each face of the mesh and the sphere will be maximum around the center of the face.
So, for the distance between a face and the sphere to be smaller than tol it is not sufficient that the distances between the edges of the face and the corresponding circumferences are smaller than tol.
This picture is out of context but helps me explaining what I mean.
the biggest distance between points is on equator so use circle circumference to obtain angular step if I am not mistaken it should be...
dangle = tol/r; //[rad]
where r is sphere radius in the same units as tol you can use smaller step to be sure like dangle*=0.75; use this for both parallel and meridian angles.
If you want your counts instead then try:
meridians_count = (2.0*PI*r/tol)+1; // ceil or +1 just to be sure
parallels_count = 0.5*meridians_count;
It is still early here so I hope I did not make any silly math mistake (the easiest stuff is the worst for silly bugs).
Also take a look at few related QA's of mine:
Applying map of the earth texture a Sphere
Make a sphere with equidistant vertices
Sphere triangulation
[Edit1] well your new definition of tol changes everything
I see it like this:
sin(da/2) = (r-tol)/r
da = 2.0*asin((r-tol)/r)
If you convert to sphericalsurface than max difference is in center of uv grid cell which represents sqrt(2)*dadiagonal so try to use:
da = sqrt(2.0)*asin((r-tol)/r)
so your angle step should be a bit smaller than that ...

Resources