user defined feature in CRF++ - nlp

I tried to add more feature to CRF++ template.
According to How can I tell CRF++ classifier that a word x is captilized or understanding punctuations?
training sample
The DT 0 1 0 1 B-MISC
Oxford NNP 0 1 0 1 I-MISC
Companion NNP 0 1 0 1 I-MISC
to TO 0 0 0 0 I-MISC
Philosophy NNP 0 1 0 1 I-MISC
feature template
# Unigram
U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]
U05:%x[-1,0]/%x[0,0]
U06:%x[0,0]/%x[1,0]
U07:%x[-2,0]/%x[-1,0]/%x[0,0]
#shape feature
U08:%x[-2,2]
U09:%x[-1,2]
U10:%x[0,2]
U11:%x[1,2]
U12:%x[2,2]
B
The traing phase is ok. But I get no ouput with crf_test
tilney#ubuntu:/data/wikipedia/en$ crf_test -m validation_model test.data
tilney#ubuntu:/data/wikipedia/en$
Everything works fine if ignore the shape fearture above. where did I go wrong?

I figured this out. It's the problem with my test data. I thought that every feature should be taken from the trained model, so I only have two columns in my test data: word tag, which turns out that the test file should have the exact same format as the training data do!

Related

How I can get the vectors for words that were not present in word2vec vocabulary?

I have check the previous post link but it doesn't seems to work for my case:-
I have pre trained word2vec model:
import gensim
model = Word2Vec.load('w2v_model')
Now I have a pandas dataframe with keywords:
keyword
corruption
people
budget
cambodia
.......
......
All I want to add the vectors for each keyword in its corresponding columns but
when I use model['cambodia'] it throw me error as KeyError: "word 'cambodia' not in vocabulary"
so I have update the keyword as:
model.train(['cambodia'])
But this won't work out for me, when I use
model['cambodia']
it still giving an error as KeyError: "word 'cambodia' not in vocabulary". How to update new words into word2vec vocabulary so i can get its vectors? Expected output will be:-
keyword V1 V2 V3 V4 V5 V6
corruption 0.07397 0.290874 -0.170812 0.085428 -0.148551 0.38846
people ..............................................................
budget ...........................................................
You can initial the first vector as [0,0,...0]. And the word that not in vocabulary can set to 0.
keyword V1 V2 V3 V4 V5 V6
0 0 0 0 0 0 0
1 0.07397 0.290874 -0.170812 0.085428 -0.148551 0.38846
2 ..............................................................
3 ...........................................................
You can use two dicts to solve the problem.
word2id['corruption']=1
vec['corruption']=[0.07397 0.290874 -0.170812 0.085428 -0.148551 0.38846]
...
word2id['cambodia']=0
vec['cambodia']=[0 0 0 0 0 0]

Creating Frequency Matrix (counting number of items in array) in J

>text
┌───────────┬──────────┬───────────┬──────────┬──────────┬─────────┬──────────┬─────────────┬─────────────┬──────────┬───────────────┬──────────┬──────────┬────────────┬─────────────────┬──────────┬──────────┬──────────────┬─────────────┬─────────────┬────...
│speak │conceal │terribl │option │write │book │come │tuesdai │matter │act │conceal │catastroph│integr │depart │justic │put │wai │choic │realli │bad │opti...
├───────────┼──────────┼───────────┼──────────┼──────────┼─────────┼──────────┼─────────────┼─────────────┼──────────┼───────────────┼──────────┼──────────┼────────────┼─────────────────┼──────────┼──────────┼──────────────┼─────────────┼─────────────┼────...
│trump │logu │talk │entir │time │talk │entir │time │discov │someth │frequent │doe │logu │thi │direct │logu │direct │logu │differ │direct │cons...
├───────────┼──────────┼───────────┼──────────┼──────────┼─────────┼──────────┼─────────────┼─────────────┼──────────┼───────────────┼──────────┼──────────┼────────────┼─────────────────┼──────────┼──────────┼──────────────┼─────────────┼─────────────┼────...
│cohen │lawyer │object │taint │team │anoth │unusu │move │lawyer │trump │file │emerg │motion │court │sundai │night │sai │presid │object │extraordinari│meas...
├───────────┼──────────┼───────────┼──────────┼──────────┼─────────┼──────────┼─────────────┼─────────────┼──────────┼───────────────┼──────────┼──────────┼────────────┼─────────────────┼──────────┼──────────┼──────────────┼─────────────┼─────────────┼────...
│photo │presid │trump │fire │jame │comei │director │mai │did │mean │end │comei │time │public │memoir │higher │loyalti │releas │comei │featur │wide...
├───────────┼──────────┼───────────┼──────────┼──────────┼─────────┼──────────┼─────────────┼─────────────┼──────────┼───────────────┼──────────┼──────────┼────────────┼─────────────────┼──────────┼──────────┼──────────────┼─────────────┼─────────────┼────...
│british │deleg │organ │wrote │twitter │russia │syria │allow │access │douma │unfett │access │essenti │russia │syria │cooper │western │diplomat │confirm │syria │russ...
├───────────┼──────────┼───────────┼──────────┼──────────┼─────────┼
cleaned_text
┌─────┬───────┬───────┬──────┬─────┬────┬────┬───────┬──────┬───┬───────┬──────────┬──────┬──────┬──────┬───┬───┬─────┬──────┬───┬──────┬──────────┬──────┬────┬────┬────┬────────┬─────┬─────┬───────┬───────┬───────┬───────┬───┬─────┬───────┬────┬───────┬──...
│speak│conceal│terribl│option│write│book│come│tuesdai│matter│act│conceal│catastroph│integr│depart│justic│put│wai│choic│realli│bad│option│catastroph│option│hard│call│tell│congress│thing│chang│clinton│fervent│support│disagre│sai│least│philipp│rein│longtim│tr...
└─────┴───────┴───────┴──────┴─────┴────┴────┴───────┴──────┴───┴───────┴──────────┴──────┴──────┴──────┴───┴───┴─────┴──────┴───┴──────┴──────────┴──────┴────┴────┴────┴────────┴─────┴─────┴───────┴───────┴───────┴───────┴───┴─────┴───────┴────┴───────┴──...
each row of "text" is a news article, and I am trying to figure out the number of each vocab from cleaned_text in each article so that I can create a frequency matrix like this:
art1 art2 art3 ...
mai 4 5 4
sai 1 0 0
...
I am looking e. and E. verbs to count the number of each vocab in each article, but I am having a hard time to use them in this case.
Can anyone help me on this issue??? Thank you!
I would use a slightly different approach. To keep things simple, I will use the example of p
p
┌─────┬─────┬─────┬─────┬─────┐
│pants│shirt│shirt│hat │pants│
├─────┼─────┼─────┼─────┼─────┤
│shoes│shoes│socks│pants│shirt│
├─────┼─────┼─────┼─────┼─────┤
│shirt│hat │pants│shoes│shoes│
├─────┼─────┼─────┼─────┼─────┤
│socks│pants│shirt│shirt│hat │
├─────┼─────┼─────┼─────┼─────┤
│pants│shoes│shoes│socks│pants│
├─────┼─────┼─────┼─────┼─────┤
│shirt│shirt│hat │pants│shoes│
└─────┴─────┴─────┴─────┴─────┘
To get a count of each article of clothing I need to compare each row to the whole vocabulary. I get the whole vocabulary by ravelling (,) p and getting the nub (~.) This ensures that every possible word in p is accounted for.
~.#:,p
┌─────┬─────┬───┬─────┬─────┐
│pants│shirt│hat│shoes│socks│
└─────┴─────┴───┴─────┴─────┘
Now I will transpose (|:) p so that the I can compare each row to the nub using =/ and finish off with totalling up the sum across each item. +/#:
+/#:(|: =/ ~.#,)p
2 2 1 0 0
1 1 0 2 1
1 1 1 2 0
1 2 1 0 1
2 0 0 2 1
1 2 1 1 0
Reading these numbers against the nub I see the first row has 2-pants 2-shirts 1-hat 0-shoes and 0-socks and by inspection this is correct. The second row has 1-pant 1-shirt 0-hats 2-shoes and 1-sock and so on...
Hope this helps.

How to understand the format type of libsvm of Spark MLlib?

I am new for learning Spark MLlib. When I was reading about the example of Binomial logistic regression, I don't understand the format type of "libsvm". (Binomial logistic regression)
The text looks like:
0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84 216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252 242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253 267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48 291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253 302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253 330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253 358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195 400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252 430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135 469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225 498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253 541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146 571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85 596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196 605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233 631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37
1 159:124 160:253 161:255 162:63 186:96 187:244 188:251 189:253 190:62 214:127 215:251 216:251 217:253 218:62 241:68 242:236 243:251 244:211 245:31 246:8 268:60 269:228 270:251 271:251 272:94 296:155 297:253 298:253 299:189 323:20 324:253 325:251 326:235 327:66 350:32 351:205 352:253 353:251 354:126 378:104 379:251 380:253 381:184 382:15 405:80 406:240 407:251 408:193 409:23 432:32 433:253 434:253 435:253 436:159 460:151 461:251 462:251 463:251 464:39 487:48 488:221 489:251 490:251 491:172 515:234 516:251 517:251 518:196 519:12 543:253 544:251 545:251 546:89 570:159 571:255 572:253 573:253 574:31 597:48 598:228 599:253 600:247 601:140 602:8 625:64 626:251 627:253 628:220 653:64 654:251 655:253 656:220 681:24 682:193 683:253 684:220
1 125:145 126:255 127:211 128:31 152:32 153:237 154:253 155:252 156:71 180:11 181:175 182:253 183:252 184:71 209:144 210:253 211:252 212:71 236:16 237:191 238:253 239:252 240:71 264:26 265:221 266:253 267:252 268:124 269:31 293:125 294:253 295:252 296:252 297:108 322:253 323:252 324:252 325:108 350:255 351:253 352:253 353:108 378:253 379:252 380:252 381:108 406:253 407:252 408:252 409:108 434:253 435:252 436:252 437:108 462:255 463:253 464:253 465:170 490:253 491:252 492:252 493:252 494:42 518:149 519:252 520:252 521:252 522:144 546:109 547:252 548:252 549:252 550:144 575:218 576:253 577:253 578:255 579:35 603:175 604:252 605:252 606:253 607:35 631:73 632:252 633:252 634:253 635:35 659:31 660:211 661:252 662:253 663:35
1 153:5 154:63 155:197 181:20 182:254 183:230 184:24 209:20 210:254 211:254 212:48 237:20 238:254 239:255 240:48 265:20 266:254 267:254 268:57 293:20 294:254 295:254 296:108 321:16 322:239 323:254 324:143 350:178 351:254 352:143 378:178 379:254 380:143 406:178 407:254 408:162 434:178 435:254 436:240 462:113 463:254 464:240 490:83 491:254 492:245 493:31 518:79 519:254 520:246 521:38 547:214 548:254 549:150 575:144 576:241 577:8 603:144 604:240 605:2 631:144 632:254 633:82 659:230 660:247 661:40 687:168 688:209 689:31
1 152:1 153:168 154:242 155:28 180:10 181:228 182:254 183:100 209:190 210:254 211:122 237:83 238:254 239:162 265:29 266:254 267:248 268:25 293:29 294:255 295:254 296:103 321:29 322:254 323:254 324:109 349:29 350:254 351:254 352:109 377:29 378:254 379:254 380:109 405:29 406:255 407:254 408:109 433:29 434:254 435:254 436:109 461:29 462:254 463:254 464:63 489:29 490:254 491:254 492:28 517:29 518:254 519:254 520:28 545:29 546:254 547:254 548:35 573:29 574:254 575:254 576:109 601:6 602:212 603:254 604:109 630:203 631:254 632:178 658:155 659:254 660:190 686:32 687:199 688:104
0 130:64 131:253 132:255 133:63 157:96 158:205 159:251 160:253 161:205 162:111 163:4 184:96 185:189 186:251 187:251 188:253 189:251 190:251 191:31 209:16 210:64 211:223 212:244 213:251 214:251 215:211 216:213 217:251 218:251 219:31 236:80 237:181 238:251 239:253 240:251 241:251 242:251 243:94 244:96 245:251 246:251 247:31 263:92 264:253 265:253 266:253 267:255 268:253 269:253 270:253 271:95 272:96 273:253 274:253 275:31 290:92 291:236 292:251 293:243 294:220 295:233 296:251 297:251 298:243 299:82 300:96 301:251 302:251 303:31 317:80 318:253 319:251 320:251 321:188 323:96 324:251 325:251 326:109 328:96 329:251 330:251 331:31 344:96 345:240 346:253 347:243 348:188 349:42 351:96 352:204 353:109 354:4 356:12 357:197 358:251 359:31 372:221 373:251 374:253 375:121 379:36 380:23 385:190 386:251 387:31 399:48 400:234 401:253 413:191 414:253 415:31 426:44 427:221 428:251 429:251 440:12 441:197 442:251 443:31 454:190 455:251 456:251 457:251 468:96 469:251 470:251 471:31 482:190 483:251 484:251 485:113 495:40 496:234 497:251 498:219 499:23 510:190 511:251 512:251 513:94 522:40 523:217 524:253 525:231 526:47 538:191 539:253 540:253 541:253 548:12 549:174 550:253 551:253 552:219 553:39 566:67 567:236 568:251 569:251 570:191 571:190 572:111 573:72 574:190 575:191 576:197 577:251 578:243 579:121 580:39 595:63 596:236 597:251 598:253 599:251 600:251 601:251 602:251 603:253 604:251 605:188 606:94 624:27 625:129 626:253 627:251 628:251 629:251 630:251 631:229 632:168 633:15 654:95 655:212 656:251 657:211 658:94 659:59
1 159:121 160:254 161:136 186:13 187:230 188:253 189:248 190:99 213:4 214:118 215:253 216:253 217:225 218:42 241:61 242:253 243:253 244:253 245:74 268:32 269:206 270:253 271:253 272:186 273:9 296:211 297:253 298:253 299:239 300:69 324:254 325:253 326:253 327:133 351:142 352:255 353:253 354:186 355:8 378:149 379:229 380:254 381:207 382:21 405:54 406:229 407:253 408:254 409:105 433:152 434:254 435:254 436:213 437:26 460:112 461:251 462:253 463:253 464:26 487:29 488:212 489:253 490:250 491:149 514:36 515:214 516:253 517:253 518:137 542:75 543:253 544:253 545:253 546:59 570:93 571:253 572:253 573:189 574:17 598:224 599:253 600:253 601:84 625:43 626:235 627:253 628:126 629:1 653:99 654:248 655:253 656:119 682:225 683:235 684:49
1 100:166 101:222 102:55 128:197 129:254 130:218 131:5 155:29 156:249 157:254 158:254 159:9 183:45 184:254 185:254 186:174 187:2 210:4 211:164 212:254 213:254 214:85 238:146 239:254 240:254 241:254 242:85 265:101 266:245 267:254 268:254 269:254 270:85 292:97 293:248 294:254 295:204 296:254 297:254 298:85 315:12 316:59 317:98 318:151 319:237 320:254 321:254 322:109 323:35 324:254 325:254 326:85 343:41 344:216 345:254 346:254 347:239 348:153 349:37 350:4 351:32 352:254 353:254 354:85 372:7 373:44 374:44 375:30 379:32 380:254 381:254 382:96 407:19 408:230 409:254 410:174 436:197 437:254 438:110 464:197 465:254 466:85 492:197 493:253 494:63 515:37 516:54 517:54 518:45 519:26 520:84 521:221 522:84 523:21 524:31 525:162 526:78 540:6 541:41 542:141 543:244 544:254 545:254 546:248 547:236 548:254 549:254 550:254 551:233 552:239 553:254 554:138 567:23 568:167 569:254 570:254 571:254 572:254 573:229 574:228 575:185 576:138 577:138 578:138 579:138 580:138 581:138 582:44 595:113 596:254 597:254 598:254 599:179 600:64 601:5 623:32 624:209 625:183 626:97
0 155:53 156:255 157:253 158:253 159:253 160:124 183:180 184:253 185:251 186:251 187:251 188:251 189:145 190:62 209:32 210:217 211:241 212:253 213:251 214:251 215:251 216:251 217:253 218:107 237:37 238:251 239:251 240:253 241:251 242:251 243:251 244:251 245:253 246:107 265:166 266:251 267:251 268:253 269:251 270:96 271:148 272:251 273:253 274:107 291:73 292:253 293:253 294:253 295:253 296:130 299:110 300:253 301:255 302:108 319:73 320:251 321:251 322:251 323:251 327:109 328:251 329:253 330:107 347:202 348:251 349:251 350:251 351:225 354:6 355:129 356:251 357:253 358:107 375:150 376:251 377:251 378:251 379:71 382:115 383:251 384:251 385:253 386:107 403:253 404:251 405:251 406:173 407:20 410:217 411:251 412:251 413:253 414:107 430:182 431:255 432:253 433:216 438:218 439:253 440:253 441:182 457:63 458:221 459:253 460:251 461:215 465:84 466:236 467:251 468:251 469:77 485:109 486:251 487:253 488:251 489:215 492:11 493:160 494:251 495:251 496:96 513:109 514:251 515:253 516:251 517:137 520:150 521:251 522:251 523:251 524:71 541:109 542:251 543:253 544:251 545:35 547:130 548:253 549:251 550:251 551:173 552:20 569:110 570:253 571:255 572:253 573:98 574:150 575:253 576:255 577:253 578:164 597:109 598:251 599:253 600:251 601:251 602:251 603:251 604:253 605:251 606:35 625:93 626:241 627:253 628:251 629:251 630:251 631:251 632:216 633:112 634:5 654:103 655:253 656:251 657:251 658:251 659:251 683:124 684:251 685:225 686:71 687:71
0 128:73 129:253 130:227 131:73 132:21 156:73 157:251 158:251 159:251 160:174 182:16 183:166 184:228 185:251 186:251 187:251 188:122 210:62 211:220 212:253 213:251 214:251 215:251 216:251 217:79 238:79 239:231 240:253 241:251 242:251 243:251 244:251 245:232 246:77 264:145 265:253 266:253 267:253 268:255 269:253 270:253 271:253 272:253 273:255 274:108 292:144 293:251 294:251 295:251 296:253 297:168 298:107 299:169 300:251 301:253 302:189 303:20 318:27 319:89 320:236 321:251 322:235 323:215 324:164 325:15 326:6 327:129 328:251 329:253 330:251 331:35 345:47 346:211 347:253 348:251 349:251 350:142 354:37 355:251 356:251 357:253 358:251 359:35 373:109 374:251 375:253 376:251 377:251 378:142 382:11 383:148 384:251 385:253 386:251 387:164 400:11 401:150 402:253 403:255 404:211 405:25 410:11 411:150 412:253 413:255 414:211 415:25 428:140 429:251 430:251 431:253 432:107 438:37 439:251 440:251 441:211 442:46 456:190 457:251 458:251 459:253 460:128 461:5 466:37 467:251 468:251 469:51 484:115 485:251 486:251 487:253 488:188 489:20 492:32 493:109 494:129 495:251 496:173 497:103 512:217 513:251 514:251 515:201 516:30 520:73 521:251 522:251 523:251 524:71 540:166 541:253 542:253 543:255 544:149 545:73 546:150 547:253 548:255 549:253 550:253 551:143 568:140 569:251 570:251 571:253 572:251 573:251 574:251 575:251 576:253 577:251 578:230 579:61 596:190 597:251 598:251 599:253 600:251 601:251 602:251 603:251 604:242 605:215 606:55 624:21 625:189 626:251 627:253 628:251 629:251 630:251 631:173 632:103 653:31 654:200 655:253 656:251 657:96 658:71 659:20
Can you help me to understand the format type of libsvm of Spark MLlib? Thanks!
The LibSVM format is quite simple. The first row contains the class label, in this case 0 or 1. Following that are the features, here there are two values for each one; the first one is the feature index (i.e. which feature it is) and the second one is the actual value.
The feature indices starts from 1 (there is no index 0) and are in ascending order. The indices not present on a row are 0.
In summary, each row looks like this;
<label> <index1>:<value1> <index2>:<value2> ... <indexN>:<valueN>
This format is advantageous to use when the data is sparse and contain lots of zeroes. All 0 values are not saved which will make the files both smaller and easier to read.

svm train output file has less lines than that of the input file

I am currently building a binary classification model and have created an input file for svm-train (svm_input.txt). This input file has 453 lines, 4 No. features and 2 No. classes [0,1].
i.e
0 1:15.0 2:40.0 3:30.0 4:15.0
1 1:22.73 2:40.91 3:36.36 4:0.0
1 1:31.82 2:27.27 3:22.73 4:18.18
0 1:22.73 2:13.64 3:36.36 4:27.27
1 1:30.43 2:39.13 3:13.04 4:17.39 ......................
My problem is that when I count the number of lines in the output model generated by svm-train (svm_train_model.txt), this has 12 fewer lines than that of the input file. The line count here shows 450, although there are obviously also 9 lines at the beginning showing the various parameters generated
i.e.
svm_type c_svc
kernel_type rbf
gamma 1
nr_class 2
total_sv 441
rho -0.156449
label 0 1
nr_sv 228 213
SV
Therefore 12 lines in total from the original input of 453 have gone. I am new to svm and was hoping that someone could shed some light on why this might have happened?
Thanks in advance
Updated.........
I now believe that in generating the model, it has removed lines whereby the labels and all the parameters are exactly the same.
To explain............... My input is a set of miRNAs which have been classified as 1 and 0 depending on their involvement in a particular process or not (i.e 1=Yes & 0=No). The input file looks something like.......
0 1:22 2:30 3:14 4:16
1 1:26 2:15 3:17 4:25
0 1:22 2:30 3:14 4:16
Whereby, lines one and three are exactly the same and as a result will be removed from the output model. My question is then both why the output model would do this and how I can get around this (whilst using the same features)?
Whilst both SOME OF the labels and their corresponding feature values are identical within the input file, these are still different miRNAs.
NOTE: The Input file does not have a feature for miRNA name (and this would clearly show the differences in each line) however, in terms of the features used (i.e Nucleotide Percentage Content), some of the miRNAs do have exactly the same percentage content of A,U,G & C and as a result are viewed as duplicates and then removed from the output model as it obviously views them as duplicates even though they are not (hence there are less lines in the output model).
the format of the input file is:
Where:
Column 0 - label (i.e 1 or 0): 1=Yes & 0=No
Column 1 - Feature 1 = Percentage Content "A"
Column 2 - Feature 2 = Percentage Content "U"
Column 3 - Feature 3 = Percentage Content "G"
Column 4 - Feature 4 = Percentage Content "C"
The input file actually looks something like (See the very first two lines below), as they appear identical, however each line represents a different miRNA):
1 1:23 2:36 3:23 4:18
1 1:23 2:36 3:23 4:18
0 1:36 2:32 3:5 4:27
1 1:14 2:41 3:36 4:9
1 1:18 2:50 3:18 4:14
0 1:36 2:23 3:23 4:18
0 1:15 2:40 3:30 4:15
In terms of software, I am using libsvm-3.22 and python 2.7.5
Align your input file properly, is my first observation. The code for libsvm doesnt look for exactly 4 features. I identifies by the string literals you have provided separating the features from the labels. I suggest manually converting your input file to create the desired input argument.
Try the following code in python to run
Requirements - h5py, if your input is from matlab. (.mat file)
pip install h5py
import h5py
f = h5py.File('traininglabel.mat', 'r')# give label.mat file for training
variables = f.items()
labels = []
c = []
import numpy as np
for var in variables:
data = var[1]
lables = (data.value[0])
trainlabels= []
for i in lables:
trainlabels.append(str(i))
finaltrain = []
trainlabels = np.array(trainlabels)
for i in range(0,len(trainlabels)):
if trainlabels[i] == '0.0':
trainlabels[i] = '0'
if trainlabels[i] == '1.0':
trainlabels[i] = '1'
print trainlabels[i]
f = h5py.File('training_features.mat', 'r') #give features here
variables = f.items()
lables = []
file = open('traindata.txt', 'w+')
for var in variables:
data = var[1]
lables = data.value
for i in range(0,1000): #no of training samples in file features.mat
file.write(str(trainlabels[i]))
file.write(' ')
for j in range(0,49):
file.write(str(lables[j][i]))
file.write(' ')
file.write('\n')

Weka ignoring unlabeled data

I am working on an NLP classification project using Naive Bayes classifier in Weka. I intend to use semi-supervised machine learning, hence working with unlabeled data. When I test the model obtained from my labeled training data on an independent set of unlabeled test data, Weka ignores all the unlabeled instances. Can anybody please guide me how to solve this? Someone has already asked this question here before but there wasn't any appropriate solution provided. Here is a sample test file:
#relation referents
#attribute feature1 NUMERIC
#attribute feature2 NUMERIC
#attribute feature3 NUMERIC
#attribute feature4 NUMERIC
#attribute class{1 -1}
#data
1, 7, 1, 0, ?
1, 5, 1, 0, ?
-1, 1, 1, 0, ?
1, 1, 1, 1, ?
-1, 1, 1, 1, ?
The problem is that when you specify a training set -t train.arff and a test set test.arff, the mode of operation is to calculate the performance of the model based on the test set. But you can't calculate a performance of any kind without knowing the actual class. Without the actual class, how will you know if your prediction if right or wrong?
I used the data you gave as train.arff and as test.arff with arbitrary class labels assigned by me. The relevant output lines are:
=== Error on training data ===
Correctly Classified Instances 4 80 %
Incorrectly Classified Instances 1 20 %
Kappa statistic 0.6154
Mean absolute error 0.2429
Root mean squared error 0.4016
Relative absolute error 50.0043 %
Root relative squared error 81.8358 %
Total Number of Instances 5
=== Confusion Matrix ===
a b <-- classified as
2 1 | a = 1
0 2 | b = -1
and
=== Error on test data ===
Total Number of Instances 0
Ignored Class Unknown Instances 5
=== Confusion Matrix ===
a b <-- classified as
0 0 | a = 1
0 0 | b = -1
Weka can give you those statistics for the training set, because it knows the actual class labels and the predicted ones (applying the model on the training set). For the test set, it can't get any information about the performance, because it doesn't know about the true class labels.
What you might want to do is:
java -cp weka.jar weka.classifiers.bayes.NaiveBayes -t train.arff -T test.arff -p 1-4
which in my case would give you:
=== Predictions on test data ===
inst# actual predicted error prediction (feature1,feature2,feature3,feature4)
1 1:? 1:1 1 (1,7,1,0)
2 1:? 1:1 1 (1,5,1,0)
3 1:? 2:-1 0.786 (-1,1,1,0)
4 1:? 2:-1 0.861 (1,1,1,1)
5 1:? 2:-1 0.861 (-1,1,1,1)
So, you can get the predictions, but you can't get a performance, because you have unlabeled test data.

Resources