GHC Partial Evaluation and Separate Compilation - haskell

Whole-program compilers like MLton create optimized binaries in part to their ability to use the total source of the binary to perform partial evaluation: aggressively inlining constants and evaluating them until stuck—all during compilation!
This has been explored public ally a bit in the Haskell space by Gabriel Gonzalez's Morte.
Now my understanding is that Haskell does not do very much of this—if any at all. The cited reason I understand is that it is antithetical to separate compilation. This makes sense to prohibit partial evaluation across source-file boundaries, but it seems like in-file partial evaluation would still be an option.
As far as I know, in-file partial evaluation is still not performed, though.
My question is: is this true? If so, what are the tradeoffs for performing in-file partial evaluation? If not, what is an example file where one can improve compiled performance by putting more functionality into the same file?
(Edit: To clarify the above, I know there are a lot of questions as to what the best set of reductions to perform are—many are undecidable! I'd like to know the tradeoffs made in an "industrial strength" compiler with separate compilation that live at a level above choosing the right equational theory if there are any interesting things to talk about there. Things like compilation speed or file bloat are more toward the scope I'm interested in. Another question in the same space might be: "Why can't MLton get separate compilation just by compiling each module separately, leaving the API exposed, and then linking them all together?")

This is definitely an optimization that a small set of people are interested in and are pursuing. The Google search term to find information on it is "supercompilation". I believe there are at least two approaches floating about at the moment.
It seems one of the big tradeoffs is compilation-time resources (time and memory both), and at the moment the performance wins of paying these costs appear to be somewhat unpredictable. There's quite some work left. A few links:
A page on the GHC wiki
Neil Mitchell's Supero
Max Bolingbroke's Supercompilation by evaluation

Related

Expression trees vs IL.Emit for runtime code specialization

I recently learned that it is possible to generate C# code at runtime and I would like to put this feature to use. I have code that does some very basic geometric calculations like computing line-plane intersections and I think I could gain some performance benefits by generating specialized code for some of the methods because many of the calculations are performed for the same plane or the same line over and over again. By specializing the code that computes the intersections I think I should be able to gain some performance benefits.
The problem is that I'm not sure where to begin. From reading a few blog posts and browsing MSDN documentation I've come across two possible strategies for generating code at runtime: Expression trees and IL.Emit. Using expression trees seems much easier because there is no need to learn anything about OpCodes and various other MSIL related intricacies but I'm not sure if expression trees are as fast as manually generated MSIL. So are there any suggestions on which method I should go with?
The performance of both is generally same, as expression trees internally are traversed and emitted as IL using the same underlying system functions that you would be using yourself. It is theoretically possible to emit a more efficient IL using low-level functions, but I doubt that there would be any practically important performance gain. That would depend on the task, but I have not come of any practical optimisation of emitted IL, compared to one emitted by expression trees.
I highly suggest getting the tool called ILSpy that reverse-compiles CLR assemblies. With that you can look at the code actually traversing the expression trees and actually emitting IL.
Finally, a caveat. I have used expression trees in a language parser, where function calls are bound to grammar rules that are compiled from a file at runtime. Compiled is a key here. For many problems I came across, when what you want to achieve is known at compile time, then you would not gain much performance by runtime code generation. Some CLR JIT optimizations might be also unavailable to dynamic code. This is only an opinion from my practice, and your domain would be different, but if performance is critical, I would rather look at native code, highly optimized libraries. Some of the work I have done would be snail slow if not using LAPACK/MKL. But that is only a piece of the advice not asked for, so take it with a grain of salt.
If I were in your situation, I would try alternatives from high level to low level, in increasing "needed time & effort" and decreasing reusability order, and I would stop as soon as the performance is good enough for the time being, i.e.:
first, I'd check to see if Math.NET, LAPACK or some similar numeric library already has similar functionality, or I can adapt/extend the code to my needs;
second, I'd try Expression Trees;
third, I'd check Roslyn Project (even though it is in prerelease version);
fourth, I'd think about writing common routines with unsafe C code;
[fifth, I'd think about quitting and starting a new career in a different profession :) ],
and only if none of these work out, would I be so hopeless to try emitting IL at run time.
But perhaps I'm biased against low level approaches; your expertise, experience and point of view might be different.

Haskell for mission-critical systems [duplicate]

I've been curious to understand if it is possible to apply the power of Haskell to embedded realtime world, and in googling have found the Atom package. I'd assume that in the complex case the code might have all the classical C bugs - crashes, memory corruptions, etc, which would then need to be traced to the original Haskell code that
caused them. So, this is the first part of the question: "If you had the experience with Atom, how did you deal with the task of debugging the low-level bugs in compiled C code and fixing them in Haskell original code ?"
I searched for some more examples for Atom, this blog post mentions the resulting C code 22KLOC (and obviously no code:), the included example is a toy. This and this references have a bit more practical code, but this is where this ends. And the reason I put "sizable" in the subject is, I'm most interested if you might share your experiences of working with the generated C code in the range of 300KLOC+.
As I am a Haskell newbie, obviously there may be other ways that I did not find due to my unknown unknowns, so any other pointers for self-education in this area would be greatly appreciated - and this is the second part of the question - "what would be some other practical methods (if) of doing real-time development in Haskell?". If the multicore is also in the picture, that's an extra plus :-)
(About usage of Haskell itself for this purpose: from what I read in this blog post, the garbage collection and laziness in Haskell makes it rather nondeterministic scheduling-wise, but maybe in two years something has changed. Real world Haskell programming question on SO was the closest that I could find to this topic)
Note: "real-time" above is would be closer to "hard realtime" - I'm curious if it is possible to ensure that the pause time when the main task is not executing is under 0.5ms.
At Galois we use Haskell for two things:
Soft real time (OS device layers, networking), where 1-5 ms response times are plausible. GHC generates fast code, and has plenty of support for tuning the garbage collector and scheduler to get the right timings.
for true real time systems EDSLs are used to generate code for other languages that provide stronger timing guarantees. E.g. Cryptol, Atom and Copilot.
So be careful to distinguish the EDSL (Copilot or Atom) from the host language (Haskell).
Some examples of critical systems, and in some cases, real-time systems, either written or generated from Haskell, produced by Galois.
EDSLs
Copilot: A Hard Real-Time Runtime Monitor -- a DSL for real-time avionics monitoring
Equivalence and Safety Checking in Cryptol -- a DSL for cryptographic components of critical systems
Systems
HaLVM -- a lightweight microkernel for embedded and mobile applications
TSE -- a cross-domain (security level) network appliance
It will be a long time before there is a Haskell system that fits in small memory and can guarantee sub-millisecond pause times. The community of Haskell implementors just doesn't seem to be interested in this kind of target.
There is healthy interest in using Haskell or something Haskell-like to compile down to something very efficient; for example, Bluespec compiles to hardware.
I don't think it will meet your needs, but if you're interested in functional programming and embedded systems you should learn about Erlang.
Andrew,
Yes, it can be tricky to debug problems through the generated code back to the original source. One thing Atom provides is a means to probe internal expressions, then leaves if up to the user how to handle these probes. For vehicle testing, we build a transmitter (in Atom) and stream the probes out over a CAN bus. We can then capture this data, formated it, then view it with tools like GTKWave, either in post-processing or realtime. For software simulation, probes are handled differently. Instead of getting probe data from a CAN protocol, hooks are made to the C code to lift the probe values directly. The probe values are then used in the unit testing framework (distributed with Atom) to determine if a test passes or fails and to calculate simulation coverage.
I don't think Haskell, or other Garbage Collected languages are very well-suited to hard-realtime systems, as GC's tend to amortize their runtimes into short pauses.
Writing in Atom is not exactly programming in Haskell, as Haskell here can be seen as purely a preprocessor for the actual program you are writing.
I think Haskell is an awesome preprocessor, and using DSEL's like Atom is probably a great way to create sizable hard-realtime systems, but I don't know if Atom fits the bill or not. If it doesn't, I'm pretty sure it is possible (and I encourage anyone who does!) to implement a DSEL that does.
Having a very strong pre-processor like Haskell for a low-level language opens up a huge window of opportunity to implement abstractions through code-generation that are much more clumsy when implemented as C code text generators.
I've been fooling around with Atom. It is pretty cool, but I think it is best for small systems. Yes it runs in trucks and buses and implements real-world, critical applications, but that doesn't mean those applications are necessarily large or complex. It really is for hard-real-time apps and goes to great lengths to make every operation take the exact same amount of time. For example, instead of an if/else statement that conditionally executes one of two code branches that might differ in running time, it has a "mux" statement that always executes both branches before conditionally selecting one of the two computed values (so the total execution time is the same whichever value is selected). It doesn't have any significant type system other than built-in types (comparable to C's) that are enforced through GADT values passed through the Atom monad. The author is working on a static verification tool that analyzes the output C code, which is pretty cool (it uses an SMT solver), but I think Atom would benefit from more source-level features and checks. Even in my toy-sized app (LED flashlight controller), I've made a number of newbie errors that someone more experienced with the package might avoid, but that resulted in buggy output code that I'd rather have been caught by the compiler instead of through testing. On the other hand, it's still at version 0.1.something so improvements are undoubtedly coming.

yacc/lex or hand-coding?

I am working on new programming language, but I was always puzzled by the fact that everyone is using yaxx/lex to parse the code, but I am not.
My compiler (which is already working) is handcoded in C++/STL, and I cannot say it's complex or took too much time. It has both some kind of lexer and parser, but they are not autogenerated.
Earlier, I wrote a C compiler(not full spec) the same way - it was able to compile the program in 1 pass, with all these back references resolving & preprocessing - this is definitely impossible with yacc/lex.
I just cannot convince myself to scrap all this, and start diving into yaxx/lex - which might need quite an effort to implement and might possibly introduce some grammar limitations.
Is there something I miss when not using yacc/lex? Do I do an evil thing?
The main advantages of using any kind of lexer/parser generator is that it gives you a lot more flexibility if your language evolves. In a hand-coded lexer/parser (especially if you've mixed in a lot of functionality in a single pass!), changes to the language get nasty fairly quickly, whereas with a parser generator you make the change, re-run the generator, and move on with your life. There are certainly no inherent technical limitations to always just writing everything by hand, but I think the evolvability and maintainability of automating away the boring bits is worth it!
Yacc is inflexible in some ways:
good error handling is hard (basically, its algorithm is only defined to parse a correct string correctly, otherwise, all bets are off; this is one of the reasons that GCC moved to a hand-written parser)
context-dependency is hard to express, whereas with a hand-written recursive descent parser you can simply add a parameter to the functions
Furthermore, I have noticed that lex/yacc object code is often bigger than a hand-written recursive descent parser (source code tends to be the other way round).
I have not used ANTLR so I cannot say if that is better at these points.
The other huge advantage of using generators is that they are guaranteed to process exactly and only the language you specified in the grammar. You can't say that of any hand-written code. The LR/LALR variants are also guaranteed to be O(N), which again you can't assert about any hand coding, at least not without a lot of effort in constructing the proof.
I've written both and lived with both and I would never hand-code again. I only did that one because I didn't have yacc on the platform at the time.
Maybe you are missing out on ANTLR, which is good for languages that can be defined with a recursive-descent parsing strategy.
There are potentially some advantages to using Yacc/Lex, but it is not mandatory to use them. There are some downsides to using Yacc/Lex too, but the advantages usually outweigh the disadvantages. In particular, it is often easier to maintain a Yacc-driven grammar than a hand-coded one, and you benefit from the automation that Yacc provides.
However, writing your own parser from scratch is not an evil thing to do. It may make it harder to maintain in future, but it may make it easier, too.
It certainly depends on the complexity of your language grammar. An easy grammar means that there is an easy implementation and you can just do it yourself.
Take a look at maybe the worst possible example at all: C++ :) (Does anybody knows another language, besides natural languages, which are more difficult to parse correctly?) Even with tools like Antlr, is it quite difficult to get it right, though it is manageable. Whereby on the other side, even while being much harder, it seems that some of the best C++ parsers, e.g. GCC and LLVM, are also mostly handwritten.
If you don't need too much flexibility and your language is not too trivial, you will certainly safe some work/time by using Antlr.

Large-scale design in Haskell? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 6 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What is a good way to design/structure large functional programs, especially in Haskell?
I've been through a bunch of the tutorials (Write Yourself a Scheme being my favorite, with Real World Haskell a close second) - but most of the programs are relatively small, and single-purpose. Additionally, I don't consider some of them to be particularly elegant (for example, the vast lookup tables in WYAS).
I'm now wanting to write larger programs, with more moving parts - acquiring data from a variety of different sources, cleaning it, processing it in various ways, displaying it in user interfaces, persisting it, communicating over networks, etc. How could one best structure such code to be legible, maintainable, and adaptable to changing requirements?
There is quite a large literature addressing these questions for large object-oriented imperative programs. Ideas like MVC, design patterns, etc. are decent prescriptions for realizing broad goals like separation of concerns and reusability in an OO style. Additionally, newer imperative languages lend themselves to a 'design as you grow' style of refactoring to which, in my novice opinion, Haskell appears less well-suited.
Is there an equivalent literature for Haskell? How is the zoo of exotic control structures available in functional programming (monads, arrows, applicative, etc.) best employed for this purpose? What best practices could you recommend?
Thanks!
EDIT (this is a follow-up to Don Stewart's answer):
#dons mentioned: "Monads capture key architectural designs in types."
I guess my question is: how should one think about key architectural designs in a pure functional language?
Consider the example of several data streams, and several processing steps. I can write modular parsers for the data streams to a set of data structures, and I can implement each processing step as a pure function. The processing steps required for one piece of data will depend on its value and others'. Some of the steps should be followed by side-effects like GUI updates or database queries.
What's the 'Right' way to tie the data and the parsing steps in a nice way? One could write a big function which does the right thing for the various data types. Or one could use a monad to keep track of what's been processed so far and have each processing step get whatever it needs next from the monad state. Or one could write largely separate programs and send messages around (I don't much like this option).
The slides he linked have a Things we Need bullet: "Idioms for mapping design onto
types/functions/classes/monads". What are the idioms? :)
I talk a bit about this in Engineering Large Projects in Haskell and in the Design and Implementation of XMonad. Engineering in the large is about managing complexity. The primary code structuring mechanisms in Haskell for managing complexity are:
The type system
Use the type system to enforce abstractions, simplifying interactions.
Enforce key invariants via types
(e.g. that certain values cannot escape some scope)
That certain code does no IO, does not touch the disk
Enforce safety: checked exceptions (Maybe/Either), avoid mixing concepts (Word, Int, Address)
Good data structures (like zippers) can make some classes of testing needless, as they rule out e.g. out of bounds errors statically.
The profiler
Provide objective evidence of your program's heap and time profiles.
Heap profiling, in particular, is the best way to ensure no unnecessary memory use.
Purity
Reduce complexity dramatically by removing state. Purely functional code scales, because it is compositional. All you need is the type to determine how to use some code -- it won't mysteriously break when you change some other part of the program.
Use lots of "model/view/controller" style programming: parse external data as soon as possible into purely functional data structures, operate on those structures, then once all work is done, render/flush/serialize out. Keeps most of your code pure
Testing
QuickCheck + Haskell Code Coverage, to ensure you are testing the things you can't check with types.
GHC + RTS is great for seeing if you're spending too much time doing GC.
QuickCheck can also help you identify clean, orthogonal APIs for your modules. If the properties of your code are difficult to state, they're probably too complex. Keep refactoring until you have a clean set of properties that can test your code, that compose well. Then the code is probably well designed too.
Monads for Structuring
Monads capture key architectural designs in types (this code accesses hardware, this code is a single-user session, etc.)
E.g. the X monad in xmonad, captures precisely the design for what state is visible to what components of the system.
Type classes and existential types
Use type classes to provide abstraction: hide implementations behind polymorphic interfaces.
Concurrency and parallelism
Sneak par into your program to beat the competition with easy, composable parallelism.
Refactor
You can refactor in Haskell a lot. The types ensure your large scale changes will be safe, if you're using types wisely. This will help your codebase scale. Make sure that your refactorings will cause type errors until complete.
Use the FFI wisely
The FFI makes it easier to play with foreign code, but that foreign code can be dangerous.
Be very careful in assumptions about the shape of data returned.
Meta programming
A bit of Template Haskell or generics can remove boilerplate.
Packaging and distribution
Use Cabal. Don't roll your own build system. (EDIT: Actually you probably want to use Stack now for getting started.).
Use Haddock for good API docs
Tools like graphmod can show your module structures.
Rely on the Haskell Platform versions of libraries and tools, if at all possible. It is a stable base. (EDIT: Again, these days you likely want to use Stack for getting a stable base up and running.)
Warnings
Use -Wall to keep your code clean of smells. You might also look at Agda, Isabelle or Catch for more assurance. For lint-like checking, see the great hlint, which will suggest improvements.
With all these tools you can keep a handle on complexity, removing as many interactions between components as possible. Ideally, you have a very large base of pure code, which is really easy to maintain, since it is compositional. That's not always possible, but it is worth aiming for.
In general: decompose the logical units of your system into the smallest referentially transparent components possible, then implement them in modules. Global or local environments for sets of components (or inside components) might be mapped to monads. Use algebraic data types to describe core data structures. Share those definitions widely.
Don gave you most of the details above, but here's my two cents from doing really nitty-gritty stateful programs like system daemons in Haskell.
In the end, you live in a monad transformer stack. At the bottom is IO. Above that, every major module (in the abstract sense, not the module-in-a-file sense) maps its necessary state into a layer in that stack. So if you have your database connection code hidden in a module, you write it all to be over a type MonadReader Connection m => ... -> m ... and then your database functions can always get their connection without functions from other modules having to be aware of its existence. You might end up with one layer carrying your database connection, another your configuration, a third your various semaphores and mvars for the resolution of parallelism and synchronization, another your log file handles, etc.
Figure out your error handling first. The greatest weakness at the moment for Haskell in larger systems is the plethora of error handling methods, including lousy ones like Maybe (which is wrong because you can't return any information on what went wrong; always use Either instead of Maybe unless you really just mean missing values). Figure out how you're going to do it first, and set up adapters from the various error handling mechanisms your libraries and other code uses into your final one. This will save you a world of grief later.
Addendum (extracted from comments; thanks to Lii & liminalisht) —
more discussion about different ways to slice a large program into monads in a stack:
Ben Kolera gives a great practical intro to this topic, and Brian Hurt discusses solutions to the problem of lifting monadic actions into your custom monad. George Wilson shows how to use mtl to write code that works with any monad that implements the required typeclasses, rather than your custom monad kind. Carlo Hamalainen has written some short, useful notes summarizing George's talk.
Designing large programs in Haskell is not that different from doing it in other languages.
Programming in the large is about breaking your problem into manageable pieces, and how to fit those together; the implementation language is less important.
That said, in a large design it's nice to try and leverage the type system to make sure you can only fit your pieces together in a way that is correct. This might involve newtype or phantom types to make things that appear to have the same type be different.
When it comes to refactoring the code as you go along, purity is a great boon, so try to keep as much of the code as possible pure. Pure code is easy to refactor, because it has no hidden interaction with other parts of your program.
I did learn structured functional programming the first time with this book.
It may not be exactly what you are looking for, but for beginners in functional programming, this may be one of the best first steps to learn to structure functional programs - independant of the scale. On all abstraction levels, the design should always have clearly arranged structures.
The Craft of Functional Programming
http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/
I'm currently writing a book with the title "Functional Design and Architecture". It provides you with a complete set of techniques how to build a big application using pure functional approach. It describes many functional patterns and ideas while building an SCADA-like application 'Andromeda' for controlling spaceships from scratch. My primary language is Haskell. The book covers:
Approaches to architecture modelling using diagrams;
Requirements analysis;
Embedded DSL domain modelling;
External DSL design and implementation;
Monads as subsystems with effects;
Free monads as functional interfaces;
Arrowised eDSLs;
Inversion of Control using Free monadic eDSLs;
Software Transactional Memory;
Lenses;
State, Reader, Writer, RWS, ST monads;
Impure state: IORef, MVar, STM;
Multithreading and concurrent domain modelling;
GUI;
Applicability of mainstream techniques and approaches such as UML, SOLID, GRASP;
Interaction with impure subsystems.
You may get familiar with the code for the book here, and the 'Andromeda' project code.
I expect to finish this book at the end of 2017. Until that happens, you may read my article "Design and Architecture in Functional Programming" (Rus) here.
UPDATE
I shared my book online (first 5 chapters). See post on Reddit
Gabriel's blog post Scalable program architectures might be worth a mention.
Haskell design patterns differ from mainstream design patterns in one
important way:
Conventional architecture: Combine a several components together of
type A to generate a "network" or "topology" of type B
Haskell architecture: Combine several components together of type A to
generate a new component of the same type A, indistinguishable in
character from its substituent parts
It often strikes me that an apparently elegant architecture often tends to fall out of libraries that exhibit this nice sense of homogeneity, in a bottom-up sort of way. In Haskell this is especially apparent - patterns that would traditionally be considered "top-down architecture" tend to be captured in libraries like mvc, Netwire and Cloud Haskell. That is to say, I hope this answer will not be interpreted as an attempt replace any of the others in this thread, just that structural choices can and should ideally be abstracted away in libraries by domain experts. The real difficulty in building large systems, in my opinion, is evaluating these libraries on their architectural "goodness" versus all of your pragmatic concerns.
As liminalisht mentions in the comments, The category design pattern is another post by Gabriel on the topic, in a similar vein.
I have found the paper "Teaching Software Architecture Using Haskell" (pdf) by Alejandro Serrano useful for thinking about large-scale structure in Haskell.
Perhaps you have to go an step back and think of how to translate the description of the problem to a design in the first place. Since Haskell is so high level, it can capture the description of the problem in the form of data structures , the actions as procedures and the pure transformation as functions. Then you have a design. The development start when you compile this code and find concrete errors about missing fields, missing instances and missing monadic transformers in your code, because for example you perform a database Access from a library that need a certain state monad within an IO procedure. And voila, there is the program. The compiler feed your mental sketches and gives coherence to the design and the development.
In such a way you benefit from the help of Haskell since the beginning, and the coding is natural. I would not care to do something "functional" or "pure" or enough general if what you have in mind is a concrete ordinary problem. I think that over-engineering is the most dangerous thing in IT. Things are different when the problem is to create a library that abstract a set of related problems.

Why is the "Dynamic" part of Dynamic languages so good?

Jon Skeet posted this blog post, in which he states that he is going to be asking why the dynamic part of languages are so good. So i thought i'd preemptively ask on his behalf: What makes them so good?
The two fundamentally different approaches to types in programming languages are static types and dynamic types. They enable very different programming paradigms and they each have their own benefits and drawbacks.
I'd highly recommend Chris Smith's excellent article What to Know Before Debating Type Systems for more background on the subject.
From that article:
A static type system is a mechanism by which a compiler examines source code and assigns labels (called "types") to pieces of the syntax, and then uses them to infer something about the program's behavior. A dynamic type system is a mechanism by which a compiler generates code to keep track of the sort of data (coincidentally, also called its "type") used by the program. The use of the same word "type" in each of these two systems is, of course, not really entirely coincidental; yet it is best understood as having a sort of weak historical significance. Great confusion results from trying to find a world view in which "type" really means the same thing in both systems. It doesn't. The better way to approach the issue is to recognize that:
Much of the time, programmers are trying to solve the same problem with
static and dynamic types.
Nevertheless, static types are not limited to problems solved by dynamic
types.
Nor are dynamic types limited to problems that can be solved with
static types.
At their core, these two techniques are not the same thing at all.
The main thing is that you avoid a lot of redundancy that comes from making the programmer "declare" this, that, and the other. A similar advantage could be obtained through type inferencing (boo does that, for example) but not quite as cheaply and flexibly. As I wrote in the past...:
complete type checking or inference
requires analysis of the whole
program, which may be quite
impractical -- and stops what Van Roy
and Haridi, in their masterpiece
"Concepts, Techniques and Models of
Computer Programming", call "totally
open programming". Quoting a post of
mine from 2004: """ I love the
explanations of Van Roy and Haridi, p.
104-106 of their book, though I may or
may not agree with their conclusions
(which are basically that the
intrinsic difference is tiny -- they
point to Oz and Alice as interoperable
languages without and with static
typing, respectively), all the points
they make are good. Most importantly,
I believe, the way dynamic typing
allows real modularity (harder with
static typing, since type discipline
must be enforced across module
boundaries), and "exploratory
computing in a computation model that
integrates several programming
paradigms".
"Dynamic typing is recommended", they
conclude, "when programs must be as
flexible as possible". I recommend
reading the Agile Manifesto to
understand why maximal flexibility is
crucial in most real-world
application programming -- and
therefore why, in said real world
rather than in the more academic
circles Dr. Van Roy and Dr. Hadidi
move in, dynamic typing is generally
preferable, and not such a tiny issue
as they make the difference to be.
Still, they at least show more
awareness of the issues, in devoting 3
excellent pages of discussion about
it, pros and cons, than almost any
other book I've seen -- most books
have clearly delineated and preformed
precedence one way or the other, so
the discussion is rarely as balanced
as that;).
I'd start with recommending reading Steve Yegge's post on Is Weak Typing Strong Enough, then his post on Dynamic Languages Strike Back. That ought to at least get you started!
Let's do a few advantage/disadvantage comparisons:
Dynamic Languages:
Type decisions can be changed with minimal code impact.
Code can be written/compiled in isolation. I don't need an implementation or even formal description of the type to write code.
Have to rely on unit tests to find any type errors.
Language is more terse. Less typing.
Types can be modified at runtime.
Edit and continue is much easier to implement.
Static Languages:
Compiler tells of all type errors.
Editors can offer prompts like Intellisense much more richly.
More strict syntax which can be frustrating.
More typing is (usually) required.
Compiler can do better optimization if it knows the types ahead of time.
To complicate things a little more, consider that languages such as C# are going partially dynamic (in feel anyway) with the var construct or languages like Haskell that are statically typed but feel dynamic because of type inference.
Dynamic programming languages basically do things at runtime that other languages do at Compile time. This includes extension of the program, by adding new code, by extending objects and definitions, or by modifying the type system, all during program execution rather than compilation.
http://en.wikipedia.org/wiki/Dynamic_programming_language
Here are some common examples
http://en.wikipedia.org/wiki/Category:Dynamic_programming_languages
And to answer your original question:
They're slow, You need to use a basic text editor to write them - no Intellisense or Code prompts, they tend to be a big pain in the ass to write and maintain. BUT the most famous one (javascript) runs on practically every browser in the world - that's a good thing I guess. Lets call it 'broad compatibility'. I think you could probably get a dynamic language interpretor for most operating systems, but you certainly couldn't get a compiler for non dynamic languages for most operating systems.

Resources