counting frequencies in a collection of bins - haskell

I need to count values inbetween values in a list i.e. [135,136,138,140] would count all the numbers between 135-136,136-138,138-140. with the input list [135.2,135.3,137,139] would out put[2,1,1] using type [Float] [Float] [Int]. So far I have:
heightbetween :: Float -> Float -> [Float] -> Int
heightbetween _ _ [] = 0
heightbetween n s (x:xs)
| (n < x) && (s > x) = 1 + (heightbetween n s xs)
| otherwise = heightbetween n s xs
count :: [Float] -> [Float] -> [Int]
count [] [] = []
count [x,y] = [(x,y)]
count (x:y:ys) = (x,y):count (y:ys)
forEach fun lst = heightbetween op ([],lst)
where
op (start,[]) = Nothing
op (start,a:as) = Just (start++(fun a):as
,(start++[a],as))
forPairs fun lst lst2 = map (map fst)
$ forEach (\(a,b)->(fun a b,b))
$ zip lst lst2

Your count looks strange. It should be like this:
-- count -> ranges -> data -> [counts]
count :: [Float] -> [Float] -> [Int]
count [] _ = [] -- no ranges given -> empty list
count [_] _ = [] -- no ranges, but single number -> empty list
count _ [] = [] -- no data given -> empty list
count (x:y:xs) d =
(heightbetween x y d) : count (y:xs) d
heightbetween :: Float -> Float -> [Float] -> Int
heightbetween _ _ [] = 0
heightbetween n s (x:xs)
| (n < x) && (s > x) = 1 + (heightbetween n s xs)
| otherwise = heightbetween n s xs
The other lines are obsolete.
Then invoking
count [135,136,138,140] [135.2,135.3,137,139]
gives
[2,1,1]

First, make sure that your range list is in order....
rangePoints = [135,136,138,140]
orderedRangePoints = sort rangePoints
Next, you will find it much easier to work with actual ranges (which you can represent using a 2-tuple (low,high))
ranges = zip orderedRangePoints $ tail orderedRangePoints
You will need an inRange function (one already exists in Data.Ix, but unfortunately it includes the upperbound, so you can't use it)
inRange (low,high) val | val >= low && val < high = True
inRange _ _ = False
You will also want to order your input points
theData = sort [135.2,135.3,137,139]
With all of this out of the way, the binCount function is easy to write.
binCount'::[(Float, Float)]->[Float]->[Int]
binCount' [] [] = []
binCount' (range:rest) vals =
length valsInRange:binCount' rest valsAboveRange
where
(valsInRange, valsAboveRange) = span (`inRange` range) vals
Notice, that I defined a function called binCount', not binCount. I did this, because I consider this an unsafe function, because it only works on ordered ranges and values.... You should finalize this by writing a safer binCount function, which puts all of the stuff above in its where clause. You should probably add all the types and some error checking also (what happens if a value is outside of all ranges?).

Related

Returning the temporary values of a recursion function at base case in Haskell

I am new to Haskell and am trying to learn by implementing the Needleman-Wunsch algorithm.
Right now, I'm building the table and then the algorithm recursively goes backwards taking the optimal letter for a better score.
However, the base case returns an empty string at the moment.
Here is the code:
type AlignmentType = (String, String)
optAlignments :: String -> String -> [AlignmentType]
optAlignments xs ys = optLen (length xs) (length ys)
where
optLen i j = optTable!!i!!j
optTable = [[ optEntry i j | j<-[0..]] | i<-[0..] ]
optEntry :: Int -> Int -> [AlignmentType]
optEntry _ 0 = []
optEntry 0 _ = []
optEntry i j
| x == y = [([b],[c]) | (b:bs,c:cs) <- optLen (i-1) (j-1)]
| otherwise = max (optLen i (j-1)) (optLen (i-1) j) --to be fixed
where
x = xs!!(i-1)
y = ys!!(j-1)
So my question is, how can I return the values in [([b],[c]) | (b:bs,c:cs) <- optLen (i-1) (j-1)] after the recursion has ended?

Implementation of a program in which characters of a string repeated certain times in haskell

This is a question from my homework thus tips would be much likely appreciated.
I am learning Haskell this semester and my first assignment requires me to write a function that inputs 2 string (string1 and string2) and returns a string that is composed of (the repeated) characters of first string string1 until a string of same length as string2 has been created.
I am only allowed to use the Prelude function length.
For example: take as string1 "Key" and my name "Ahmed" as string2 the function should return "KeyKe".
Here is what I've got so far:
makeString :: Int -> [a] -> [a]
makeString val (x:xs)
| val > 0 = x : makeString (val-1) xs
| otherwise = x:xs
Instead of directly giving it two strings i am giving it an integer value (since i can subtitute it for length later on), but this is giving me a runtime-error:
*Main> makeString 8 "ahmed"
"ahmed*** Exception: FirstScript.hs: (21,1)-(23,21) : Non-exhaustive patterns in function makeString
I think it might have something to do my list running out and becoming an empty list(?).
A little help would be much appreciated.
I think this code is enough to solve your problem:
extend :: String -> String -> String
extend src dst = extend' src src (length dst)
where
extend' :: String -> String -> Int -> String
extend' _ _ 0 = []
extend' [] src size = extend' src src size
extend' (x:xs) src size = x : extend' xs src (size - 1)
The extend' function will cycle the first string until is is consumed then will begin to consume it again.
You can also make it using take and cycle like functions:
repeatString :: String -> String
repeatString x = x ++ repeatString x
firstN :: Int -> String -> String
firstN 0 _ = []
firstN n (x:xs) = x : firstN ( n - 1 ) xs
extend :: String -> String -> String
extend src dst = firstN (length dst) (repeatString src)
or a more generic version
repeatString :: [a] -> [a]
repeatString x = x ++ repeatString x
firstN :: (Num n, Eq n ) => n -> [a] -> [a]
firstN 0 _ = []
firstN n (x:xs) = x : firstN ( n - 1 ) xs
extend :: [a] -> [b] -> [a]
extend _ [] = error "Empty target"
extend [] _ = error "Empty source"
extend src dst = firstN (length dst) (repeatString src)
which is capable of taking any type of lists:
>extend [1,2,3,4] "foo bar"
[1,2,3,4,1,2,3]
Like Carsten said, you should
handle the case when the list is empty
push the first element at the end of the list when you drop it.
return an empty list when n is 0 or lower
For example:
makeString :: Int -> [a] -> [a]
makeString _ [] = [] -- makeString 10 "" should return ""
makeString n (x:xs)
| n > 0 = x:makeString (n-1) (xs++[x])
| otherwise = [] -- makeString 0 "key" should return ""
trying this in ghci :
>makeString (length "Ahmed") "Key"
"KeyKe"
Note: This answer is written in literate Haskell. Save it as Filename.lhs and try it in GHCi.
I think that length is a red herring in this case. You can solve this solely with recursion and pattern matching, which will even work on very long lists. But first things first.
What type should our function have? We're taking two strings, and we will repeat the first string over and over again, which sounds like String -> String -> String. However, this "repeat over and over" thing isn't really unique to strings: you can do that with every kind of list, so we pick the following type:
> repeatFirst :: [a] -> [b] -> [a]
> repeatFirst as bs = go as bs
Ok, so far nothing fancy happened, right? We defined repeatFirst in terms of go, which is still missing. In go we want to exchange the items of bs with the corresponding items of as, so we already know a base case, namely what should happen if bs is empty:
> where go _ [] = []
What if bs isn't empty? In this case we want to use the right item from as. So we should traverse both at the same time:
> go (x:xs) (_:ys) = x : go xs ys
We're currently handling the following cases: empty second argument list, and non-empty lists. We still need to handle the empty first argument list:
> go [] ys =
What should happen in this case? Well, we need to start again with as. And indeed, this works:
> go as ys
Here's everything again at a single place:
repeatFirst :: [a] -> [b] -> [a]
repeatFirst as bs = go as bs
where go _ [] = []
go (x:xs) (_:ys) = x : go xs ys
go [] ys = go as ys
Note that you could use cycle, zipWith and const instead if you didn't have constraints:
repeatFirst :: [a] -> [b] -> [a]
repeatFirst = zipWith const . cycle
But that's probably for another question.

Defining a Boolean function on Haskell that determines if an element occurs once in a list

So I'm trying to define a function in Haskell that if given an integer and a list of integers will give a 'true' or 'false' whether the integer occurs only once or not.
So far I've got:
let once :: Eq a => a -> [a] -> Bool; once x l =
But I haven't finished writing the code yet. I'm very new to Haskell as you may be able to tell.
Start off by using pattern matching:
once x [] =
once x (y:ys) =
This won't give you a good program immediately, but it will lead you in the right direction.
Here's a solution that doesn't use pattern matching explicitly. Instead, it keeps track of a Bool which represents if a occurance has already been found.
As others have pointed out, this is probably a homework problem, so I've intentionally left the then and else branches blank. I encourage user3482534 to experiment with this code and fill them in themselves.
once :: Eq a => a -> [a] -> Bool
once a = foldr f False
where f x b = if x == a then ??? else ???
Edit: The naive implementation I was originally thinking of was:
once :: Eq a => a -> [a] -> Bool
once a = foldr f False
where f x b = if x == a then b /= True else b
but this is incorrect as,
λ. once 'x' "xxx"
True
which should, of course, be False as 'x' occurs more than exactly once.
However, to show that it is possible to write once using a fold, here's a revised version that uses a custom monoid to keep track of how many times the element has occured:
import Data.List
import Data.Foldable
import Data.Monoid
data Occur = Zero | Once | Many
deriving Eq
instance Monoid Occur where
mempty = Zero
Zero `mappend` x = x
x `mappend` Zero = x
_ `mappend` _ = Many
once :: Eq a => a -> [a] -> Bool
once a = (==) Once . foldMap f
where f x = if x == a then Once else Zero
main = do
let xss = inits "xxxxx"
print $ map (once 'x') xss
which prints
[False,True,False,False,False]
as expected.
The structure of once is similar, but not identical, to the original.
I'll answer this as if it were a homework question since it looks like one.
Read about pattern matching in function declarations, especially when they give an example of processing a list. You'll use tools from Data.List later, but probably your professor is teaching about pattern matching.
Think about a function that maps values to a 1 or 0 depending on whethere there is a match ...
match :: a -> [a] -> [Int]
match x xs = map -- fill in the thing here such that
-- match 3 [1,2,3,4,5] == [0,0,1,0,0]
Note that there is the sum function that takes a list of numbers and returns the sum of the numbers in the list. So to count the matches a function can take the match function and return the counts.
countN :: a -> [a] -> Int
countN x xs = ? $ match x xs
And finally a function that exploits the countN function to check for a count of only 1. (==1).
Hope you can figure out the rest ...
You can filter the list and then check the length of the resulting list. If length == 1, you have only one occurrence of the given Integer:
once :: Eq a => a -> [a] -> Bool
once x = (== 1) . length . filter (== x)
For counting generally, with import Data.List (foldl'), pointfree
count pred = foldl' (\ n x -> if pred x then n + 1 else n) 0
applicable like
count (< 10) [1 .. 10] == 9
count (== 'l') "Hello" == 2
gives
once pred xs = count pred xs == 1
Efficient O(n) short-circuit predicated form, testing whether the predicate is satisfied exactly once:
once :: (a -> Bool) -> [a] -> Bool
once pred list = one list 0
where
one [] 1 = True
one [] _ = False
one _ 2 = False
one (x : xs) n | pred x = one xs (n + 1)
| otherwise = one xs n
Or, using any:
none pred = not . any pred
once :: (a -> Bool) -> [a] -> Bool
once _ [] = False
once pred (x : xs) | pred x = none pred xs
| otherwise = one pred xs
gives
elemOnce y = once (== y)
which
elemOnce 47 [1,1,2] == False
elemOnce 2 [1,1,2] == True
elemOnce 81 [81,81,2] == False

Retrieve strings from Matrix

I'm stuck with my homework task, somebody help, please..
Here is the task:
Find all possible partitions of string into words of some dictionary
And here is how I'm trying to do it:
I use dynamical programming concept to fill matrix and then I'm stuck with how to retrieve data from it
-- Task5_2
retrieve :: [[Int]] -> [String] -> Int -> Int -> Int -> [[String]]
retrieve matrix dict i j size
| i >= size || j >= size = []
| index /= 0 = [(dict !! index)]:(retrieve matrix dict (i + sizeOfWord) (i + sizeOfWord) size) ++ retrieve matrix dict i (next matrix i j) size
where index = (matrix !! i !! j) - 1; sizeOfWord = length (dict !! index)
next matrix i j
| j >= (length matrix) = j
| matrix !! i !! j > 0 = j
| otherwise = next matrix i (j + 1)
getPartitionMatrix :: String -> [String] -> [[Int]]
getPartitionMatrix text dict = [[ indiceOfWord (getWord text i j) dict 1 | j <- [1..(length text)]] | i <- [1..(length text)]]
--------------------------
getWord :: String -> Int -> Int -> String
getWord text from to = map fst $ filter (\a -> (snd a) >= from && (snd a) <= to) $ zip text [1..]
indiceOfWord :: String -> [String] -> Int -> Int
indiceOfWord _ [] _ = 0
indiceOfWord word (x:xs) n
| word == x = n
| otherwise = indiceOfWord word xs (n + 1)
-- TESTS
dictionary = ["la", "a", "laa", "l"]
string = "laa"
matr = getPartitionMatrix string dictionary
test = retrieve matr dictionary 0 0 (length string)
Here is a code that do what you ask for. It doesn't work exactly like your solution but should work as fast if (and only if) both our dictionary lookup were improved to use tries as would be reasonable. As it is I think it may be a bit faster than your solution :
module Partitions (partitions) where
import Data.Array
import Data.List
data Branches a = Empty | B [([a],Branches a)] deriving (Show)
isEmpty Empty = True
isEmpty _ = False
flatten :: Branches a -> [ [ [a] ] ]
flatten Empty = []
flatten (B []) = [[]]
flatten (B ps) = concatMap (\(word, bs) -> ...) ps
type Dictionary a = [[a]]
partitions :: (Ord a) => Dictionary a -> [a] -> [ [ [a] ] ]
partitions dict xs = flatten (parts ! 0)
where
parts = listArray (0,length xs) $ zipWith (\i ys -> starting i ys) [0..] (tails xs)
starting _ [] = B []
starting i ys
| null words = ...
| otherwise = ...
where
words = filter (`isPrefixOf` ys) $ dict
go word = (word, parts ! (i + length word))
It works like this : At each position of the string, it search all possible words starting from there in the dictionary and evaluates to a Branches, that is either a dead-end (Empty) or a list of pairs of a word and all possible continuations after it, discarding those words that can't be continued.
Dynamic programming enter the picture to record every possibilities starting from a given index in a lazy array. Note that the knot is tied : we compute parts by using starting, which uses parts to lookup which continuations are possible from a given index. This only works because we only lookup indices after the one starting is computing and starting don't use parts for the last index.
To retrieve the list of partitions from this Branches datatype is analogous to the listing of all path in a tree.
EDIT : I removed some crucial parts of the solution in order to let the questioner search for himself. Though that shouldn't be too hard to complete with some thinking. I'll probably put them back with a somewhat cleaned up version later.

Doing a binary search on some elements in Haskell

I'm trying to complete the last part of my Haskell homework and I'm stuck, my code so far:
data Entry = Entry (String, String)
class Lexico a where
(<!), (=!), (>!) :: a -> a -> Bool
instance Lexico Entry where
Entry (a,_) <! Entry (b,_) = a < b
Entry (a,_) =! Entry (b,_) = a == b
Entry (a,_) >! Entry (b,_) = a > b
entries :: [(String, String)]
entries = [("saves", "en vaut"), ("time", "temps"), ("in", "<`a>"),
("{", "{"), ("A", "Un"), ("}", "}"), ("stitch", "point"),
("nine.", "cent."), ("Zazie", "Zazie")]
build :: (String, String) -> Entry
build (a, b) = Entry (a, b)
diction :: [Entry]
diction = quiksrt (map build entries)
size :: [a] -> Integer
size [] = 0
size (x:xs) = 1+ size xs
quiksrt :: Lexico a => [a] -> [a]
quiksrt [] = []
quiksrt (x:xs)
|(size [y|y <- xs, y =! x]) > 0 = error "Duplicates not allowed."
|otherwise = quiksrt [y|y <- xs, y <! x]++ [x] ++ quiksrt [y|y <- xs, y >! x]
english :: String
english = "A stitch in time save nine."
show :: Entry -> String
show (Entry (a, b)) = "(" ++ Prelude.show a ++ ", " ++ Prelude.show b ++ ")"
showAll :: [Entry] -> String
showAll [] = []
showAll (x:xs) = Main.show x ++ "\n" ++ showAll xs
main :: IO ()
main = do putStr (showAll ( diction ))
The question asks:
Write a Haskell programs that takes
the English sentence 'english', looks
up each word in the English-French
dictionary using binary search,
performs word-for-word substitution,
assembles the French translation, and
prints it out.
The function 'quicksort' rejects
duplicate entries (with 'error'/abort)
so that there is precisely one French
definition for any English word. Test
'quicksort' with both the original
'raw_data' and after having added
'("saves", "sauve")' to 'raw_data'.
Here is a von Neumann late-stopping
version of binary search. Make a
literal transliteration into Haskell.
Immediately upon entry, the Haskell
version must verify the recursive
"loop invariant", terminating with
'error'/abort if it fails to hold. It
also terminates in the same fashion if
the English word is not found.
function binsearch (x : integer) : integer
local j, k, h : integer
j,k := 1,n
do j+1 <> k --->
h := (j+k) div 2
{a[j] <= x < a[k]} // loop invariant
if x < a[h] ---> k := h
| x >= a[h] ---> j := h
fi
od
{a[j] <= x < a[j+1]} // termination assertion
found := x = a[j]
if found ---> return j
| not found ---> return 0
fi
In the Haskell version
binsearch :: String -> Integer -> Integer -> Entry
as the constant dictionary 'a' of type
'[Entry]' is globally visible. Hint:
Make your string (English word) into
an 'Entry' immediately upon entering
'binsearch'.
The programming value of the
high-level data type 'Entry' is that,
if you can design these two functions
over the integers, it is trivial to
lift them to to operate over Entry's.
Anybody know how I'm supposed to go about my binarysearch function?
The instructor asks for a "literal transliteration", so use the same variable names, in the same order. But note some differences:
the given version takes only 1
parameter, the signature he gives
requires 3. Hmmm,
the given version is not recursive, but he asks for a
recursive version.
Another answer says to convert to an Array, but for such a small exercise (this is homework after all), I felt we could pretend that lists are direct access. I just took your diction::[Entry] and indexed into that. I did have to convert between Int and Integer in a few places.
Minor nit: You've got a typo in your english value (bs is a shortcut to binSearch I made):
*Main> map bs (words english)
[Entry ("A","Un"),Entry ("stitch","point"),Entry ("in","<`a>"),Entry ("time","te
mps"),*** Exception: Not found
*Main> map bs (words englishFixed)
[Entry ("A","Un"),Entry ("stitch","point"),Entry ("in","<`a>"),Entry ("time","te
mps"),Entry ("saves","en vaut"),Entry ("nine.","cent.")]
*Main>
A binary search needs random access, which is not possible on a list. So, the first thing to do would probably be to convert the list to an Array (with listArray), and do the search on it.
here's my code for just the English part of the question (I tested it and it works perfectly) :
module Main where
class Lex a where
(<!), (=!), (>!) :: a -> a -> Bool
data Entry = Entry String String
instance Lex Entry where
(Entry a _) <! (Entry b _) = a < b
(Entry a _) =! (Entry b _) = a == b
(Entry a _) >! (Entry b _) = a > b
-- at this point, three binary (infix) operators on values of type 'Entry'
-- have been defined
type Raw = (String, String)
raw_data :: [Raw]
raw_data = [("than a", "qu'un"), ("saves", "en vaut"), ("time", "temps"),
("in", "<`a>"), ("worse", "pire"), ("{", "{"), ("A", "Un"),
("}", "}"), ("stitch", "point"), ("crime;", "crime,"),
("a", "une"), ("nine.", "cent."), ("It's", "C'est"),
("Zazie", "Zazie"), ("cat", "chat"), ("it's", "c'est"),
("raisin", "raisin sec"), ("mistake.", "faute."),
("blueberry", "myrtille"), ("luck", "chance"),
("bad", "mauvais")]
cook :: Raw -> Entry
cook (x, y) = Entry x y
a :: [Entry]
a = map cook raw_data
quicksort :: Lex a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort (filter (<! x) xs) ++ [x] ++ quicksort (filter (=! x) xs) ++ quicksort (filter (>! x) xs)
getfirst :: Entry -> String
getfirst (Entry x y) = x
getsecond :: Entry -> String
getsecond (Entry x y) = y
binarysearch :: String -> [Entry] -> Int -> Int -> String
binarysearch s e low high
| low > high = " NOT fOUND "
| getfirst ((e)!!(mid)) > s = binarysearch s (e) low (mid-1)
| getfirst ((e)!!(mid)) < s = binarysearch s (e) (mid+1) high
| otherwise = getsecond ((e)!!(mid))
where mid = (div (low+high) 2)
translator :: [String] -> [Entry] -> [String]
translator [] y = []
translator (x:xs) y = (binarysearch x y 0 ((length y)-1):translator xs y)
english :: String
english = "A stitch in time saves nine."
compute :: String -> [Entry] -> String
compute x y = unwords(translator (words (x)) y)
main = do
putStr (compute english (quicksort a))
An important Prelude operator is:
(!!) :: [a] -> Integer -> a
-- xs!!n returns the nth element of xs, starting at the left and
-- counting from 0.
Thus, [14,7,3]!!1 ~~> 7.

Resources