Is OpenNLP able to extract keyword from content?
If yes, how?
If no, which tool should I use?
I would like to tag content automatically.
For example.
Jessica Chastain has revealed that a meeting has taken place with Marvel over an undisclosed role, although the star has confirmed it is not Captain Marvel.
“We’ve talked about aligning our forces in the future,” Chastain told MTV of her relationship with the studio. “And here’s the thing with me… If you’re going to be in a superhero movie, you only get one chance.”
“You’re that character forever. So why do a superhero movie and play the boring civilian?” A possible reference to Maya Hansen there? Chastain had been attached to the Iron Man 3 character before eventually dropping out on account of scheduling difficulties…
“I don’t want to say too much,” continues the star, “but there was one thing, there was a possibility in the future of the character becoming… And I was like, ‘I understand that, but I want to do it now!’”
Just who that character might be is up for interpretation, although Chastain has moved to quash subsequent rumours that she is in line to play Captain Marvel.
It should be tagged as "superhero", "movie".
Is OpenNLP able to do this?
Thanks.
OpenNLP is able to extract Named entities for you. This means anything that is the name of a person, place, organization etc. would potentially be recognized by the system.
However, what you are looking for is keyword extraction, where you want to identify relevant keywords that explain a document in the general sense. I would recommend checking out Alchemyapi.com
They have models to extract keywords, taxonomy, named entities amongst other things. The only issue is that the free version just gives you 1000 transactions per day (which might be enough for your task)
Related
In Salesforce's Service Cloud one can enable the out of the box search function where the user enters a term and the system searches all parts of the database for a match. I would like to enable smart searching of acronyms so that if I spell an organizations name the search functionality will also search for associated acronyms in the database. For example, if I search type in American Automobile Association, I would also get results that contain both "American Automobile Association" and "AAA".
I imagine such a script would involve declaring that if the term being searched contains one or more spaces or periods, take the first letter of the first word and concatenate it with the letters that follow subsequent spaces or periods.
I have unsuccessfully tried to find scripts for this or articles on enabling this functionality in Salesforce. Any guidance would be appreciated.
Interesting question! I don't think there's a straightforward answer but as it's standard search functionality, not 100% programming related - you might want to cross-post it to salesforce.stackexchange.com
Let's start with searchable fields list: https://help.salesforce.com/articleView?id=search_fields_business_accounts.htm&type=0
In Setup there's standard functionality for Synonyms, quite easy to use. It's not a silver bullet though, applies only to certain objects like Knowledge Base (if you use it). Still - it claims to work on Cases too so if there's "AAA" in Case description it should still be good enough?
You could also check out the trick with marking a text field as indexed and/or external ID and adding there all your variations / acronyms: https://success.salesforce.com/ideaView?id=08730000000H6m2 This is more work, to prepare / sanitize your data upfront but it's not a bad idea.
Similar idea would be to use Tags although that could explode in size very quickly. It's ridiculous to create a tag for every single company.
You can do some really smart things in data deduplication rules. Too much to write it all here, check out the trailhead: https://trailhead.salesforce.com/en/modules/sales_admin_duplicate_management/units/sales_admin_duplicate_management_unit_2 No idea if it impacts search though.
If you suffer from bad address data there are State & Country picklists, no more mess with CA / California / SoCal... https://resources.docs.salesforce.com/204/latest/en-us/sfdc/pdf/state_country_picklists_impl_guide.pdf Might not help with Name problem...
Data.com cleanup might help. Paid service I think, no idea if it affects search too. But if enabling it can bring these common abbreviations into your org - might be better than reinventing the wheel.
I'm embarking on a project for a non-profit organization to help process and classify 1000's of reports annually from their field workers / contractors the world over. I'm relatively new to NLP and as such wanted to seek the group's guidance on the approach to solve our problem.
I'll highlight the current process, and our challenges and would love your help on the best way to solve our problem.
Current process: Field officers submit reports from locally run projects in the form of best practices. These reports are then processed by a full-time team of curators who (i) ensure they adhere to a best-practice template and (ii) edit the documents to improve language/style/grammar.
Challenge: As the number of field workers increased the volume of reports being generated has grown and our editors are now becoming the bottle-neck.
Solution: We would like to automate the 1st step of our process i.e., checking the document for compliance to the organizational best practice template
Basically, we need to ensure every report has 3 components namely:
1. States its purpose: What topic / problem does this best practice address?
2. Identifies Audience: Who is this for?
3. Highlights Relevance: What can the reader do after reading it?
Here's an example of a good report submission.
"This document introduces techniques for successfully applying best practices across developing countries. This study is intended to help low-income farmers identify a set of best practices for pricing agricultural products in places where there is no price transparency. By implementing these processes, farmers will be able to get better prices for their produce and raise their household incomes."
As of now, our approach has been to use RegEx and check for keywords. i.e., to check for compliance we use the following logic:
1 To check "states purpose" = we do a regex to match 'purpose', 'intent'
2 To check "identifies audience" = we do a regex to match with 'identifies', 'is for'
3 To check "highlights relevance" = we do a regex to match with 'able to', 'allows', 'enables'
The current approach of RegEx seems very primitive and limited so I wanted to ask the community if there is a better way to solving this problem using something like NLTK, CoreNLP.
Thanks in advance.
Interesting problem, i believe its a thorough research problem! In natural language processing, there are few techniques that learn and extract template from text and then can use them as gold annotation to identify whether a document follows the template structure. Researchers used this kind of system for automatic question answering (extract templates from question and then answer them). But in your case its more difficult as you need to learn the structure from a report. In the light of Natural Language Processing, this is more hard to address your problem (no simple NLP task matches with your problem definition) and you may not need any fancy model (complex) to resolve your problem.
You can start by simple document matching and computing a similarity score. If you have large collection of positive examples (well formatted and specified reports), you can construct a dictionary based on tf-idf weights. Then you can check the presence of the dictionary tokens. You can also think of this problem as a binary classification problem. There are good machine learning classifiers such as svm, logistic regression which works good for text data. You can use python and scikit-learn to build programs quickly and they are pretty easy to use. For text pre-processing, you can use NLTK.
Since the reports will be generated by field workers and there are few questions that will be answered by the reports (you mentioned about 3 specific components), i guess simple keyword matching techniques will be a good start for your research. You can gradually move to different directions based on your observations.
This seems like a perfect scenario to apply some machine learning to your process.
First of all, the data annotation problem is covered. This is usually the most annoying problem. Thankfully, you can rely on the curators. The curators can mark the specific sentences that specify: audience, relevance, purpose.
Train some models to identify these types of clauses. If all the classifiers fire for a certain document, it means that the document is properly formatted.
If errors are encountered, make sure to retrain the models with the specific examples.
If you don't provide yourself hints about the format of the document this is an open problem.
What you can do thought, is ask people writing report to conform to some format for the document like having 3 parts each of which have a pre-defined title like so
1. Purpose
Explains the purpose of the document in several paragraph.
2. Topic / Problem
This address the foobar problem also known as lorem ipsum feeling text.
3. Take away
What can the reader do after reading it?
You parse this document from .doc format for instance and extract the three parts. Then you can go through spell checking, grammar and text complexity algorithm. And finally you can extract for instance Named Entities (cf. Named Entity Recognition) and low TF-IDF words.
I've been trying to do something very similar with clinical trials, where most of the data is again written in natural language.
If you do not care about past data, and have control over what the field officers write, maybe you can have them provide these 3 extra fields in their reports, and you would be done.
Otherwise; CoreNLP and OpenNLP, the libraries that I'm most familiar with, have some tools that can help you with part of the task. For example; if your Regex pattern matches a word that starts with the prefix "inten", the actual word could be "intention", "intended", "intent", "intentionally" etc., and you wouldn't necessarily know if the word is a verb, a noun, an adjective or an adverb. POS taggers and the parsers in these libraries would be able to tell you the type (POS) of the word and maybe you only care about the verbs that start with "inten", or more strictly, the verbs spoken by the 3rd person singular.
CoreNLP has another tool called OpenIE, which attempts to extract relations in a sentence. For example, given the following sentence
Born in a small town, she took the midnight train going anywhere
CoreNLP can extract the triple
she, took, midnight train
Combined with the POS tagger for example; you would also know that "she" is a personal pronoun and "took" is a past tense verb.
These libraries can accomplish many other tasks such as tokenization, sentence splitting, and named entity recognition and it would be up to you to combine all of these tools with your domain knowledge and creativity to come up with a solution that works for your case.
I'm new to natural language process so I apologize if my question is unclear. I have read a book or two on the subject and done general research of various libraries to figure out how i should be doing this, but I'm not confident yet that know what to do.
I'm playing with an idea for an application and part of it is trying to find product mentions in unstructured text (e.g. tweets, facebook posts, emails, websites, etc.) in real-time. I wont go into what the products are but it can be assumed that they are known (stored in a file or database). Some examples:
"starting tomorrow, we have 5 boxes of #hersheys snickers available for $5 each - limit 1 pp" (snickers is the product from the hershey company [mentioned as "#hersheys"])
"Big news: 12-oz. bottles of Coke and Pepsi on sale starting Fri." (coca-cola is the product [aliased as "coke"] from coca-cola company and Pepsi is the product from the PepsiCo company)
"#OMG, i just bought my dream car. a mustang!!!!" (mustang is the product from Ford)
So basically, given a piece of text, query the text to see if it mentions a product and receive some indication (boolean or confidence number) that it does mention the product.
Some concerns I have are:
Missing products because of misspellings. I thought maybe i could use a string similarity check to catch these.
Product names that are also English words or things would get caught. Like mustang the horse versus mustang the car
Needing to keep a list of alternative names for products (e.g. "coke" for "coco-cola", etc.)
I don't really know where to start with this but any help would be appreciated. I've already looked at NLTK and SciKit and didn't really gleam how to do this from there. If you know of examples or papers that explain this, links would be helpful. I'm not specific to any language at this point. Java preferably but Python and Scala are acceptable.
The answer that you chose is not really answering your question.
The best approach you can take is using Named Entity Recognizer(NER) and POS tagger (grab NNP/NNPS; Proper nouns). The database there might be missing some new brands like Lyft (Uber's rival) but without developing your own prop database, Stanford tagger will solve half of your immediate needs.
If you have time, I would build the dictionary that has every brands name and simply extract it from tweet strings.
http://www.namedevelopment.com/brand-names.html
If you know how to crawl, it's not a hard problem to solve.
It looks like your goal is to classify linguistic forms in a given text as references to semantic entities (which can be referred to by many different linguistic forms). You describe a number of subtasks which should be done in order to get good results, but they nevertheless are still independent tasks.
Misspellings
In order to deal with potential misspellings of words, you need to associate these possible misspellings to their canonical (i.e. correct) form.
Phonetic similarity: Many reasons for "misspellings" is opacity in the relationship between the word's phonetic form (i.e. how it sounds) and its orthographic form (i.e. how it's spelled). Therefore, a good way to address this is to index terms phonetically so that e.g. innovashun is associated with innovation.
Form similarity: Additionally, you could do a string similarity check, but you may introduce a lot of noise into your results which you would have to address because many distinct words are in fact very similar (e.g. chic vs. chick). You could make this a bit smarter by first morphologically analyzing the word and then using a tree kernel instead.
Hand-made mappings: You can also simply make a list of common misspelling → canonical_form mappings. This would work well for "exceptions" not handled by the above methods.
Word-sense disambiguation
Mustang the car and Mustang the horse are the same form but refer to entirely different entities (or rather classes of entities, if you want to be pedantic). In fact, we ourselves as humans can't tell which one is meant unless we also know the word's context. One widely-used way of modelling this context is distributional lexical semantics: Defining a word's semantic similarity to another as the similarity of their lexical contexts, i.e. the words preceding and succeeding them in text.
Linguistic aliases (synonyms)
As stated above, any given semantic entity can be referred to in a number of different ways: bathroom, washroom, restroom, toilet, water closet, WC, loo, little boys'/girls' room, throne room etc. For simple meanings referring to generic entities like this, they can often be considered to be variant spellings in the same way that "common misspellings" are and can be mapped to a "canonical" form with a list. For ambiguous references such as throne room, other metrics (such as lexical-distributional methods) can also be included in order to disambiguate the meaning, so that you don't relate e.g. I'm in the throne room just now! to The throne room of the Buckingham Palace is beautiful.
Conclusion
You have a lot of work to do in order to get where you want to go, but it's all interesting stuff and there are already good libraries available for doing most of these tasks.
My current understanding is that it's possible to extract entities from a text document using toolkits such as OpenNLP, Stanford NLP.
However, is there a way to find relationships between these entities?
For example consider the following text :
"As some of you may know, I spent last week at CERN, the European high-energy physics laboratory where the famous Higgs boson was discovered last July. Every time I go to CERN I feel a deep sense of reverence. Apart from quick visits over the years, I was there for three months in the late 1990s as a visiting scientist, doing work on early Universe physics, trying to figure out how to connect the Universe we see today with what may have happened in its infancy."
Entities: I (author), CERN, Higgs boson
Relationships :
- I "visited" CERN
- CERN "discovered" Higgs boson
Thanks.
Yes absolutely. This is called Relation Extraction. Stanford has developed several useful tools for working on this problem.
Here is there website: http://deepdive.stanford.edu/relation_extraction
Here is the github repository: https://github.com/philipperemy/Stanford-OpenIE-Python
In general here is how the process works.
results = entract_entity_relations("Barack Obama was born in Hawaii.")
print(results)
# [['Barack Obama','was born in', 'Hawaii']]
Of some importance is that only triples are extracted of the form (subject,predicate,object).
You can extract verbs with their dependants using Stanford Parser, for example. E.g., you might get "dependency chains" like
"I :: spent :: at :: CERN".
It is a much tougher task to recognise that "I spent at CERN" and "I visited CERN" and "CERN hosted my visit" (etc) denote the same kind of event. Going into how this can be done is beyond the scope of an SO question, but you can read up literature of paraphrases recognition (here is one overview paper). There is also a related question on SO.
Once you can cluster similar chains, you'd need to find a way to label them. You could simply choose the verb of the most common chain in a cluster.
If, however, you have a pre-defined set of relation types you want to extract and lots of texts manually annotated for these relations, then the approach could be very different, e.g., using machine learning to learn how to recognize a relation type based on annotated data.
Don't know if you're still interested but CoreNLP added a new annotator called OpenIE (Open Information Extraction), which should accomplish what you're looking for. Check it out: OpenIE
Similar to the Stanford parser, you can also use the Google Language API, where you send a string and get a dependency tree response.
You can test this API first to see if it works well with your corpus: https://cloud.google.com/natural-language/
The outcome here is a subject predicate object (SPO) triplet, where your predicate describes the relationship. You'll need to traverse the dependency graph and write a script to parse out the triplet.
There are many ways to do relation extraction. As colleagues mentioned that you have to know about NER and coreference resolution. Different techniques require different approaches. Nowadays, Distant Supervision is most common, and for detecting the relation between entities, they used FREEBASE.
This is my first time dabbling in NLP so please excuse my ignorance. I'm looking for a method to extract interests/likes/hobbies from users' social profiles. Here is an example where all the interests/likes/hobbies are in bold:
"I consider myself a pretty diverse character... I'm a professional
wrestler, but I'd take a bullet for Wall•E. I train like a one-man genocide machine in the gym, but I cried at
"Armageddon." I'll head bang to AC/DC, and I'm seriously
considering getting a Legend of Zelda tattoo. I'm 420-friendly. I
like to party it up with the frat crowd one night, hang out with
my Burning Man friends the next, play Halo and World of
Warcraft the next, and jam with friends that aren't any younger than
40 the next. My youngest friend is 16, my oldest friend is 66. I'll
sing karaoke at the bars, and I'm my friends' collective
psychiatrist/shoulder."
The profiles are plain text. There are no meta tags or ids associated with any of it, it's just a paragraph of text.
My naiive idea was to take each noun and match it against Freebase to see if it's an activity/artist/movie/book etc. The problem is that although most entities mentioned will be things the user likes, she will also mention things she doesn't like and I have no means of distinguishing the 2.
I have 2 questions:
What sub field of NLP should I be looking at? Some googleable algorithms/techniques/authors would be greatly appreciated.
How hard is this problem?
Thanks!
First, unless using NLP to do this is a particular objective for you, check your problem domain to see if you can avoid it completely.
For instance:
do these profiles have tags (supplied either by the Site or by the
user)?
what does the Site's API make available (assuming that's how you are accessing this data; if you are scraping it, then this doesn't of course apply)? A good example, Facebook. if you read a user's posts, you'll see words like "wrestler", "karaoke", etc. but if you look at what fields are exposed via the Graph API, you'll see that these activities nearly always have an associated FB ID.
I am not a specialist in this field, but I can recommend a couple of resources directed to NLP and which are accessible to the non-specialist or novice. The first is a text processing API. This simple web service uses REST and JSON IO. It is free and seems to have a fairly large rate limit.
This API appears to rely heavily on the excellent Natural Language Tooolkit (NLTK) which is a mature stable library in python, that includes modules directed to the problem in your Question, e.g., Sentiment Analysis, Tagging and Chunk Extraction, etc.
Which particular sub-domain is most relevant to solving the Question in the OP? I don't know, but I suspect there's a module somewhere in the NLTK that does what you need. Finding that module is hopefully just a matter of skimming the API Documentation (which is organized by module); reading the Getting Started section which contains an excellent survey of NLTK's modules as well as demos for all of each of them.