Convert IO [String] to String [duplicate] - haskell

This question already has answers here:
A Haskell function of type: IO String-> String
(4 answers)
Closed 8 years ago.
I get through the contents of the page curl. Find the right data and formed on their basis the following query.
But the data are of type IO [String]. To request simply String.
How to convert IO [String] to String?

No way. What you can get there is IO String only.
Take a look at these related questions to understand why.

You can use unsafePerformIO (which has type IO a -> a and is thus impure), but this is almost certainly not what you are looking for. Instead, you can use fmap or >>= to perform operations on the string:
f :: String -> Int
f = read
io :: IO String
io = getLine
main :: IO ()
main = (f `fmap` io) >>= \x -> print x
The result of fmap and >>= is of course always IO a for some a, in order to maintain referential transparency.

This is evil (you didn't hear this from me!) but: unsafePerformIO.
I'm just talking about the type system though. Read the documentation carefully if you want to use it!
It's unsafe as the name suggests which means it is up to you to make extra-sure your usage makes sense.

Related

Write a function from IO a -> a?

Take the function getLine - it has the type:
getLine :: IO String
How do I extract the String from this IO action?
More generally, how do I convert this:
IO a
to this:
a
If this is not possible, then why can't I do it?
In Haskell, when you want to work with a value that is "trapped" in IO, you don't take the value out of IO. Instead, you put the operation you want to perform into IO, as well!
For example, suppose you want to check how many characters the getLine :: IO String will produce, using the length function from Prelude.
There exists a helper function called fmap which, when specialized to IO, has the type:
fmap :: (a -> b) -> IO a -> IO b
It takes a function that works on "pure" values not trapped in IO, and gives you a function that works with values that are trapped in IO. This means that the code
fmap length getLine :: IO Int
represents an IO action that reads a line from console and then gives you its length.
<$> is an infix synonym for fmap that can make things simpler. This is equivalent to the above code:
length <$> getLine
Now, sometimes the operation you want to perform with the IO-trapped value itself returns an IO-trapped value. Simple example: you wan to write back the string you have just read using putStrLn :: String -> IO ().
In that case, fmap is not enough. You need to use the (>>=) operator, which, when specialiced to IO, has the type IO a -> (a -> IO b) -> IO b. In out case:
getLine >>= putStrLn :: IO ()
Using (>>=) to chain IO actions has an imperative, sequential flavor. There is a kind of syntactic sugar called "do-notation" which helps to write sequential operation like these in a more natural way:
do line <- getLine
putStrLn line
Notice that the <- here is not an operator, but part of the syntactic sugar provided by the do notation.
Not going into any details, if you're in a do block, you can (informally/inaccurately) consider <- as getting the value out of the IO.
For example, the following function takes a line from getLine, and passes it to a pure function that just takes a String
main = do
line <- getLine
putStrLn (wrap line)
wrap :: String -> String
wrap line = "'" ++ line ++ "'"
If you compile this as wrap, and on the command line run
echo "Hello" | wrap
you should see
'Hello'
If you know C then consider the question "How can I get the string from gets?" An IO String is not some string that's made hard to get to, it's a procedure that can return a string - like reading from a network or stdin. You want to run the procedure to obtain a string.
A common way to run IO actions in a sequence is do notation:
main = do
someString <- getLine
-- someString :: String
print someString
In the above you run the getLine operation to obtain a String value then use the value however you wish.
So "generally", it's unclear why you think you need a function of this type and in this case it makes all the difference.
It should be noted for completeness that it is possible. There indeed exists a function of type IO a -> a in the base library called unsafePerformIO.
But the unsafe part is there for a reason. There are few situations where its usage would be considered justified. It's an escape hatch to be used with great caution - most of the time you will let monsters in instead of letting yourself out.
Why can't you normally go from IO a to a? Well at the very least it allows you to break the rules by having a seemingly pure function that is not pure at all - ouch! If it were a common practice to do this the type signatures and all the work done by the compiler to verify them would make no sense at all. All the correctness guarantees would go out of the window.
Haskell is, partly, interesting precisely because this is (normally) impossible.
For how to approach your getLine problem in particular see the other answers.

Extracting ByteString from IO context? [duplicate]

I wrote a bunch of code in Haskell to create an index of a text. The top function looks like this:
index :: String -> [(String, [Integer])]
index a = [...]
Now I want to give this function a String read from a file:
index readFile "input.txt"
Which won't work because readFile is of type FilePath -> IO String.
Couldn't match expected type 'String'
against inferred type 'IO String'
I see the error, but I can't find any function with type:
IO String -> String
I guess the key to success lies somewhere under some Monads, but I could not find a way to solve my problem.
You can easily enough write a function that calls the readFile action, and passes the result to your index function.
readAndIndex fileName = do
text <- readFile fileName
return $ index text
However, the IO monad taints everything that uses it, so this function has the type:
readAndIndex :: FilePath -> IO [(String, [Integer])]
There is a very good reason why there is no such function.
Haskell has the notion of functional purity. This means that a function will always return the same result when called with the same parameters. The only place where IO is allowed is inside the IO monad.
If there was* a function
index :: IO String -> String
then we could suddenly do IO actions anywhere by calling, for example:
index (launchMissiles >> deleteRoot >> return "PWNd!")
Functional purity is a very useful feature that we don't want to lose, since it allows the compiler to reorder and inline functions much more freely, they can be sparked off to different cores without changing the semantics and it also gives the programmers a sense of security since if you can know what a function can and can't do from it's type.
* Actually there is such a function. It's called unsafePerformIO and it's called that for very, very good reasons. Do not use it unless you're 100% sure of what you are doing!
Well you cannot get rid of the IO monad part of IO String. That means you will have to make your function return IO [(String, [Integer])].
I recommend learning more about monads, but for now you can get away with the liftM function:
liftM index (readFile "input.txt")
liftM has this signature:
liftM :: Monad m => (a -> b) -> m a -> m b
It takes a non-monadic function and transforms it into a monadic function.
fmap index $ readFile "input.txt"
or
readFile "input.txt" >>= return . index
You may want to look into monad and functors

Get value from IO String in Haskell [duplicate]

This question already has answers here:
A Haskell function of type: IO String-> String
(4 answers)
Closed 9 years ago.
I have a function with signature read_F95_src :: String -> IO [String]. This function is used elsewhere and cannot be changed.
I am reading in source lines and associated with a label as such src_lines = read_F95_src templ_src_name, which compiles and runs fine.
The problem is that I now have a function which takes in [String], and no matter how I try, I can't figure out a way to get the [String] value from src_lines.
You don't "extract" a value from IO. Instead you lift the rest of your computation into IO using fmap. So
read_F95_src :: String -> IO [String]
doSomethingWithStringList :: [String] -> Whatever
fmap doSomethingWithStringList :: IO [String] -> IO Whatever
fmap doSomethingWithStringList . read_F95_src :: String -> IO Whatever
You should get used to this pattern because it's going to happen to you a lot when you use Haskell. For example, if you want to do something with the IO Whatever you'll have to use the same trick again!
let src_lines = read_F95_src templ_src_name
(ss::[String]) <- src_lines
{- do whatever with ss -}
Extract the [String] like this inside a do block:
some_function :: IO [String]
some_function = do
dat <- read_F95_src "some data" -- Now the dat will contain the [String]
-- Now do all your stuffs on dat and return whatever you want to.
return dat
Once you have extracted the dat inside the function, you can apply other functions on it according to your logic and finally return whatever you need to.

How can I parse the IO String in Haskell?

I' ve got a problem with Haskell. I have text file looking like this:
5.
7.
[(1,2,3),(4,5,6),(7,8,9),(10,11,12)].
I haven't any idea how can I get the first 2 numbers (2 and 7 above) and the list from the last line. There are dots on the end of each line.
I tried to build a parser, but function called 'readFile' return the Monad called IO String. I don't know how can I get information from that type of string.
I prefer work on a array of chars. Maybe there is a function which can convert from 'IO String' to [Char]?
I think you have a fundamental misunderstanding about IO in Haskell. Particularly, you say this:
Maybe there is a function which can convert from 'IO String' to [Char]?
No, there isn't1, and the fact that there is no such function is one of the most important things about Haskell.
Haskell is a very principled language. It tries to maintain a distinction between "pure" functions (which don't have any side-effects, and always return the same result when give the same input) and "impure" functions (which have side effects like reading from files, printing to the screen, writing to disk etc). The rules are:
You can use a pure function anywhere (in other pure functions, or in impure functions)
You can only use impure functions inside other impure functions.
The way that code is marked as pure or impure is using the type system. When you see a function signature like
digitToInt :: String -> Int
you know that this function is pure. If you give it a String it will return an Int and moreover it will always return the same Int if you give it the same String. On the other hand, a function signature like
getLine :: IO String
is impure, because the return type of String is marked with IO. Obviously getLine (which reads a line of user input) will not always return the same String, because it depends on what the user types in. You can't use this function in pure code, because adding even the smallest bit of impurity will pollute the pure code. Once you go IO you can never go back.
You can think of IO as a wrapper. When you see a particular type, for example, x :: IO String, you should interpret that to mean "x is an action that, when performed, does some arbitrary I/O and then returns something of type String" (note that in Haskell, String and [Char] are exactly the same thing).
So how do you ever get access to the values from an IO action? Fortunately, the type of the function main is IO () (it's an action that does some I/O and returns (), which is the same as returning nothing). So you can always use your IO functions inside main. When you execute a Haskell program, what you are doing is running the main function, which causes all the I/O in the program definition to actually be executed - for example, you can read and write from files, ask the user for input, write to stdout etc etc.
You can think of structuring a Haskell program like this:
All code that does I/O gets the IO tag (basically, you put it in a do block)
Code that doesn't need to perform I/O doesn't need to be in a do block - these are the "pure" functions.
Your main function sequences together the I/O actions you've defined in an order that makes the program do what you want it to do (interspersed with the pure functions wherever you like).
When you run main, you cause all of those I/O actions to be executed.
So, given all that, how do you write your program? Well, the function
readFile :: FilePath -> IO String
reads a file as a String. So we can use that to get the contents of the file. The function
lines:: String -> [String]
splits a String on newlines, so now you have a list of Strings, each corresponding to one line of the file. The function
init :: [a] -> [a]
Drops the last element from a list (this will get rid of the final . on each line). The function
read :: (Read a) => String -> a
takes a String and turns it into an arbitrary Haskell data type, such as Int or Bool. Combining these functions sensibly will give you your program.
Note that the only time you actually need to do any I/O is when you are reading the file. Therefore that is the only part of the program that needs to use the IO tag. The rest of the program can be written "purely".
It sounds like what you need is the article The IO Monad For People Who Simply Don't Care, which should explain a lot of your questions. Don't be scared by the term "monad" - you don't need to understand what a monad is to write Haskell programs (notice that this paragraph is the only one in my answer that uses the word "monad", although admittedly I have used it four times now...)
Here's the program that (I think) you want to write
run :: IO (Int, Int, [(Int,Int,Int)])
run = do
contents <- readFile "text.txt" -- use '<-' here so that 'contents' is a String
let [a,b,c] = lines contents -- split on newlines
let firstLine = read (init a) -- 'init' drops the trailing period
let secondLine = read (init b)
let thirdLine = read (init c) -- this reads a list of Int-tuples
return (firstLine, secondLine, thirdLine)
To answer npfedwards comment about applying lines to the output of readFile text.txt, you need to realize that readFile text.txt gives you an IO String, and it's only when you bind it to a variable (using contents <-) that you get access to the underlying String, so that you can apply lines to it.
Remember: once you go IO, you never go back.
1 I am deliberately ignoring unsafePerformIO because, as implied by the name, it is very unsafe! Don't ever use it unless you really know what you are doing.
As a programming noob, I too was confused by IOs. Just remember that if you go IO you never come out. Chris wrote a great explanation on why. I just thought it might help to give some examples on how to use IO String in a monad. I'll use getLine which reads user input and returns an IO String.
line <- getLine
All this does is bind the user input from getLine to a value named line. If you type this this in ghci, and type :type line it will return:
:type line
line :: String
But wait! getLine returns an IO String
:type getLine
getLine :: IO String
So what happened to the IOness from getLine? <- is what happened. <- is your IO friend. It allows you to bring out the value that is tainted by the IO within a monad and use it with your normal functions. Monads are easily identified because they begin with do. Like so:
main = do
putStrLn "How much do you love Haskell?"
amount <- getLine
putStrln ("You love Haskell this much: " ++ amount)
If you're like me, you'll soon discover that liftIO is your next best monad friend, and that $ help reduce the number of parenthesis you need to write.
So how do you get the information from readFile? Well if readFile's output is IO String like so:
:type readFile
readFile :: FilePath -> IO String
Then all you need is your friendly <-:
yourdata <- readFile "samplefile.txt"
Now if type that in ghci and check the type of yourdata you'll notice it's a simple String.
:type yourdata
text :: String
As people already say, if you have two functions, one is readStringFromFile :: FilePath -> IO String, and another is doTheRightThingWithString :: String -> Something, then you don't really need to escape a string from IO, since you can combine this two functions in various ways:
With fmap for IO (IO is Functor):
fmap doTheRightThingWithString readStringFromFile
With (<$>) for IO (IO is Applicative and (<$>) == fmap):
import Control.Applicative
...
doTheRightThingWithString <$> readStringFromFile
With liftM for IO (liftM == fmap):
import Control.Monad
...
liftM doTheRightThingWithString readStringFromFile
With (>>=) for IO (IO is Monad, fmap == (<$>) == liftM == \f m -> m >>= return . f):
readStringFromFile >>= \string -> return (doTheRightThingWithString string)
readStringFromFile >>= \string -> return $ doTheRightThingWithString string
readStringFromFile >>= return . doTheRightThingWithString
return . doTheRightThingWithString =<< readStringFromFile
With do notation:
do
...
string <- readStringFromFile
-- ^ you escape String from IO but only inside this do-block
let result = doTheRightThingWithString string
...
return result
Every time you will get IO Something.
Why you would want to do it like that? Well, with this you will have pure and
referentially transparent programs (functions) in your language. This means that every function which type is IO-free is pure and referentially transparent, so that for the same arguments it will returns the same values. For example, doTheRightThingWithString would return the same Something for the same String. However readStringFromFile which is not IO-free can return different strings every time (because file can change), so that you can't escape such unpure value from IO.
If you have a parser of this type:
myParser :: String -> Foo
and you read the file using
readFile "thisfile.txt"
then you can read and parse the file using
fmap myParser (readFile "thisfile.txt")
The result of that will have type IO Foo.
The fmap means myParser runs "inside" the IO.
Another way to think of it is that whereas myParser :: String -> Foo, fmap myParser :: IO String -> IO Foo.

A Haskell function of type: IO String-> String

I wrote a bunch of code in Haskell to create an index of a text. The top function looks like this:
index :: String -> [(String, [Integer])]
index a = [...]
Now I want to give this function a String read from a file:
index readFile "input.txt"
Which won't work because readFile is of type FilePath -> IO String.
Couldn't match expected type 'String'
against inferred type 'IO String'
I see the error, but I can't find any function with type:
IO String -> String
I guess the key to success lies somewhere under some Monads, but I could not find a way to solve my problem.
You can easily enough write a function that calls the readFile action, and passes the result to your index function.
readAndIndex fileName = do
text <- readFile fileName
return $ index text
However, the IO monad taints everything that uses it, so this function has the type:
readAndIndex :: FilePath -> IO [(String, [Integer])]
There is a very good reason why there is no such function.
Haskell has the notion of functional purity. This means that a function will always return the same result when called with the same parameters. The only place where IO is allowed is inside the IO monad.
If there was* a function
index :: IO String -> String
then we could suddenly do IO actions anywhere by calling, for example:
index (launchMissiles >> deleteRoot >> return "PWNd!")
Functional purity is a very useful feature that we don't want to lose, since it allows the compiler to reorder and inline functions much more freely, they can be sparked off to different cores without changing the semantics and it also gives the programmers a sense of security since if you can know what a function can and can't do from it's type.
* Actually there is such a function. It's called unsafePerformIO and it's called that for very, very good reasons. Do not use it unless you're 100% sure of what you are doing!
Well you cannot get rid of the IO monad part of IO String. That means you will have to make your function return IO [(String, [Integer])].
I recommend learning more about monads, but for now you can get away with the liftM function:
liftM index (readFile "input.txt")
liftM has this signature:
liftM :: Monad m => (a -> b) -> m a -> m b
It takes a non-monadic function and transforms it into a monadic function.
fmap index $ readFile "input.txt"
or
readFile "input.txt" >>= return . index
You may want to look into monad and functors

Resources