writing and reading strings in multithread environment - string

Having two threads running simultaneously can give strange behavior when writing to and reading from a variable from both threads simultaneously. It can be thread safe, but is not in every case.
Thread safe example: TThread.Terminated
The Boolean Terminated just reads FTerminated, which is set only once and since it is a Boolean, the writing process is atomic. So the value can be read in the MainThread as well as in the thread and is always thread safe to read.
My example: I have a string, which is written only once. Unlike TThread.Terminated, the writing of my string is not atomic, so the reading of it is not thread safe per se. But there may be a thread safe way in a special case: I have a situation where I just want to compare the string to another string. I only do something if they are the same (and it's not critical if they are not equal because the string is just not completely written yet). So I thought about whether this may be thread safe or not. So what happens exactly when the string is written and what may go wrong if I read the string when it's only half way written?
Steps to be done when writing a string:
Reference Count = 1:
Allocate additional memory, if new string is longer than old one
Copy Characters
Set new string length
Deallocate memory, if new string is shorter than old one
Reference Count > 1 (due to copy-on-write semantics a new string instance is needed):
Allocate memory for new string instance
Copy characters to new location and set length of the string
Locate string instance pointer to new location
Under what circumstances is it safe to read the string which is written to in just this same moment?
Reference Count = 1:
It is only (and in this case always) safe to read if the order of steps is as listed above and reading the string right before its length is set only gives the set length back (not all the allocated bytes)
Reference Count > 1:
It is only (and in this case always) safe to read if the pointer to the string is set as the last step (as setting this pointer is an atomic operation) or if length is initialized to 0 before the pointer to the string is set and the conditions for the case "Reference Count = 1" apply to the new string
Question to the ones who have such deep-knowledge: Are my assumptions true? If yes, can I rely on this safely? Or is it a such bad idea to rely on this implementation specifics that it's not even worth to think about all this and just not read strings unprotectedly when they are written to in another thread?

Delphi strings are "thread-safe" only in a sense that a string's reference count is guarantied to be valid in a multithreaded code.
Copy-On-Write of Delphi strings is not a threadsafe operation; if you need a multithreaded read/write access to the same string you generally should use some synchronization, otherwise you are potentially in trouble.

Example of what could happen without any lock.
String is being written: it should become bigger than it was, so new memory is allocated. But pointer is not yet modified, it points to old string.
At the same time reading thread got a pointer and began to read old string.
Context switched again to writing thread. It changed pointer, so now it is valid. Old string got refcount 0 and was immediately freed.
Context switch again: reading thread continues to process old string, but now it is access to deallocated memory which may easily result in access violation.

Related

Memory barrier in the implementation of single producer single consumer

The following implementation from Wikipedia:
volatile unsigned int produceCount = 0, consumeCount = 0;
TokenType buffer[BUFFER_SIZE];
void producer(void) {
while (1) {
while (produceCount - consumeCount == BUFFER_SIZE)
sched_yield(); // buffer is full
buffer[produceCount % BUFFER_SIZE] = produceToken();
// a memory_barrier should go here, see the explanation above
++produceCount;
}
}
void consumer(void) {
while (1) {
while (produceCount - consumeCount == 0)
sched_yield(); // buffer is empty
consumeToken(buffer[consumeCount % BUFFER_SIZE]);
// a memory_barrier should go here, the explanation above still applies
++consumeCount;
}
}
says that a memory barrier must be used between the line that accesses the buffer and the line that updates the Count variable.
This is done to prevent the CPU from reordering the instructions above the fence along-with that below it. The Count variable shouldn't be incremented before it is used to index into the buffer.
If a fence is not used, won't this kind of reordering violate the correctness of code? The CPU shouldn't perform increment of Count before it is used to index into buffer. Does the CPU not take care of data dependency while instruction reordering?
Thanks
If a fence is not used, won't this kind of reordering violate the correctness of code? The CPU shouldn't perform increment of Count before it is used to index into buffer. Does the CPU not take care of data dependency while instruction reordering?
Good question.
In c++, unless some form of memory barrier is used (atomic, mutex, etc), the compiler assumes that the code is single-threaded. In which case, the as-if rule says that the compiler may emit whatever code it likes, provided that the overall observable effect is 'as if' your code was executed sequentially.
As mentioned in the comments, volatile does not necessarily alter this, being merely an implementation-defined hint that the variable may change between accesses (this is not the same as being modified by another thread).
So if you write multi-threaded code without memory barriers, you get no guarantees that changes to a variable in one thread will even be observed by another thread, because as far as the compiler is concerned that other thread should not be touching the same memory, ever.
What you will actually observe is undefined behaviour.
It seems, that your question is "can incrementing Count and assigment to buffer be reordered without changing code behavior?".
Consider following code tansformation:
int count1 = produceCount++;
buffer[count1 % BUFFER_SIZE] = produceToken();
Notice that code behaves exactly as original one: one read from volatile variable, one write to volatile, read happens before write, state of program is the same. However, other threads will see different picture regarding order of produceCount increment and buffer modifications.
Both compiler and CPU can do that transformation without memory fences, so you need to force those two operations to be in correct order.
If a fence is not used, won't this kind of reordering violate the correctness of code?
Nope. Can you construct any portable code that can tell the difference?
The CPU shouldn't perform increment of Count before it is used to index into buffer. Does the CPU not take care of data dependency while instruction reordering?
Why shouldn't it? What would the payoff be for the costs incurred? Things like write combining and speculative fetching are huge optimizations and disabling them is a non-starter.
If you're thinking that volatile alone should do it, that's simply not true. The volatile keyword has no defined thread synchronization semantics in C or C++. It might happen to work on some platforms and it might happen not to work on others. In Java, volatile does have defined thread synchronization semantics, but they don't include providing ordering for accesses to non-volatiles.
However, memory barriers do have well-defined thread synchronization semantics. We need to make sure that no thread can see that data is available before it sees that data. And we need to make sure that a thread that marks data as able to be overwritten is not seen before the thread is finished with that data.

Why is threading dangerous?

I've always been told to puts locks around variables that multiple threads will access, I've always assumed that this was because you want to make sure that the value you are working with doesn't change before you write it back
i.e.
mutex.lock()
int a = sharedVar
a = someComplexOperation(a)
sharedVar = a
mutex.unlock()
And that makes sense that you would lock that. But in other cases I don't understand why I can't get away with not using Mutexes.
Thread A:
sharedVar = someFunction()
Thread B:
localVar = sharedVar
What could possibly go wrong in this instance? Especially if I don't care that Thread B reads any particular value that Thread A assigns.
It depends a lot on the type of sharedVar, the language you're using, any framework, and the platform. In many cases, it's possible that assigning a single value to sharedVar may take more than one instruction, in which case you may read a "half-set" copy of the value.
Even when that's not the case, and the assignment is atomic, you may not see the latest value without a memory barrier in place.
MSDN Magazine has a good explanation of different problems you may encounter in multithreaded code:
Forgotten Synchronization
Incorrect Granularity
Read and Write Tearing
Lock-Free Reordering
Lock Convoys
Two-Step Dance
Priority Inversion
The code in your question is particularly vulnerable to Read/Write Tearing. But your code, having neither locks nor memory barriers, is also subject to Lock-Free Reordering (which may include speculative writes in which thread B reads a value that thread A never stored) in which side-effects become visible to a second thread in a different order from how they appeared in your source code.
It goes on to describe some known design patterns which avoid these problems:
Immutability
Purity
Isolation
The article is available here
The main problem is that the assignment operator (operator= in C++) is not always guaranteed to be atomic (not even for primitive, built in types). In plain English, that means that assignment can take more than a single clock cycle to complete. If, in the middle of that, the thread gets interrupted, then the current value of the variable might be corrupted.
Let me build off of your example:
Lets say sharedVar is some object with operator= defined as this:
object& operator=(const object& other) {
ready = false;
doStuff(other);
if (other.value == true) {
value = true;
doOtherStuff();
} else {
value = false;
}
ready = true;
return *this;
}
If thread A from your example is interrupted in the middle of this function, ready will still be false when thread B starts to run. This could mean that the object is only partially copied over, or is in some intermediate, invalid state when thread B attempts to copy it into a local variable.
For a particularly nasty example of this, think of a data structure with a removed node being deleted, then interrupted before it could be set to NULL.
(For some more information regarding structures that don't need a lock (aka, are atomic), here is another question that talks a bit more about that.)
This could go wrong, because threads can be suspended and resumed by the thread scheduler, so you can't be sure about the order these instructions are executed. It might just as well be in this order:
Thread B:
localVar = sharedVar
Thread A:
sharedVar = someFunction()
In which case localvar will be null or 0 (or some completeley unexpected value in an unsafe language), probably not what you intended.
Mutexes actually won't fix this particular issue by the way. The example you supply does not lend itself well for parallelization.

How to reset/emptying to a std::wstring?

How to reset/emptying to a std::wstring?
It seems that my function is making a delay when using these line:
std::wstring currentUrl; // <--- I declare this as global.
currentUrl = _bstr_t(url->bstrVal);
Any idea how can I resolve this?
How did you measure that delay? The only reliable way is through a profiler, and a profiler would also show you how that time was spent.
That said, assigning to a string often (unless the string can reuse its old buffer or small string optimization kicks in) involves deleting the old buffer and allocating a new buffer. And dynamic memory is slow.
I don't know _bstr_t, but since std::wstring does only have assignment operators to assign from another std::wstring and const wchar_t*, I assume this is the latter. If that is the case, the string doesn't know the size of the string it will get assigned, so if the string is big, it might have to incrementally increase its buffer, which again involves allocation and deallocation plus copying characters, so this might be quite expensive.
You could try to use an assign() member function instead of the assignment operator. I think there's an overload of assign() that takes a const wchar_t* and the size of the string, allowing it to know the exact buffer size before-hand.
However, as always with performance problems, you need to measure using a profiler. Guessing will not get you far.

When should the Win32 InterlockedExchange function be used?

I came across the function InterlockedExchange and was wondering when I should use this function. In my opinion, setting a 32 Bit value on an x86 processor should always be atomic?
In the case where I want to use the function, the new value does not depend on the old value (it is not an increment operation).
Could you provide an example where this method is mandatory (I'm not looking for InterlockedCompareExchange)
InterlockedExchange is both a write and a read -- it returns the previous value.
This is necessary to ensure another thread didn't write a different value just after you did. For example, say you're trying to increment a variable. You can read the value, add 1, then set the new value with InterlockedExchange. The value returned by InterlockedExchange must match the value you originally read, otherwise another thread probably incremented it at the same time, and you need to loop around and try again.
As well as writing the new value, InterlockedExchange also reads and returns the previous value; this whole operation is atomic. This is useful for lock-free algorithms.
(Incidentally, 32-bit writes are not guaranteed to be atomic. Consider the case where the write is unaligned and straddles a cache boundary, for instance.)
In a multi-processor or multi-core machine each core has it's own cache - so each core has each own potentially different "view" of what the content of the system memory is.
Thread synchronization mechanisms take care of synchronizing between cores, for more information look at http://blogs.msdn.com/oldnewthing/archive/2008/10/03/8969397.aspx or google for acquire and release semantics
Setting a 32-bit value is atomic, but only if you're setting a literal.
b = a is 2 operations:
mov eax,dword ptr [a]
mov dword ptr [b],eax
Theoretically there could be some interruption between the first and second operation.
Writing a value is never atomic by default. When you write a value to a variable, several machine instructions are generated. With modern, preemptive OSes, the OS might switch to another thread between the individual operations of the write.
This is even more a problem on multi-processor machines, where several threads could be executing at the same time, and trying to write to a single memory location simultaneously.
Interlocked operations avoid this by using specialized instructions to make the write (x86 has dedicated instructions for this kind of situation), which do the read-modify-write in one instruction. These instructions also lock the memory bus of all processors, to ensure that no other executing thread could be writing to the value at the same time.
InterlockedExchange makes sure that the change of a variable and the return of its original value are not interrupted by other threads.
So, if 'i' is an int, these calls (taken individually) do not need InterlockedExchange around 'i':
a = i;
i = 9;
i = a;
i = a + 9;
a = i + 9;
if(0 == i)
None of these statements rely upon BOTH the initial AND final values of 'i'. But these following calls DO need InterlockedExchange around 'i':
a = i++; //a = InterlockedExchange(&i, i + 1);
Without it, two threads running through this same code might get the same value of 'i' assigned to 'a' or 'a' may unexpectedly skip two or more numbers.
if(0 == i++) //if(0 == InterlockedExchange(&i, i + 1))
Two threads may both execute the code that is only supposed to happen once.
etc.
wow, so many conflicting answers. Hard to sift through who's right, who's wrong, and what information is misleading.
I'm unsure of the answer too, given the above half-answers, but I think it works like this, I may be wrong, and it will be interesting to find out if I am:
32-bit read & writes ARE atomic, but depending on your code, that may not mean much.
don't worry about non-aligned read/writes. ALL 32-bit writes to a 32-bit variable have to be aligned or the machine page-faults.
don't worry about a write wrapping around the end of a cached page, that can't happen.
If you need to write-then-read on one thread, and you're writing on another thread, then you need to use InterlockedExchange. If you're simply reading the value on one thread, and writing it on another, then you don't need to use it, but those values may be wiggly because of multithreading.

Is it ok to have multiple threads writing the same values to the same variables?

I understand about race conditions and how with multiple threads accessing the same variable, updates made by one can be ignored and overwritten by others, but what if each thread is writing the same value (not different values) to the same variable; can even this cause problems? Could this code:
GlobalVar.property = 11;
(assuming that property will never be assigned anything other than 11), cause problems if multiple threads execute it at the same time?
The problem comes when you read that state back, and do something about it. Writing is a red herring - it is true that as long as this is a single word most environments guarantee the write will be atomic, but that doesn't mean that a larger piece of code that includes this fragment is thread-safe. Firstly, presumably your global variable contained a different value to begin with - otherwise if you know it's always the same, why is it a variable? Second, presumably you eventually read this value back again?
The issue is that presumably, you are writing to this bit of shared state for a reason - to signal that something has occurred? This is where it falls down: when you have no locking constructs, there is no implied order of memory accesses at all. It's hard to point to what's wrong here because your example doesn't actually contain the use of the variable, so here's a trivialish example in neutral C-like syntax:
int x = 0, y = 0;
//thread A does:
x = 1;
y = 2;
if (y == 2)
print(x);
//thread B does, at the same time:
if (y == 2)
print(x);
Thread A will always print 1, but it's completely valid for thread B to print 0. The order of operations in thread A is only required to be observable from code executing in thread A - thread B is allowed to see any combination of the state. The writes to x and y may not actually happen in order.
This can happen even on single-processor systems, where most people do not expect this kind of reordering - your compiler may reorder it for you. On SMP even if the compiler doesn't reorder things, the memory writes may be reordered between the caches of the separate processors.
If that doesn't seem to answer it for you, include more detail of your example in the question. Without the use of the variable it's impossible to definitively say whether such a usage is safe or not.
It depends on the work actually done by that statement. There can still be some cases where Something Bad happens - for example, if a C++ class has overloaded the = operator, and does anything nontrivial within that statement.
I have accidentally written code that did something like this with POD types (builtin primitive types), and it worked fine -- however, it's definitely not good practice, and I'm not confident that it's dependable.
Why not just lock the memory around this variable when you use it? In fact, if you somehow "know" this is the only write statement that can occur at some point in your code, why not just use the value 11 directly, instead of writing it to a shared variable?
(edit: I guess it's better to use a constant name instead of the magic number 11 directly in the code, btw.)
If you're using this to figure out when at least one thread has reached this statement, you could use a semaphore that starts at 1, and is decremented by the first thread that hits it.
I would expect the result to be undetermined. As in it would vary from compiler to complier, langauge to language and OS to OS etc. So no, it is not safe
WHy would you want to do this though - adding in a line to obtain a mutex lock is only one or two lines of code (in most languages), and would remove any possibility of problem. If this is going to be two expensive then you need to find an alternate way of solving the problem
In General, this is not considered a safe thing to do unless your system provides for atomic operation (operations that are guaranteed to be executed in a single cycle).
The reason is that while the "C" statement looks simple, often there are a number of underlying assembly operations taking place.
Depending on your OS, there are a few things you could do:
Take a mutual exclusion semaphore (mutex) to protect access
in some OS, you can temporarily disable preemption, which guarantees your thread will not swap out.
Some OS provide a writer or reader semaphore which is more performant than a plain old mutex.
Here's my take on the question.
You have two or more threads running that write to a variable...like a status flag or something, where you only want to know if one or more of them was true. Then in another part of the code (after the threads complete) you want to check and see if at least on thread set that status... for example
bool flag = false
threadContainer tc
threadInputs inputs
check(input)
{
...do stuff to input
if(success)
flag = true
}
start multiple threads
foreach(i in inputs)
t = startthread(check, i)
tc.add(t) // Keep track of all the threads started
foreach(t in tc)
t.join( ) // Wait until each thread is done
if(flag)
print "One of the threads were successful"
else
print "None of the threads were successful"
I believe the above code would be OK, assuming you're fine with not knowing which thread set the status to true, and you can wait for all the multi-threaded stuff to finish before reading that flag. I could be wrong though.
If the operation is atomic, you should be able to get by just fine. But I wouldn't do that in practice. It is better just to acquire a lock on the object and write the value.
Assuming that property will never be assigned anything other than 11, then I don't see a reason for assigment in the first place. Just make it a constant then.
Assigment only makes sense when you intend to change the value unless the act of assigment itself has other side effects - like volatile writes have memory visibility side-effects in Java. And if you change state shared between multiple threads, then you need to synchronize or otherwise "handle" the problem of concurrency.
When you assign a value, without proper synchronization, to some state shared between multiple threads, then there's no guarantees for when the other threads will see that change. And no visibility guarantees means that it it possible that the other threads will never see the assignt.
Compilers, JITs, CPU caches. They're all trying to make your code run as fast as possible, and if you don't make any explicit requirements for memory visibility, then they will take advantage of that. If not on your machine, then somebody elses.

Resources