HMAC TimeStamping Tweak - security

I have reviewed a lot of information regarding the HMAC approach to securing a RESTful Web API. To prevent a replay attack, the usual recommendation is to use a TimeStamp with a constraint.
But it seems to me that a more straightforward (and fool-proof) approach would be to require a unique time-stamp, where the server accepts a specific time-stamp only once per client, so all requests from a specific client must have a unique time-stamp.
Are there any weaknesses of this TImeStamping approach in comparison to the usual recommendation?

Related

Can I calculate data integrity check for RSA keys using the key itself?

I'm developing a solution which stores in a DB, for each customer, an RSA key which will be used to sign payments.
Those keys are so called SIM keys created via an SKS HSM, long story short we don't store actually the key in our DB but only an encrypted blob that only the HSM can use. In this way no one, except the HSM, knows what the keys are.
In order to prevent an inside attacker, with access to the DB, to switch keys among users it was decided to calculate, for each key, an integrity check and store it together with the key.
The solution is to perform an HMAC of customerId + key, in this way it would be impossible to switch keys among users without breaking the integrity check.
The key used to calculate the HMAC is dedicated for this use case and is stored in the HSM. However this point is the one I would like to change and for which I'm making this question.
Technically speaking it would be possible to calculate the integrity check using the RSA key itself by encrypting customerID + key using the public part of the key.
However CTOs are blocking this solution because they said the same key should never be used for signing and encrypting.
In my opinion the guideline to have separate keys for signing and encrypting doesn't apply to this case, in fact the guideline is true but only if we would actually expose an API that perform encryption and signing using the same key, which is not the case. The encryption operation we perform is against data generated by the application itself, not an input, is always the same for the entire lifetime of the key and is used only for the integrity check of the key itself.
I'm looking for someone with security knowledge that can help me understanding if the principle "don't use the same key for signing and encryption" really applies to this case, which in my opinion doesn't.
Thanks a lot.
Your CTO is correct on blocking this. Because you didn't give the details on what kind of payment solution you're building, just the fact you're storing, process and/or transmitting cardholder and/or sensitive authentication data puts you in scope for a PCI-DSS or a PA-DSS audit.
But there are very strict rules for key rotation, strength (you didn't mention the SHA to use with HMAC) and storage when handling sensitive cardholder data.
If you aren't familiar with the PCI Security Council, get ready to learn fast. They publish the guidelines that you as a developer must abide by if you are either developing an in-house solution or one for resale. The first overview are the guidelines themselves:
https://www.pcisecuritystandards.org/pci_security/maintaining_payment_security
As stated above, this forum really is no place to begin to discuss the details of all of the required secure coding practices, network segmentation considerations, employee separation of duties, etc. that are included in complianc = and along with mountains of paperwork and possible quarterly scans. And, based on your size and payment volume, an outside auditor.
In a former position I managed the US, Europe and South America's PCI & PA-DSS software compliance programs and it was very costly. Talk to an expert because you do not want to be the next breach of the day. It sounds like your CTO understands the implications so I'd listen to him.

Are breaches of JWT-based servers more damaging?

UPDATE: I have concluded my research on this problem and posted a lengthy blog entry explaining my findings: The Unspoken Vulnerability of JWTs. I explain how the big push to use JWTs for local authentication is leaving out one crucial detail: that the signing key must be protected. I also explain that unless you're willing to go to great lengths to protect the keys, you're better off either delegating authentication via Oauth or using traditional session IDs.
I have seen much discussion of the security of JSON Web Tokens -- replay, revocation, data transparency, token-specified alg, token encryption, XSS, CSRF -- but I've not seen any assessment of the risk imposed by relying on a signing key.
If someone breaches a server and acquires a JWT signing key, it seems to me that this person could thereafter use the key to forge unexpired JWTs and secretly gain access. Of course, a server could look up each JWT on each request to confirm its validity, but servers use JWTs exactly so they don't have to do this. The server could confirm the IP address, but that also involves a lookup if the JWT is not to be trusted, and apparently doing this precludes reliable mobile access anyway.
Contrast this with a breach of a server based on session IDs. If this server is hashing passwords, the attacker would have to snag and use a session ID separately for each user before it expires. If the server were only storing hashes of the session IDs, the attacker would have to write to the server to ensure access. Regardless, it seems that the attacker is less advantaged.
I have found one architecture that uses JWTs without this disadvantage. A reverse proxy sits between untrusted clients externally and a backend collection of microservices internally, described here by Nordic APIs. A client acquires an opaque token from an authorization server and uses that token to communicate with the server app for all requests. For each request, the proxy translates the opaque token into a JWT and caches their association. The external world never provides JWTs, limiting the damage wrought by stealing keys (because the proxy goes to the authentication server to confirm the opaque tokens). However, this approach requires dereferencing each client token just as session IDs require per-request dereferencing, eliminating the benefit of JWTs for client requests. In this case, JWTs just allow services to pass user data among themselves without having to fully trust one another -- but I'm still trying to understand the value of the approach.
My concern appears to apply only to the use of JWTs as authentication tokens by untrusted clients. Yet JWTs are used by a number of high-profile APIs, including Google APIs. What am I missing? Maybe server breaches are rarely read-only? Are there ways to mitigate the risk?
I believe you're thinking about this the wrong way. Don't get me wrong, it's great you're considering security, however the way you're approaching it in regards to double checking things server-side, adding additional checks that defeat the objective of stateless sessions, etc, appear to be along a one way street towards the end of your own sanity.
To sum up the two standard approaches:
JWTs are sessionless state objects, MAC'd by a secret key held server side.
Traditional Session Identifiers are stored either in memory or in a database server-side, and as you say are often hashed to prevent sessions from being hijacked should this data be leaked.
You are also right that write access is often harder for an attacker to achieve. The reason is that database data is often extracted from a target system via a SQL injection exploit. This almost always provides read access to data, but it is harder to insert data using this technique, although not impossible (some exploits actually result in full root access of the target machine being achieved).
If you have a vulnerability that allows access to the key when using JWTs or one that allows database tables to be written to when using session identifiers, then it's game over - you are compromised because your user sessions can be hijacked.
So not more damaging necessarily, it all depends on the depth of the vulnerability.
Double check that the security of your JWT keys align with your risk appetite:
Where are they stored?
Who has access?
Where are backups stored?
Are different keys used in pre-production and production deployments of your app?
The ways to mitigate is as good practise dictates with any web app:
Regular security assessments and penetration testing.
Security code reviews.
Intrusion detection and prevention (IDS/IPS).
WAF.
These will help you evaluate where your real risks lie. It is pointless concentrating on one particular aspect of your application so much, because this will lead to the neglect of others, which may well be higher risk to your business model. JWTs aren't dangerous and have no more risk than other components of your system necessarily, however if you've chosen to use them you should make sure you're using them appropriately. Whether you are or not comes down to the particular context of your application and that is difficult to assess in a general sense, so I hope my answer guides you in the right direction.
When an attacker is able to get hold of the signing key in a JWT based system that means that he is able to get access to the server backend itself. In that case all hope is lost. In comparison to that, when the same attack succeeds in session based systems the attacker would be able to intercept username/password authentication requests to the backend, and/or generate sessions ids himself, and/or change the validation routines required to validate the session ids and/or modify the data to which the session id points. Any security mechanism used to mitigate this works as well for session systems as for JWT systems.

Penetration Testing HTML Posting Issue

We are planning to go for a security testing certificate. For that reason we are using Paros tool to test our system.
The system is written in GWT on front end and database connectivity is happening through Hibernate.
When we use this tool to test our application following behaviour is happening which needs to be restricted.
The tool is able to see the data which is passed to server. This is fine but when we make any changes in the data through tool it gets updated in the system on database end. This is a big security issue.
Can someone guide me in this?
If you're still looking for a solution to this problem, you could use request signing. The reason I didn't mention it earlier was because the only time I had seen request signing, there were certificates involved, and it was mostly using the Web Services Security Standard. The other time I recommended implementation of request signing was for a mobile application - its relatively easier to do there also, since you can use certificates that are on the device to perform the signing, and the server can verify this signature (essentially, a public key encryption mechanism).
As you mention in the comments, there are multiple aspects to it - one is to prevent XSRF, which is essentially including a nonce to ensure that an attacker cannot replay requests, or craft requests that might harm an authenticated user. This nonce will have to come from the server, since anything that you create using Javascript, the attacker can create also. This nonce will make sure that your request is time specific, and that it cannot be replayed at a later point of time.
However, a nonce isn't going to stop attacks where a user is in a hostile network, and an attacker is performing a MitM attack on all traffic. The attacker can still modify a request, and since the server has never seen that nonce before, it will accept the request as valid. To prevent this, you need to countermeasures in place - one, all traffic should go via SSL, and two, all requests must be signed so as to prevent tampering. The signature part is particularly hard, especially if you have to ensure that an attacker cannot perform the same signing. The examples I have seen of it involve certificate level authentication for the webapp, and using these certificates to then perform the signing - which might be too stringent a requirement for the application that you seem to be developing. Other methodologies involve using something that the user has/knows - maybe a token, password, secret answer, etc. - that cannot be replicated by an attacker, and using that information to sign requests.
Here's an example on how you can do this via PHP. I don't know if this mechanism can be adapted to do it for your purposes, though. OAuth might be another possible method, but since I've never seen an application do it that way, I am not very sure.
Sorry I don't have a specific methodology or examples of code for you to look at, but most implementations I've seen are only from a design standpoint, versus an actual code standpoint.

Implementing SCRAM - nonce validation and server/client keys

Technically two questions - but they are so heavily related I didn't want to split them up; but if the community feels I should, I will.
Following a recent question I am implementing SCRAM for a website login and web service API. Client environments will be .Net and Javascript (with Java likely in the future).
My first issue is basic: The protocol utilises a client and server key as key steps in the authentication process; and yet in order to be validated, both need to be known by both parties in advance since the protocol doesn't allow for exchange of these (to do so would result in a bit of a chicken and egg scenario). If you consider a Javascript client, for example, this means both keys are likely to be constants defined in the source - thus making them easy to fetch. So: why bother? Is it just to mitigate against 'Eve' where that 'Eve', for some reason, hasn't bothered to get the JS or client source code, which will necessarily be public!?
Secondly, like practically any other authentication mechanism it requires a client + server nonce.
Given that the authentication nonce, by definition, should never be used more than once (at least by the same user), this presumably means that a server must maintain a record of all nonce values used by all users forever. Unlike other data that we regularly archive off, such a table is only ever going to get bigger and queries against it likely to get slower and slower!
If that's correct, then it's technically unfeasible to implement this or almost any other authentication mechanism! Since I know that's plainly ridiculous; it must be common to define some additional scope that factors in a reasonable timescale as well.
As always with authentication and encryption; despite being a very experienced software developer I feel like I'm going back to school! What am I missing!?
both need to be known by both parties
in advance since the protocol doesn't
allow for exchange of these (to do so
would result in a bit of a chicken and
egg scenario).
Yes that's correct. Challenge response isn't a key-exchange protocol. It only norms, once client and server share a key, how to compute the same value from that key without transmitting in clear the key via network.
If you consider a Javascript client,
for example, this means both keys are
likely to be constants defined in the
source - thus making them easy to
fetch.
That's not a good idea. Alternatively client and server can agree on a key during a preliminary registration process.
Given that the authentication nonce,
by definition, should never be used
more than once (at least by the same
user), this presumably means that a
server must maintain a record of all
nonce values used by all users
forever.
NO. A new nonce should be generated for each new session using pseudo-random number generation. It's very improbable that you will get the same nonce twice, anyway It doesn't matter if a nonce it has already been used if the attacker don't know that .

I need resources for API security basics. Any suggestions?

I've done a little googling but have been a bit overwhelmed by the amount of information. Until now, I've been considering asking for a valid md5 hash for every API call but I realized that it wouldn't be a difficult task to hijack such a system. Would you guys be kind enough to provide me with a few links that might help me in my search? Thanks.
First, consider OAuth. It's somewhat of a standard for web-based APIs nowadays.
Second, some other potential resources -
A couple of decent blog entries:
http://blog.sonoasystems.com/detail/dont_roll_your_own_api_security_recommendations1/
http://blog.sonoasystems.com/detail/more_api_security_choices_oauth_ssl_saml_and_rolling_your_own/
A previous question:
Good approach for a web API token scheme?
I'd like to add some clarifying information to this question. The "use OAuth" answer is correct, but also loaded (given the spec is quite long and people who aren't familiar with it typically want to kill themselves after seeing it).
I wrote up a story-style tutorial on how to go from no security to HMAC-based security when designing a secure REST API here:
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/
This ends up being basically what is known as "2-legged OAuth"; because OAuth was originally intended to verifying client applications, the flow is 3-parts involving the authenticating service, the user staring at the screen and the service that wants to use the client's credentials.
2-legged OAuth (and what I outline in depth in that article) is intended for service APIs to authenticate between each other. For example, this is the approach Amazon Web Services uses for all their API calls.
The gist is that with any request over HTTP you have to consider the attack vector where some malicious man-in-the-middle is recording and replaying or changing your requests.
For example, you issue a POST to /user/create with name 'bob', well the man-in-the-middle can issue a POST to /user/delete with name 'bob' just to be nasty.
The client and server need some way to trust each other and the only way that can happen is via public/private keys.
You can't just pass the public/private keys back and forth NOR can you simply provide a unique token signed with the private key (which is typically what most people do and think that makes them safe), while that will identify the original request coming from the real client, it still leaves the arguments to the comment open to change.
For example, if I send:
/chargeCC?user=bob&amt=100.00&key=kjDSLKjdasdmiUDSkjh
where the key is my public key signed by my private key only a man-in-the-middle can intercept this call, and re-submit it to the server with an "amt" value of "10000.00" instead.
The key is that you have to include ALL the parameters you send in the hash calculation, so when the server gets it, it re-vets all the values by recalculating the same hash on its side.
REMINDER: Only the client and server know the private key.
This style of verification is called an "HMAC"; it is a checksum verifying the contents of the request.
Because hash generation is SO touchy and must be done EXACTLY the same on both the client and server in order to get the same hash, there are super-strict rules on exactly how all the values should be combined.
For example, these two lines provides VERY different hashes when you try and sign them with SHA-1:
/chargeCC&user=bob&amt=100
/chargeCC&amt=100&user=bob
A lot of the OAuth spec is spent describing that exact method of combination in excruciating detail, using terminology like "natural byte ordering" and other non-human-readable garbage.
It is important though, because if you get that combination of values wrong, the client and server cannot correctly vet each other's requests.
You also can't take shortcuts and just concatonate everything into a huge String, Amazon tried this with AWS Signature Version 1 and it turned out wrong.
I hope all of that helps, feel free to ask questions if you are stuck.

Resources