concatenation of string within lists - haskell

I have to concat two string given as input into one singe string and put it in a list as output
type Language = [String]
cat :: Language -> Language -> Language
cat l1 l2 =
case l1 of
[""] -> l2
(x:xs) -> case l2 of
[""] -> l1
(y:ys) -> xs ++ ys
and the output should be:
["string1string2"]
any Idea in haskell?

Given your exact problem specification, it is solved by
concatWithinLists :: [String] -> [String] -> [String]
concatWithinLists [x] [y] = [x ++ y]
This is bad in all kinds of ways. All of them stem from your insistence that you will only ever have lists of exactly length 1, completely missing the point of lists.
I strongly recommend reconsidering everything that led you to this issue. The real problem isn't here - it's somewhere higher up in your design. It will continue to be a problem as long as you lie to the type system about the contents of your data. You aren't working with [String], you're working with String and have attached some noise for no benefit.

Why are you passing your strings through in a list? Doing so opens problems, like your code crashing should empty lists be given as an argument (with the exception of cat [""] []). Plus, your pattern matching is off: xs ++ ys becomes [] ++ [] when singleton lists are passed as arguments. This is because [x] = x:[]. A simpler solution would be:
cat :: String -> String -> [String]
cat s1 s2 = [s1 ++ s2]

Related

Haskell - Exclude lists based on a test in a nested list comprehension

I want to create a series of possible equations based on a general specification:
test = ["12", "34=", "56=", "78"]
Each string (e.g. "12") represents a possible character at that location, in this case '1' or '2'.)
So possible equations from test would be "13=7" or "1=68".
I know the examples I give are not balanced but that's because I'm deliberately giving a simplified short string.
(I also know that I could use 'sequence' to search all possibilities but I want to be more intelligent so I need a different approach explained below.)
What I want is to try fixing each of the equals in turn and then removing all other equals in the equation. So I want:
[["12","=","56","78"],["12","34","=","78”]]
I've written this nested list comprehension:
(it needs: {-# LANGUAGE ParallelListComp #-} )
fixEquals :: [String] -> [[String]]
fixEquals re
= [
[
if index == outerIndex then equals else remain
| equals <- map (filter (== '=')) re
| remain <- map (filter (/= '=')) re
| index <- [1..]
]
| outerIndex <- [1..length re]
]
This produces:
[["","34","56","78"],["12","=","56","78"],["12","34","=","78"],["12","34","56","”]]
but I want to filter out any with empty lists within them. i.e. in this case, the first and last.
I can do:
countOfEmpty :: (Eq a) => [[a]] -> Int
countOfEmpty = length . filter (== [])
fixEqualsFiltered :: [String] -> [[String]]
fixEqualsFiltered re = filter (\x -> countOfEmpty x == 0) (fixEquals re)
so that "fixEqualsFiltered test" gives:
[["12","=","56","78"],["12","34","=","78”]]
which is what I want but it doesn’t seem elegant.
I can’t help thinking there’s another way to filter these out.
After all, it’s whenever "equals" is used in the if statement and is empty that we want to drop the equals so it seems a waste to build the list (e.g. ["","34","56","78”] and then ditch it.)
Any thoughts appreciated.
I don't know if this is any cleaner than your code, but it might be a bit more clear and maybe more efficient using a recursion:
fixEquals = init . f
f :: [String] -> [[String]]
f [] = [[]]
f (x:xs) | '=' `elem` x = ("=":removeEq xs) : map (removeEq [x] ++) (f xs)
| otherwise = map (x:) (f xs)
removeEq :: [String] -> [String]
removeEq = map (filter (/= '='))
The way it works is that, if there's an '=' in the current string, then it splits the return into two, if not just calls recursively. The init is needed as in the last element returned there's no equal in any string.
Finally, I believe you can probably find a better data structure to do what you need to achieve instead of using list of strings
Let
xs = [["","34","56","78"],["12","=","56","78"],["12","34","=","78"],["12","34","56",""]]
in
filter (not . any null) xs
will give
[["12","=","56","78"],["12","34","=","78"]]
If you want list comprehension then do
[x | x <- xs, and [not $ null y | y <- x]]
I think I'd probably do it this way. First, a preliminary that I've written so many times it's practically burned into my fingers by now:
zippers :: [a] -> [([a], a, [a])]
zippers = go [] where
go _ [] = []
go b (h:e) = (b,h,e):go (h:b) e
Probably running it once or twice in ghci will be a more clear explanation of what this does than any English writing I could do:
> zippers "abcd"
[("",'a',"bcd"),("a",'b',"cd"),("ba",'c',"d"),("cba",'d',"")]
In other words, it gives a way of selecting each element of a list in turn, giving the "leftovers" of what was before and after the selection point. Given that tool, here's our plan: we'll nondeterministically choose a String to serve as our equals sign, double-check that we've got an equals sign in the first place, and then clear out the equals from the others. So:
fixEquals ss = do
(prefix, s, suffix) <- zippers ss
guard ('=' `elem` s)
return (reverse (deleteEquals prefix) ++ ["="] ++ deleteEquals suffix)
deleteEquals = map (filter ('='/=))
Let's try it:
> fixEquals ["12", "34=", "56=", "78"]
[["12","=","56","78"],["12","34","=","78"]]
Perfect! But this is just a stepping-stone to actually generating the equations, right? It turns out to be not that hard to go all the way in one step, skipping this intermediate. Let's do that:
equations ss = do
(prefixes, s, suffixes) <- zippers ss
guard ('=' `elem` s)
prefix <- mapM (filter ('='/=)) (reverse prefixes)
suffix <- mapM (filter ('='/=)) suffixes
return (prefix ++ "=" ++ suffix)
And we can try it in ghci:
> equations ["12", "34=", "56=", "78"]
["1=57","1=58","1=67","1=68","2=57","2=58","2=67","2=68","13=7","13=8","14=7","14=8","23=7","23=8","24=7","24=8"]
The easiest waty to achieve what you want is to create all the combinations and to filter the ones that have a meaning:
Prelude> test = ["12", "34=", "56=", "78"]
Prelude> sequence test
["1357","1358","1367","1368","13=7","13=8","1457","1458","1467","1468","14=7","14=8","1=57","1=58","1=67","1=68","1==7","1==8","2357","2358","2367","2368","23=7","23=8","2457","2458","2467","2468","24=7","24=8"
Prelude> filter ((1==).length.filter('='==)) $ sequence test
["13=7","13=8","14=7","14=8","1=57","1=58","1=67","1=68","23=7","23=8","24=7","24=8","2=57","2=58","2=67","2=68"]
You pointed the drawback: imagine we have the followig list of strings: ["=", "=", "0123456789", "0123456789"]. We will generate 100 combinations and drop them all.
You can look at the combinations as a tree. For the ["12", "34"], you have:
/ \
1 2
/ \ / \
3 4 3 4
You can prune the tree: just ignore the subtrees when you have two = on the path.
Let's try to do it. First, a simple combinations function:
Prelude> :set +m
Prelude> let combinations :: [String] -> [String]
Prelude| combinations [] = [""]
Prelude| combinations (cs:ts) = [c:t | c<-cs, t<-combinations ts]
Prelude|
Prelude> combinations test
["1357","1358","1367","1368","13=7","13=8","1457","1458","1467","1468","14=7","14=8","1=57","1=58","1=67","1=68","1==7","1==8","2357","2358","2367","2368","23=7","23=8","2457","2458","2467","2468","24=7","24=8", ...]
Second, we need a variable to store the current number of = signs met:
if we find a second = sign, just drop the subtree
if we reach the end of a combination with no =, drop the combination
That is:
Prelude> let combinations' :: [String] -> Int -> [String]
Prelude| combinations' [] n= if n==1 then [""] else []
Prelude| combinations' (cs:ts) n = [c:t | c<-cs, let p = n+(fromEnum $ c=='='), p <= 1, t<-combinations' ts p]
Prelude|
Prelude> combinations' test 0
["13=7","13=8","14=7","14=8","1=57","1=58","1=67","1=68","23=7","23=8","24=7","24=8","2=57","2=58","2=67","2=68"]
We use p as the new number of = sign on the path: if p>1, drop the subtree.
If n is zero, we don't have any = sign in the path, drop the combination.
You may use the variable n to store more information, eg type of the last char (to avoid +* sequences).

How to compare multiple strings within in the same list in Haskell

I am trying to write a Haskell function that takes in a list of strings, compares all the strings in the list, and outputs a list of strings that are of the longest length. I want to do this without any predefined functions or imports, I want to try and figure it out all recursively. For example:
longeststrings["meow","cats","dog","woof"] -> ["meow","cats","woof"]
I know it is a silly example, but I think it proves the point.
I want to do something like
longeststrings:: [string] -> [string]
longeststrings [] = []
longeststrings [x:xs] = if (x > xs) x:longeststrings[xs]
But I don't know how to only take the largest size strings out of the list, or remove the smallest ones. I would appreciate any help.
you could trivially keep track of the longest length string and an accumulator of values of that length.
longestStrings :: [String] -> [String]
longestStrings = go [] 0
where
go acc _ [] = acc -- base case
go acc n (x:xs)
| length x > n = go [x] (length x) xs
-- if x is longer than the previously-seen longest string, then set
-- accumulator to the list containing only x, set the longest length
-- to length x, and keep looking
| length x == n = go (x:acc) n xs
-- if x is the same length as the previously-seen longest string, then
-- add it to the accumulator and keep looking
| otherwise = go acc n xs
-- otherwise, ignore it
or, as Davislor rightly mentions in the comments, this can be implemented as a fold by teaching the helper function to determine its own longest length
longestStrings :: [String] -> [String]
longestStrings = foldr f []
where
f x [] = [x]
f x yss#(y:_) =
case compare (length x) (length y) of
GT -> [x]
EQ -> x : yss
LT -> yss
As requested, here’s a version with and without the use of where. I think this is a good demonstration of why the advice not to use where is bad advice. I think the first version is a lot easier to understand.
Keep in mind, functional programming isn’t a monastic vow to forswear certain keywords out of masochism. Nor is it a checklist of fashion tips (where is so last season!). “You should avoid that construct arbitrarily because it’s not the ‘functional’ thing to do” really is not how it works. So you shouldn’t uglify your code for the sake of a tip like that.
It is often a good idea to follow the same coding style as other programmers so they will find it easier to understand you. (For example, Adam Smith was subtly trying to train you that acc is a common name for an accumulator and go a common name for a recursive helper function, and they help other programmers figure out the pattern he’s using.) But in fact Haskell programmers do use where, a lot.
Anyway, the code:
longeststrings :: [String] -> [String]
{- Filters all strings as long as any other in the list. -}
longeststrings = foldr go []
where
go x [] = [x]
go x leaders | newlength > record = [x]
| newlength == record = x:leaders
| otherwise = leaders
where
record = (length . head) leaders
newlength = length x
longestStringsUsingLambda :: [String] -> [String]
longestStringsUsingLambda = foldr
(\x leaders ->
if leaders == [] then [x]
else case compare (length x) (length $ head leaders) of
GT -> [x]
EQ -> x:leaders
LT -> leaders )
[]
main :: IO ()
main = let testcases = [ ["meow","cats","dog","woof"],
["foo","bar","baz"],
["meep","foo","bar","baz","fritz","frotz"]
]
in foldMap print $
map longestStringsUsingLambda testcases
You can try eliminating the let testcases = ... and see if you consider that an improvement.

Why can't I pattern match on the concatenation function (++) in Haskell?

I'm trying to match **String Newline String** pattern in a function Split.
split::String -> [String]
split[] = []
split (x++'\n':xs) = [x]++split(xs)
I'm getting this error:
Parse error in pattern: x ++ ('\n' : xs)
What am I doing wrong here?
I know there are other ways of achieving the same result but I'd like to understand what wrong with this pattern. I'm fairly new to Haskell BTW.
One problem (as I understand it) is that ++ is not a constructor of the list data type the way : is. You can think of the list data type being defined as
data [a] = [] | a : [a]
Where : is a constructor that appends elements to the front of a list. However, ++ is a function (defined in the documentation here: http://hackage.haskell.org/package/base-4.8.1.0/docs/src/GHC.Base.html#%2B%2B) as
(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys
We could define our own data type list like
data List a = Empty | Cons a (List a)
That would mimic the behavior of our familiar list. In fact, you could use (Cons val) in a pattern. I believe you could also define a type with a concat constructor like so
data CList a = Empty | Cons a (CList a) | Concat (CList a) (CList a)
Which you could use to lazily concatenate two lists and defer joining them into one. With such a data type you could pattern match against the Concat xs ys input, but you that would only work on the boundary of two lists and not in the middle of one.
Anyway I'm still fairly new to Haskell myself but I hope this is on point.
Imagine you could. Then matching "a\nb\nc" could produce x = "a", xs = "b\nc" or x = "a\nb", xs = "c" and you'd need some ad hoc rule to decide which to use. Matching against functions is also impossible to reasonably implement in general: you need to find an x given f x, and there is no way to do this other than trying all possible x.

Haskell List Comprehension - Ineffective Predicate

I'm pretty brand new to Haskell (only written a fizzbuzz program before the current one) and am trying to write a program that takes the unix wordlist ('/usr/share/dict/words') and prints out the list of anagrams for that word, with any direct palindromes starred. I have the meat of this summed up into one function:
findAnagrams :: [String] -> [(String, [String])]
findAnagrams d =
[x | x <- map (\s -> (s, [if reverse s == t then t ++ "*" else t | t <- d, s /= t && null (t \\ s)])) d, not (null (snd x))]
However, when I run the program I get this output:
abase: babes, bases
abased: debase
abasement: basements
abasements: abatements
abases: basses
And so on, so clearly it isn't working properly. My intention is for the list comprehension to read as follows: for all t in d such that t is not equal to s and there is no difference between t and s other than order, if t is the reverse of s include as t*, otherwise include as t. The problem seems to be with the "no difference between t and s other than order" part, which I'm trying to accomplish by using "null (t \ s)". It seems like it should work. Testing in GHCI gives:
Prelude Data.List> null ("abatements" \\ "abasements")
False
And yet it passes the predicate test. My assumption is that I'm missing something simple here, but I've looked at it a while and can't quite come up with it.
In addition, any notes regarding best practice would be greatly appreciated.
If you break it out into multiple functions (remember, source code size is not really that important), you could do something like:
import Data.List
isPalindrome :: String -> Bool
isPalindrome s = s == reverse s
flagPalins :: [String] -> [String]
flagPalins [] = []
flagPalins (x:xs)
| isPalindrome x = x ++ "*"
| otherwise = x
isAnagram :: String -> String -> Bool
isAnagram s t = (isPalindrome s || s /= t) && ??? -- test for anagram
findAnagrams :: String -> [String] -> [String]
findAnagrams s ws = flagPalins $ filter (isAnagram s) ws
findAllAnagrams :: [String] -> [(String, [String])]
findAllAnagrams ws = filter (not . null . snd) ??? -- words paired with their anagrams
I've intentionally left some holes for you to fill in, I'm not going to give you all the answers ;)
There are only two spots for you to do yourself. The one in findAllAnagrams should be pretty easy to figure out, you're already doing something pretty similar with your map (\s -> ...) part. I intentionally structured isAnagram so it'll return True if it's a palindrome or if it's just an anagram, and you only need one more check to determine if t is an anagram of s. Look at the comment I made on your question for a hint about what to do there. If you get stuck, comment and ask for an additional hint, I'll give you the name of the function I think you should use to solve this problem.
If you really want to make a list comprehension, I would recommend solving it this way, then converting back to a comprehension. In general you should write more verbose code, then compress it once you understand it fully.
Think of a \\ b as "items in a that are not in b."
Consider the implications.

Haskell: Pattern Matching to combine String

I'm trying to write a function which adds single characters from a string to a list of strings, for instance
combine ", !" ["Hello", "", "..."] = ["Hello,", " ", "...!"]
I've tried this:
combine :: String -> [String] -> [String]
combine (y:ys) (x:xs) =
[x:y, combine ys xs]
A simple one would be
combine :: [Char] -> [String] -> [String]
combine [] _ = []
combine _ [] = []
combine (c:cs) (x:xs) = x ++ [c] : combine cs xs
Or even more simply using zipWith
combine :: [Char] -> [String] -> [String]
combine = zipWith (\c x -> x ++ [c])
I had to do a bit extra to get this to work. I'll break it down for you.
First, I specified the type of the function as [Char] -> [String] -> [String]. I could have used String for the first argument, but what you're operating on conceptually is a list of characters and a list of strings, not a string and a list of strings.
Next, I had to specify the edge cases for this function. What happens when either argument is the empty list []? The easy answer is to just end the computation then, so we can write
combine [] _ = []
combine _ [] = []
Here the _ is matching anything, but throwing it away because it isn't used in the return value.
Next, for the actual body of the function We want to take the first character and the first string, then append that character to the end of the string:
combine (c:cs) (x:xs) = x ++ [c]
But this doesn't do anything with cs or xs, the rest of our lists (and won't even compile with the type signature above). We need to keep going, and since we're generating a list, this is normally done with the prepend operator :
combine (c:cs) (x:xs) = x ++ [c] : combine cs xs
However, this is such a common pattern that there is a helper function called zipWith that handles the edge cases for us. It's type signature is
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
It walks down both input lists simultaneously, passing the corresponding elements into the provided function. Since the function we want to apply is \c x -> x ++ [c] (turned into a lambda function), we can drop it in to zipWith as
combine cs xs = zipWith (\c x -> x ++ [c]) cs xs
But Haskell will let us drop arguments when possible, so we can eta reduce this to
combine :: [Char] -> [String] -> [String]
combine = zipWith (\c x -> x ++ [c])
And that's it!
When you want to combine lists element by element, it is usually a zip you are looking at. In this case, you know exactly how you want to combine the elements – that makes it a zipWith.
zipWith takes a "combining function" and then creates a function that combines two lists using said combining function. Let's call your "combining" function append, because it adds a characters to the end of a string. You can define it like this:
append char string = string ++ [char]
Do you see how this works? For example,
append 'e' "nic" = "nice"
or
append '!' "Hello" = "Hello!"
Now that we have that, recall that zipWith takes a "combining function" and then creates a function that combines two lists using that function. So your function is then easily implemented as
combine = zipWith append
and it will do append on each of the elements in order in the lists you supply, like so:
combine ", !" ["Hello", "", "..."] = ["Hello,", " ", "...!"]
You are close. There are a couple issues with what you have.
y has type Char, and x has type String which is an alias for [Char]. This means that you can add y to the top of a list with y : x, but you can't add y to the end of a list using the same : operator. Instead, you make y into a list and join the lists.
x ++ [y]
There must also be a base case, or this recursion will continue until it has no elements in either list and crash. In this case, we likely don't have anything we want to add.
combine [] [] = []
Finally, once we create the element y ++ [x] we want to add it to the top of the rest of the items we have computed. So we use : to cons it to our list.
combine :: String -> [String] -> [String]
combine [] [] = []
combine (x : xs) (y : ys) = (y ++ [x]) : (combine xs ys)
One note about this code, if there is ever a point where the number of characters in your string is different from the number of strings in you list, then this will crash. You can handle that case in a number of ways, bheklilr's answer addresses this.
kqr's answer also works perfectly and is probably the best one to use in practice.

Resources