I am producing the figure below using the following gnuplot code. I want to draw a bended arrow from the point labeled l=0 to l=1 with head.
Code
reset session
# Ranges
set xrange [-1:6]
set yrange [-2:1]
# Term options
set terminal postscript eps
set termoption font "Times, 30"
# set termoption
set style line 1 lc rgb 'black' lw 3 lt 1 pt 7 ps 2
# Data points
$DATA<<EOD
0 0
1 0
2 0
3 0
4 0
5 0
6 0
EOD
set output "Anderson_lattice.eps"
# set arrow
set arrow 1 from -0.5, -1.5 to 5.5, -1.5 lc rgb 'black' lw 5
set arrow 2 from -0.5, -1.5 to -0.5, -0.5 lc rgb 'black' lw 5
set label 1 "{/Times-Italic=30 {/Symbol e}_{l}}" at -0.75, -0.3 tc rgb "black"
set arrow 3 from -0.25, -1.0 to 0.25, -1.0 ls 1 nohead
set arrow 5 from 1 - 0.25, -0.75 to 1 + 0.25, -0.75 ls 1 nohead
set arrow 6 from 2 - 0.25, -0.5 to 2 + 0.25, -0.5 ls 1 nohead
set arrow 7 from 3 - 0.25, -1.35 to 3 + 0.25, -1.35 ls 1 nohead
set arrow 8 from 4 - 0.25, -1.0 to 4 + 0.25, -1 ls 1 nohead
set arrow 9 from 5 - 0.25, -0.85 to 4 + 0.25, -0.85 ls 1 nohead
set arrow 10 from 6 - 0.25, -1.25 to 6 + 0.25, -1.25 ls 1 nohead
set label 2 "{/Times-Italic=30 sites}" at 5.5, -1.65 tc 'black'
set label 3 "{/Times-Italic=30 l=0}" at 2.7, -0.25 tc 'black'
set label 4 "{/Times-Italic=30 l=1}" at 1 + 2.7, -0.25 tc 'black'
unset xtics; unset ytics; unset border
plot $DATA using 1:2 with p ls 1 notitle
unset output
Result
How do I do that?
I'm not aware that gnuplot offers a feature for directly drawing a bent arrow.
Edit:
(I removed my initial approach since it has no advantage over using Cubic Bézier. And added some more flexibility to the second approach.)
I completely agree with #GRSousaJr that Cubic Bézier curves give much more flexibility in drawing bent arrows. At the same time you can also draw straight arrows.
Based on #GRSousaJr's approach, my suggestions would be the following:
instead of entering absolute values for the control points, I would prefer relative or absolute angles and relative distances. This has the advantage that you don't have to care about absolute numbers, especially when two arrows should have the same proportions but have different absolute start/endpoints.
All parameters for the arrows are in the datablock $myArrows.
Some explanations:
for the Cubic Bézier curves 4 points are used: p0,p1,p2,p3, where p0 and p3 are the start and end points, respectively. p1 and p2 are points which control the curvature. p0x, p0y, ... p3x, p3y are the x and y components, respectively.
in contrast to #GRSousaJr's solution the control points p1 and p2 are not given in absolute values but calculated from p0 and p3 and the angles a0 and a3 and the radii r0 and r3.
the angles of the arrow at the points p0 and p3 can be given absolute or relative to the direction of p0 to p3. The parameter e tells which end has relative angle and which end absolute angle. 0=angles at both ends relative, 1=start angle relative, end angle absolute, 2=start angle absolute, end angle relative, 3=angles at both ends absolute. For the relative angle you first need to calculate the angle between p0 and p3 (function AngleP0P3())
the distance of the control points p1 and p2 from the points p0 and p3 are given in relative values r0 and r3 with respect to the distance between p0 and p3. That's why there is the function Length(). 0.5 is a good value to start with.
note that the functions AngleP0P3(n) and Length(n) actually do not depend on n. That is just to shorten the code. These functions use the parameters p1x, ..., p3y, and when calling AngleP0P3(0) the function will take the current values of p1x, ..., p3y. This is shorter than e.g. Angle(p0x,p0y,p3x,p3y).
the function ArrowInit(i) is to collect or initialize the values for p1x, ..., p3y from the ith row of datablock $myArrows.
the line of the arrows are simply plotted in a for loop as parametric function in t with the range t[0:1]. For every i in the plot command ArrowInit(i) is called to get the corresponding parameters from the datablock $myArrows.
The angle of the arrow in point p3 is in the direction from p2 to p3, i.e. the tangent of the Bézier curve in point p3. However you don't want the line, but just the arrow. So far, I don't have a better approach than plotting a short vector from 99% of the arrow path to 100% of the arrow path.
Some comments on usage:
in order to "see" the correct angles you specify in $myArrows, your plot has to have the same aspect ratio as your x and y ranges. In the below examples it is x[0:20] and y[0:10], hence, set the aspect ratio of the graph to 0.5, i.e. at the beginning set size 0.5.
the direction of the arrow head is the tangent in point p3. If you have a strong curvature at p3, the arrow head might look "bad", although the arrow head is in the correct angle. In such cases, increase the length r3 a little.
You can also draw straight arrows, see Arrow1. Just set a0=0,a3=0 and e=0.
Tested with gnuplot 5.2.8
Code:
### workaround for bent arrows
reset session
set size ratio 0.5
# p0x p0y a0 r0 p3x p3y a3 r3 e color
$myArrows <<EOD
1 1.00 1.00 0 0.5 3.00 3.00 0 0.5 0 0xff0000
2 3.00 1.00 0 0.5 5.00 3.00 0 0.5 1 0x00c000
3 5.00 1.00 0 0.5 7.00 3.00 0 0.5 2 0x0000ff
4 7.00 1.00 0 0.5 9.00 3.00 0 0.5 3 0xff00ff
5 1.00 4.00 0 0.5 3.00 6.00 90 0.5 0 0xff0000
6 3.00 4.00 0 0.5 5.00 6.00 90 0.5 1 0x00c000
7 5.00 4.00 0 0.5 7.00 6.00 90 0.5 2 0x0000ff
8 7.00 4.00 0 0.5 9.00 6.00 90 0.5 3 0xff00ff
9 1.00 7.00 90 0.5 3.00 9.00 0 0.5 0 0xff0000
10 3.00 7.00 90 0.5 5.00 9.00 0 0.5 1 0x00c000
11 5.00 7.00 90 0.5 7.00 9.00 0 0.5 2 0x0000ff
12 7.00 7.00 90 0.5 9.00 9.00 0 0.5 3 0xff00ff
13 11.00 1.00 45 0.5 13.00 3.00 -45 0.5 0 0xff0000
14 13.00 1.00 45 0.5 15.00 3.00 -45 0.5 1 0x00c000
15 15.00 1.00 45 0.5 17.00 3.00 -45 0.5 2 0x0000ff
16 17.00 1.00 45 0.5 19.00 3.00 -45 0.5 3 0xff00ff
17 11.00 4.00 -45 0.5 13.00 6.00 -45 0.5 0 0xff0000
18 13.00 4.00 -45 0.5 15.00 6.00 -45 0.5 1 0x00c000
19 15.00 4.00 -45 0.5 17.00 6.00 -45 0.5 2 0x0000ff
20 17.00 4.00 -45 0.5 19.00 6.00 -45 0.5 3 0xff00ff
21 11.00 7.00 0 0.5 15.00 9.00 90 0.5 1 0x00c000
22 15.00 7.00 0 0.5 19.00 9.00 0 0.5 1 0x00c000
EOD
set angle degrees
# Angle between p0 and p3 (range: -90° <= angle < 270°), NaN if dx=dy=0
AngleP0P3(n) = (dy=p3y-p0y,dx=p3x-p0x)==0 ? (dy==0 ? NaN : sgn(dy)*90) : \
(dx<0 ? 180 : 0) + atan(dy/dx)
# Parameter e: determines which ends have relative or absolute angles
# 0: both ends relative
# 1: start relative, end absolute,
# 2: start absolute, end relative
# 3: both ends absolute
AngleAbs(i) = int(word($myArrows[i],10)) # to set all arrows equal, use: AngleAbs(i) = 0,1,2, or 3
Angle(i,p) = word($myArrows[i],p) + \
((p==4 && AngleAbs(i)&2) || (p==8 && AngleAbs(i)&1) ? 0 : AngleP0P3(0))
Length(n) = sqrt((p3x-p0x)**2 + (p3y-p0y)**2)
Color(i) = word($myArrows[i],11)
ArrowInit(i) = (p0x=word($myArrows[i],2),p0y=word($myArrows[i],3), \
p3x=word($myArrows[i],6),p3y=word($myArrows[i],7), \
p1x=p0x+Length(0)*word($myArrows[i],5)*cos(Angle(i,4)), \
p1y=p0y+Length(0)*word($myArrows[i],5)*sin(Angle(i,4)), \
p2x=p3x-Length(0)*word($myArrows[i],9)*cos(Angle(i,8)), \
p2y=p3y-Length(0)*word($myArrows[i],9)*sin(Angle(i,8)))
# Cubic Bézier curves function with t[0:1] as parameter
# p0: start point, p1: 1st control point, p2: 2nd control point, p3: endpoint
px(t) = (-p0x + 3*p1x - 3*p2x + p3x)*t**3 + (3*p0x - 6*p1x + 3*p2x)*t**2 + (-3*p0x + 3*p1x)*t + p0x
py(t) = (-p0y + 3*p1y - 3*p2y + p3y)*t**3 + (3*p0y - 6*p1y + 3*p2y)*t**2 + (-3*p0y + 3*p1y)*t + p0y
# set linestyles and arrowstyles
do for [i=1:|$myArrows|] {
set style line i lw 2 lc rgb Color(i)
set style arrow i head size 0.20,15,45 fixed filled ls i
}
set key out noautotitle below
set xrange [0:20]
set xtics 1
set format x ""
set grid xtics ls -1 lc rgb "gray"
set yrange [0:10]
set ytics 1
set format y ""
set grid ytics ls -1 lc rgb "gray"
plot for [i=1:|$myArrows|] [0:1] '+' u (ArrowInit(i),px($1)):(py($1)) w l ls i, \
for [i=1:|$myArrows|] [0:1] '+' u (ArrowInit(i),px(0.99)):(py(0.99)): \
(px(1)-px(0.99)):(py(1)-py(0.99)) every ::0::0 w vec as i, \
$myArrows u 2:3:1 w labels offset 0,-0.7, \
keyentry w l ls 1 ti "both ends relative angles", \
keyentry w l ls 2 ti "start relative, end absolute angle", \
keyentry w l ls 3 ti "start absolute, end relative angle", \
keyentry w l ls 4 ti "both ends absolute angles"
### end of code
exit
Result:
I created (at least in my mind) an "enhanced" version of #theozh's answer, which allows somewhat control over arrow form.
The idea is to use a Bézier curve to draw the bent arrow. The head is drawn as on #theozh's answer, i.e., using vectors. The initial (xi,yi) and final points (xy,yf), as well the control points (xc1,yc1 and xc2,yc2), are passed to a function using call command. The function creates a datafile using theid, like a tag on standard arrow, defined by user, and associates a variavel (e.g. BentArrow_id) name to such datafile. Each created datafile contain:
the control points
the datapoints to create the arrow, and
the datapoints do create head
as three indexable datablocks (0, 1 and 2, respectively), like this:
# Block index 0 (control points)
1.000000e+00 -1.250000e+00
1.250000e+00 0.000000e+00
2.800000e+00 -5.000000e-01
3.000000e+00 -7.500000e-01
# Block index 1 (arrow)
1.000000e+00 -1.250000e+00
1.016539e+00 -1.177084e+00
1.036070e+00 -1.108272e+00
1.058468e+00 -1.043468e+00
... ...
2.927437e+00 -6.862240e-01
2.949992e+00 -7.027320e-01
2.969690e+00 -7.189280e-01
2.986401e+00 -7.347160e-01
3.000000e+00 -7.500000e-01
# Block index 2 (head)
2.986401e+00 -7.347160e-01 1.359880e-02 -1.528400e-02
3.000000e+00 -7.500000e-01 0.000000e+00 0.000000e+00
To draw the bent arrow, the plot command must be composed by three parts:
plot \
...
BentArrow_id i 0 u 1:2 w lp ...,\
BentArrow_id i 1 u 1:2 w lines ...,\
BentArrow_id i 2 u 1:2:3:4 w vectors ...,\
...
Each part corresponds to a piece of arrow (the control points, the arrow itself, and the head, respectively).
To better show the script (called BentArrow.fct) working, consider the example.
reset
set terminal wxt size 500,500
set size ratio -1
set grid ls -1 lc "gray"
unset key
set tics out nomirror
set xrange [-0.25:9.25]
set yrange [-0.25:9.25]
set style arrow 1 head size 0.25,15,45 fixed filled lc "red"
BentArrow(id,xi,yi,x1,y1,x2,y2,xf,yf) = \
sprintf("call 'BentArrow.fct' '%g' '%f' '%f' '%f' '%f' '%f' '%f' '%f' '%f'", \
id, xi,yi, x1,y1, x2,y2, xf,yf )
# id, xi,yi , xc1,yc1, xc2,yc2, xf,yf
eval BentArrow(1, 1.0,1.0, 2.0,2.0, 3.0,0.0, 4.0,1.0)
eval BentArrow(2, 5.0,1.0, 6.0,0.0, 7.0,2.0, 8.0,1.0)
eval BentArrow(3, 1.0,4.0, 2.0,3.0, 3.0,3.0, 4.0,4.0)
eval BentArrow(4, 5.0,4.0, 6.0,5.0, 7.0,5.0, 8.0,4.0)
eval BentArrow(5, 1.0,7.0, 5.0,5.0, 0.0,5.0, 4.0,7.0)
eval BentArrow(6, 5.0,7.0, 5.0,9.0, 6.0,7.0, 8.0,7.0)
CtrlPoints = "w lp ls -1 pt 6 ps 1 pi -1"
StyleArrow = "w lines lc 'red' lw 2"
StyleHead = "w vec as 1"
plot \
BentArrow_1 i 0 u 1:2 #CtrlPoints ,\
BentArrow_1 i 1 u 1:2 #StyleArrow ,\
BentArrow_1 i 2 u 1:2:3:4 #StyleHead ,\
BentArrow_2 i 0 u 1:2 #CtrlPoints ,\
BentArrow_2 i 1 u 1:2 #StyleArrow ,\
BentArrow_2 i 2 u 1:2:3:4 #StyleHead ,\
BentArrow_3 i 0 u 1:2 #CtrlPoints ,\
BentArrow_3 i 1 u 1:2 #StyleArrow ,\
BentArrow_3 i 2 u 1:2:3:4 #StyleHead ,\
BentArrow_4 i 0 u 1:2 #CtrlPoints ,\
BentArrow_4 i 1 u 1:2 #StyleArrow ,\
BentArrow_4 i 2 u 1:2:3:4 #StyleHead ,\
BentArrow_5 i 0 u 1:2 #CtrlPoints ,\
BentArrow_5 i 1 u 1:2 #StyleArrow ,\
BentArrow_5 i 2 u 1:2:3:4 #StyleHead ,\
BentArrow_6 i 0 u 1:2 #CtrlPoints ,\
BentArrow_6 i 1 u 1:2 #StyleArrow ,\
BentArrow_6 i 2 u 1:2:3:4 #StyleHead
The results
Applying the script to your example, the result look like this
Of course the control points are useful just to defining each arrow.
The variable showCtrlPoints = "False" (default "True") is defined to allows hide the control points on final plot.
The script to last example is:
reset
# The data
$levels<<EOD
1 0.5 -1.25
2 0.5 -1.00
3 0.5 -0.75
4 0.5 -0.50
5 0.5 -0.25
6 0.5 -1.25
7 0.5 -1.00
8 0.5 -0.75
9 0.5 -0.50
10 0.5 -0.25
EOD
# Cubic Bézier function
BentArrow(id,xi,yi,x1,y1,x2,y2,xf,yf) = \
sprintf("call 'BentArrow.fct' '%g' '%f' '%f' '%f' '%f' '%f' '%f' '%f' '%f'", \
id, xi,yi, x1,y1, x2,y2, xf,yf )
# Arrow styles
set style arrow 1 head size 0.2,15,45 fixed filled lc "red"
set style arrow 2 head size 0.2,15,45 fixed filled lc "web-green"
set style arrow 3 head size 0.2,15,45 fixed filled lc "blue"
# To levels
set errorbars small
unset key
# Options to drawing the bent arrows
showCtrlPoints = "False"
ArrowPoints = 50
# Calling the function
eval BentArrow(1, 1.00,-1.25, 1.25, 0.00, 2.80,-0.50, 3.00,-0.75)
eval BentArrow(2, 8.00, 0.50, 8.00, 0.00, 5.00, 0.25, 5.00,-0.25)
eval BentArrow(3, 1.00, 0.50, 2.00,-0.25, 9.00, 0.50, 10.0,-0.25)
# Macros
Points = "w p ls -1 pt 7 ps 2"
Levels = "w xerrorbars ls -1 lw 2"
CtrlPoints = "w lp ls -1 pt 6 ps 1 pi -1"
StyleArrow = "w lines lw 2"
StyleHead = "w vectors"
# Allow to toggle between show/hide the control points
CP(n) = showCtrlPoints eq "True" ? n : NaN
plot \
$levels u 1:2 #Points ,\
"" u 1:3:(0.35) #Levels ,\
BentArrow_1 i 0 u 1:(CP($2)) #CtrlPoints ,\
BentArrow_1 i 1 u 1:2 #StyleArrow lc "red" ,\
BentArrow_1 i 2 u 1:2:3:4 #StyleHead as 1 ,\
BentArrow_2 i 0 u 1:(CP($2)) #CtrlPoints ,\
BentArrow_2 i 1 u 1:2 #StyleArrow lc "web-green" ,\
BentArrow_2 i 2 u 1:2:3:4 #StyleHead as 2 ,\
BentArrow_3 i 0 u 1:(CP($2)) #CtrlPoints ,\
BentArrow_3 i 1 u 1:2 #StyleArrow lc "blue" ,\
BentArrow_3 i 2 u 1:2:3:4 #StyleHead as 3
The BentArrow.fct file contain:
# Implements a bent arrow using Cubic Bézier curves (https://en.wikipedia.org/wiki/Bézier_curve)
#
# Usage: call 'BentArrow.fct' tag xi yi yc1 yc1 xc2 yc2 xf yf
# where
# xi,yi = start point
# xc1,yc1 = control point #1
# xc2,yc2 = control point #2
# xf,yf = final point
#
# The algorithm creates
# 1) a variable named BentArrow_id with 'id' as a integer number,
# defined by user like a standart arrow, and
# 2) a datafile (e.g BentArrow_id.bentarrow) containing
# i) the control points,
# ii) the datapoints to create the curve, and
# iii) the datapoints do ceate head
# as indexable datablocks (0, 1 and 2, respectively).
# The number of datapoint (samples) used on bent arrow construction
# are defined by 'ArrowPoints' (default 50)
# Receiving the arguments from 'call' command
tag = int(ARG1)
x_i = real(ARG2)
y_i = real(ARG3)
x_1 = real(ARG4)
y_1 = real(ARG5)
x_2 = real(ARG6)
y_2 = real(ARG7)
x_f = real(ARG8)
y_f = real(ARG9)
# Defining the variable to filename, based on 'tag', and creating the datafile
eval sprintf( "%s_%g = %s", 'BentArrow', tag, sprintf("'BentArrow_%g.bentarrow'", tag) )
# Checking if 'ArrowPoints' is defined
if ( !exists("ArrowPoints") ) {
ArrowPoints = 50
}
# Quadratic Bézier function
DrawArrow(t,p0,p1,p2,p3) = (1-t)**3*p0 + 3*(1-t)**2*t*p1 + 3*(1-t)*t**2*p2 + t**3*p3 # 0 <= t <= 1
# Creating the datafile containing the datapoints to bent arrow
set print sprintf('BentArrow_%g.bentarrow', tag)
# ----- ControlPoints -----------------------
print "# Block index 0 (control points)"
print sprintf("% e\t% e", x_i, y_i)
print sprintf("% e\t% e", x_1, y_1)
print ""
print sprintf("% e\t% e", x_2, y_2)
print sprintf("% e\t% e", x_f, y_f)
print ""
print ""
# ----- ArrowData -----------------------
print "# Block index 1 (arrow)"
do for [i=0:int(ArrowPoints):1] {
t = i/real(ArrowPoints)
print sprintf("% e\t% e", DrawArrow(t,x_i,x_1,x_2,x_f), DrawArrow(t,y_i,y_1,y_2,y_f))
}
print ""
print ""
# ----- ArrowHead -----------------------
print "# Block index 2 (head)"
do for [i=int(ArrowPoints)-1:int(ArrowPoints):1] {
t = i/real(ArrowPoints)
x_head = x_f - DrawArrow(t,x_i,x_1,x_2,x_f)
y_head = y_f - DrawArrow(t,y_i,y_1,y_2,y_f)
print sprintf("% e\t% e\t% e\t% e", DrawArrow(t,x_i,x_1,x_2,x_f), DrawArrow(t,y_i,y_1,y_2,y_f), x_head, y_head)
}
unset print
Improvements will be well received!
There is a style to fill the space between two functions of x.
Examples of such plots can be found e.g. at http://gnuplot.sourceforge.net/demo/fillbetween.html
Is there any way to make similar plot, but with flipped x and y axes?
Here is the desired shape of a curve (without rotated/mirrored labels, titles and legends, of course)...
It could be done with closed contour (like last example here http://www.gnuplot.info/demo_svg_cvs/fillcrvs.html), but this would require reshuffling the data file. Any other options?
Thank you!
You can't do this directly. From help filledcurves:
The third variant fills the area between two curves sampled at the same set of
x coordinates. It requires three columns of input data (x, y1, y2).
I don't think you can specify (y, x1, x2) directly. As a workaround you can the area between the y axis and the larger function in some color, and then fill the area between the y axis and the smaller function in white:
x1(y) = cos(y)+1
x2(y) = cos(y)+2
xmax(y) = (x1(y) > x2(y) ? x1(y) : x2(y))
xmin(y) = (x1(y) < x2(y) ? x1(y) : x2(y))
plot '+' using (xmax($1)):1 with filledcurve y1, \
'+' using (xmin($1)):1 with filledcurve y1 fillcolor rgb "white"
This probably has to be tweaked a little if one or both of the two functions can be negative.
With gnuplot >=5.2 it could be tweaked even further because it allows arrays.
The following code shows a workaround how filled curves between vertically oriented curves can be realized. You can even use transparency. If you download the attached PNG you will notice that it actually has a transparent background. The basic idea behind this workaround is to make closed areas and fill them. For this, you need to reverse one border, concatenate the borders and plot them filled. Unfortunately, gnuplot has no function to reverse datapoints in a column, so you have to do it in a special procedure yourself.
The code:
### "Vertical" filledcurves
reset session
# create some dummy data
N = 50
set samples N
set xrange [-5:5]
set table $Data
plot '+' u (sin($1)):1:(rand(0)*0.3+1) with table
unset table
# put Borders into arrays
stats $Data nooutput
RowCount = STATS_records
array BorderX1[RowCount]
array BorderX2[RowCount]
array BorderY[RowCount]
set table $Dummy
plot $Data u (BorderX1[$0+1]=$1-$3):(BorderX2[$0+1]=$1+$3):(BorderY[$0+1]=$2) with table
unset table
# reverse BorderX2 and merge borders
set samples RowCount
set table $Border
plot '+' u (BorderX1[$0+1]):(BorderY[$0+1]) with table
plot '+' u (BorderX2[RowCount-$0]):(BorderY[RowCount-$0]) with table
unset table
# make the plot
set object 1 rect at 0,-3 size 10,0.5 fs solid 1.0 fc rgb "black" back
set yrange[-5:5]
plot \
$Border u 1:2 w filledcurves fc rgb "#AA00FF00" not,\
$Border u ($1*1.5):2 w filledcurves fc rgb "#AAFFFF00" not,\
$Data u ($1+2.5):2 w filledcurves y2 fc rgb "brown" not,\
$Data u 1:2 w l lw 8 lc rgb "blue" not,\
'+' u 1:(cos($1)-0.5):(cos($1)+0.5) w filledcurves lc rgb "grey" not,\
'+' u 1:(cos($1)):(1) w l lw 3 dt 2 lc rgb "white" not
### end of code
The result:
Update: These are two alternative and simpler approaches compared to my first answer. One of them works even with gnuplot 5.0.
The plotting style filledcurves (so far) can only fill between two y-curves with identical x-values. However, gnuplot can fill closed curves. So, make the curve closed. Like in my first answer, you can do this if you reverse one curve and add it to the other one.
The assumption for both scripts is that the data has a common y-column, i.e. is organized in 3 columns, e.g. here: y x1 x2
Data: SO50676753.dat (same as OP's data, from silver.dat in the gnuplot demo directory)
# y x1 x2
10 280 16.7332
20 191 13.8203
30 152 12.3288
40 150 12.2474
50 104 10.1980
60 77 8.7750
70 69 8.3066
80 60 7.7460
90 60 7.7460
100 51 7.1414
110 41 6.4031
120 34 5.8310
130 35 5.9161
140 34 5.8310
150 24 4.8990
160 24 4.8990
170 19 4.3589
180 21 4.5826
190 20 4.4721
200 18 4.2426
210 21 4.5826
220 15 3.8730
230 19 4.3589
240 12 3.4641
250 20 4.4721
260 20 4.4721
270 18 4.2426
280 18 4.2426
290 20 4.4721
300 12 3.4641
310 26 5.0990
320 17 4.1231
330 8 2.8284
340 6 2.4495
350 8 2.8284
360 10 3.1623
370 20 4.4721
380 14 3.7417
390 8 2.8284
400 10 3.1623
410 9 3.0000
420 8 2.8284
430 10 3.1623
440 13 3.6056
450 9 3.0000
460 5 2.2361
470 7 2.6458
480 11 3.3166
500 7 2.6458
510 9 3.0000
520 12 3.4641
530 4 2.0000
540 7 2.6458
550 10 3.1623
560 9 3.0000
580 8 2.8284
590 9 3.0000
600 5 2.2361
Script 1: (works with gnuplot>=5.0.0)
Here you assume that you have monotonic and unique y-values. With this you can use the option smooth unique (available at least in gnuplot 4.x versions) to reverse one curve. However, since this solution here uses datablocks and plotting style with table it requires at least gnuplot 5.0.0. Maybe with some workarounds and temporary files you can also get it to work with some 4.6 versions.
### fill between vertical curves
reset session
FILE = "SO50676753.dat"
set table $Temp
plot FILE u 1:2
plot FILE u (-$1):3 smooth unique
set table $Data
plot $Temp u 2:1 index 0 w table, \
'' u 2:(-$1) index 1 w table
unset table
set style fill solid 0.3
set grid x,y
plot $Data u 1:2 w filledcurves
### end of script
Script 2: (works with gnuplot>=5.2.0)
With this solution there are no special assumptions about the data, but since it uses indexing of datablocks it requires gnuplot>=5.2.0.
### fill between vertical curves
reset session
FILE = "SO50676753.dat"
set table $Temp1
plot FILE u 2:1 w table
set table $Temp2
plot FILE u 3:1 w table
unset table
set print $Data
do for [i=1:|$Temp1|] { print $Temp1[i] }
do for [i=|$Temp2|:1:-1] { print $Temp2[i] } # reverse data
set print
set style fill solid 0.3
set grid x,y
plot $Data u 1:2 w filledcurves
### end of script
Result: (same for both scripts):