Bulk MP3 noise removal - audio

Overview:
I have about 1000 MP3 files that I need to perform noise removal on.
I have used Audacity in the past for individual noise removal operations but Audacity will not cut it for this job.
Audacity is unable to perform bulk operations and I don't have the time to perform this manually on 1000s of MP3 files.
A little about the noise:
The noise is similar to white noise but it differs slightly in every MP3 file, so a different noise profile will need to be built for each MP3.
The noise comes from a fan in the background (if you were wondering).
Question:
What is the best way to automate nose removal from the MP3 files?

You could try using Sox. It's a command line application so is scriptable. See here for further info.

Related

I need to analyse many audio WAV files for characteristic noise, ideas?

I need to be able to analyze (search thru) hundreds of WAV files and detect but not remove static noise. As done currently now, I must listen to each conversation and find the characteristic noise/static manually, which takes too much time. Ideally, I would need a program that can read each new WAV file and be able to detect characteristic signatures of the static noise such as periods of bursts of white noise or full audio band, high amplitude noise (like AM radio noise over phone conversation such as a wall of white noise) or bursts of peek high frequency high amplitude (as in crackling on the phone line) in a background of normal voice. I do not need to remove the noise but simply detect it and flag the recording for further troubleshooting. Ideas?
I can listen to the recordings and find the static or crackling but this takes time. I need an automated or batch process that can run on its own and flag the troubled call recordings (WAV files for a phone PBX). These are SIP and analog conversations depending on the leg of the conversation so RTSP/SIP packet analysis might be an option, but the raw WAV file is the simplest. I can use Audacity, but this still requires opening each file and looking at the visual representation of the audio spectrometry and is only a little faster than listening to each call but still cumbersome.
I currently have no code or methods for this task. I simply listen to each call wav file to find the noise.
I need a batch Wav file search that can render wav file recordings that contain the characteristic noise or static or crackling over the recording phone conversation.
Unless you can tell the program how the noise looks like, it's going to be challenging to run any sort of batch processing. I was facing a similar challenge and that prompted me to develop (free and open source) software to help user in audio exploration, analysis and signal separation:
App: https://audioexplorer.online/
Docs: https://tracek.github.io/audio-explorer/
Source code: https://github.com/tracek/audio-explorer
Essentially, it visualises audio as a 2d scatter plot rather than only "linear", as in waveform or spectrogram. When you upload audio the following happens:
Onsets are detected (based on high-frequency content algorithm from aubio) according to the threshold you set. Set it to None if you want all.
Per each audio fragment, calculate audio features based on your selection. There's no universal best set of features, all depends on the application. You might try for starter with e.g. Pitch statistics. Consider setting proper values for bandpass filter and sample length (that's the length of audio fragment we're going to use). Sample length could be in future established dynamically. Check docs for more info.
The result is that for each fragment you have many features, e.g. 6 or 60. That means we have then k-dimensional (where k is number of features) structure, which we then project to 2d space with dimensionality reduction algorithm of your selection. Uniform Manifold Approximation and Projection is a sound choice.
In theory, the resulting embedding should be such that similar sounds (according to features we have selected) are closely together, while different further apart. Your noise should be now separated from your "not noise" and form cluster.
When you hover over the graph, in right-upper corner a set of icons appears. One is lasso selection. Use it to mark points, inspect spectrogram and e.g. download table with features that describe that signal. At that moment you can also reduce the noise (extra button appears) in a similar way to Audacity - it analyses the spectrum and reduces these frequencies with some smoothing.
It does not completely solve your problem right now, but could severely cut the effort. Going through hundreds of wavs could take better part of the day, but you will be done. Want it automated? There's CLI (command-line interface) that I am developing at the same time. In not-too-distant future it should take what you have labelled as noise and signal and then use supervised machine learning to go through everything in batch mode.
Suggestions / feedback? Drop an issue on GitHub.

How should I handle large video datasets in Google Cloud ML Engine?

I am experimenting with video classification using Keras in Cloud ML Engine. My dataset consists in video sequences saved as separate images (eg. seq1_frame1.png, seq1.frame2.png...) which I have uploaded to a GCS bucket.
I use a csv file referencing the start of end frames of different subclips, and a generator which feeds batch of clips to the model. The generator is responsible for loading frames from the bucket, reading them as images, and concatenating them as numpy arrays.
My training is fairly long, and I suspect the generator is my bottleneck due to the numerous reading operations.
In the exemples I found online, people usually save pre-formatted clips as tfrecords files directly to GCS. I feel like this solution isn't ideal for very large datasets as it implies duplicating the data, even more so if we decide to extract overlapping subclips.
Is there something wrong in my approach ? And more importantly, is there a "golden-standard" for using large video datasets for machine learning ?
PS : I explained my setup for reference, but my question is not bound to Keras, generators or Cloud ML.
In this, you are almost always going to be trading time for space. You just have to work out which is more important.
In theory, for every frame, you have height*width*3 bytes. That's assuming 3 colour channels. One possible way you could save space is to use only one channel (probably choose green, or, better still, convert your complete dataset to greyscale). That would reduce your full size video data to one third size. Colour data in video tends to be at a lower resolution than luminance data so it might not affect your training, but it depends on your source files.
As you probably know, .png is a lossless image compression. Every time you load one, the generator will have to decompress first, and then concatenate to the clip. You could save even more space by using a different compression codec, but that would mean every clip would need full decompression and probably add to your time. You're right, the repeated decompression will take time. And saving the video uncompressed will take up quite a lot of space. There are places you could save space, though:
reduce to greyscale (or green scale as above)
temporally subsample frames (do you need EVERY consecutive frame, or could you sample every second one?)
do you use whole frames or just patches? Can you crop or rescale the video sequences?
are you using optical flow? It's pretty processor intensive, consider it as a pre-processing step, too, so you only have to do it once per clip (again this is trading space for time)

Which features can I try to extract out of mp3 files to classify them?

I am planning to build a music genre classifier working with mp3 files, and I wanna test and see which features work best for this. I have seen a paper that used MFCC(Mel Frequency Cepstral Coefficients) for this, but as a beginner in Machine Learning, this method felt complicated. I also saw some that converted mp3 files into spectograms and analysed those, but with no success. What I am looking for is a few easy-to-extract features to classify mp3 files. Do any other methods exist save for the two I just listed?
There are some papers on this, you can easily google them up.
But the simplest features would be the beat speed, the proportions of high/low frequencies etc.
All of this can be extracted using FFT (Fast Fourier Transform). But I am afraid this may not be so easy if you haven't done it before...

How to remove long silent and unchanged video sections with ffmpeg?

I want to identify areas in a .mp4 (H264 + AAC) video that are silent and unchanged frames and cut them out.
Of course there would be some fine-tuning regarding thresholds and algorithms to measure unchanged frames.
My problem is more general, regarding how I would go about automating this?
Is it possible to solve this with ffmpeg? (preferably with C or python)
How can I programatically analyse the audio?
How can I programatically analyse video frames?
For audio silence see this.
For still video scenes ffmpeg might not be the ideal tool.
You could use scene change detection with a low threshold to find the specific frames, then extract those frames and compare them with something like imagemagick's compare function:
ffprobe -show_frames -print_format compact -f lavfi "movie=test.mp4,select=gt(scene\,.1)"
compare -metric RMSE frame1.png frame0.png
I don't expect this to work very well.
Your best bet is to use something like OpenCV to find differences between frames.
OpenCV Simple Motion Detection

How to recognize if an audio sample has been compressed and then decompressed?

Some years ago I made a music audio recording, and I can't find the original WAV files, I have only compressed MP3s. Now I found an audio CD, but I don't know if it was made using the original, uncompressed WAVs, or if it was made from compressed MP3 or OGG files.
Is there a way how to detect if an audio sample has been compressed and decompressed using a lossy compression such as MP, OGG, ..., without having the original to compare to?
Update:
Trying #MisterHenson's suggestion, I plotted the spectra of the two samples, with obvious differences in the graphs:
The sample from the CD:
The sample from the MP3:
This practically solves solves my current problem, but still I have these open questions:
If the spectra were visually indistinguishable, I wouldn't know if there is a real difference, or that I just can't distinguish them (i.e. the compression would be of better quality). What else could I try?
Similarly what would I do if I didn't have the MP3 file to compare to, just a single audio sample?
Is there an automated method, that'd answer the question with a reasonable probability?
I made an example to stress the topology of all MP3 transcodes, the source material being a Chopin nocturne. MP3 on top, Lossless on bottom. All recordings have background noise of some amplitude, and that noise is faintly visible here. What the MP3 transcode (Lame's V2 preset in this case) does is create a hard limit at ~16kHz. On a 320kbps bitrate 44.1kHz sample rate MP3, this hard limit appears at around 20kHz, but it would still be visibly different in this image.
You can pick out this shelf without having the original lossless file for comparison. I'm willing to say all music has amplitude at frequencies above even 19kHz. Here's an example for which I do not have the lossless source file, just a 320kbps MP3. You can see the very hard limit at 20kHz as well as a milder cutoff at 19kHz. Were it lossless, that red blob in the middle would extend all the way up to 22kHz since the sample rate is 44.1kHz.
I would say this process is probably automatable, but I do not know of any attempts to automate it. If this were automated, though, I'd say it could pick Lossy from Lossless with much higher accuracy than you or I, by virtue of it being able to analyze the entire spectrum as opposed to just the high frequency cutoffs.
Full res images:
http://i.imgur.com/dezONol.jpg
http://i.imgur.com/1qokxAN.jpg
The above approaches sound very promising although maybe a little complicated -- you might first try something easy, like check the distribution of the least significant bit. In a natural sample, LSB should be an almost exact 50/50 distribution between zeroes and ones (actually across many samples would have some variance following a binomial distribution but with millions or billions of bits this will be ridiculously close to 50/50 in any given sample). In a lossy sample, you will find an unlikely distribution in the LSB.
Something like this:
1 -- extract LSB from each data point
2 -- apply chi-squared test to judge if distribution is unusual
Here is the deal.
A raw sample (or a raw piece of sound) is encoded in a certain quality.
Some sound cards can go further with 64bit sampling.
But let's assume that we have sound files of a certain KNOWN quality.
CD quality is okay for the human ear.
A studio, would make use of more quality samples though. Like 24bit as a standard.
So you got a waveform filename.wav that really has a sample rate 44100 Hz.
What does that mean?
It means the computer can take a huge amount of different samples per second to represent almost the exact sound.
Is the sound original? Depends on how it was made.
If it was made by your computer and a piece of software using a 16bit default sound card yes it is.
If it was from an analogue recording though, it loses some of its quality on the digitization at 44100 Hz fortunately not so significant for the human ear.
NOTE THAT mp3 recordings is a bad idea for professional recording.
But since mp3 recording do exist... this adds complexity to your question. :P
So some sound quality is lost on digitization with a 16bit sound card.
Now similar thing can happen when you encode something to mp3.
Check out your picture. Above 17000 there is no sound. It was butchered to make the sound file significant smaller, without making any significant damage to the audio quality. Is it the same piece of sound? No. It sounds the same though. But a sound engineer LOVES original and good quality samples, because of the information that is NOT cut.
Imagine me, making an original sound, so balanced and compressed that even after an mp3 converting it is hard to tell if it is original sound or not. Imagine me using equalizers to cut any sharp edges, and gate effects to extremely normalize it. Also, my sound generators are some 8bit oscillators passing through some fx and filters.
If I convert it back to wavetable, there might be no difference.
For instance:
[UNCHANGED FREQUENCIES][CUT FREQUENCIES]
Waveform: =================================
mp3: =======================
Waveform: =======================
Waveform:
[UNCHANGED FREQUENCIES][CUT FREQUENCIES]
Waveform: =================
mp3 =================
Waveform: =================
The following seems impossible to me (except if the converter has bugs thing that can be heard)
[UNCHANGED FREQUENCIES][CUT FREQUENCIES]
Waveform: =========================
mp3 =======================
Waveform: =============================
So your question depends on the original source you used in the first waveform.
Good news is that a sample is RARELY THAT limited and compressed.
So it seems to me that the CD you used will probably sound like original waveform,
while as you can see, the mp3 has cut out frequencies.
To be sure of course you need a frequency analyzer and spectrum as MischaNix already has shown.
There are many mp3 encodings too. Some are static, some dynamic, some cut more and some cut less sound information. Some are also bigger than others for that reason.
Now there are lossless formats too.
And then there is ogg that is small enough and also has great quality.
So this question can become a huge topic for no reason here. I will not talk about all these.
If the issue is giving an original sample, your pictures show me significant differences between the two samples. I mean, making a waveform out of the mp3 cut variation, should look like that cut variation. You can not get information out of nothing.
Burn the mp3 on a cd, then get the wave, compare the new waveform with the old and the mp3 waveform. It will probably not be the same thing so you might hit the jackpot here. It is possible you got an original backup on your hands.
From now on though, try sampling raw material and store them in a CD or DVD before discarding them.
Or at least keep good uncompressed samples in a backup.
Open questions:
If the spectra were visually indistinguishable, I wouldn't know if there is a real difference, or that I just can't distinguish them.
Correct. But this would occur seldom without intention on sampling.
Why asking such a question? :) Do you have steganography in mind?
If yes, make sure to keep in mind the nature of the piece of sound you are gonna use. Samples are not appropriate. "Finished songs" are!
Similarly what would I do if I didn't have the MP3 file to compare to, just a single audio sample?
Since there are many mp3 encoding settings of different qualities, you can check if the lowest quality was used. If not there is uncertainty because of the compression capabilities. If this applies to the whole sample, then you got to see if compression was needed. That's why you can not be certain on a song. You don't record with SO hard compression in the first place. I guess this is another meta-reason why you need a natural sound. So if its about a recording you might be lucky.
Now about a finished mastered song... things get rough once again. It is about the nature, the type, of the sound. A recording is easier to figure out what is going on if you knew you used waveform recording. An mp3 recording of course is a waste of time. On the other hand a finished song, usually nowadays makes compressors, limiters, gates and chain compressors burn out. The amount of use of this techniques in modern mastering is enormous. So... you will really need luck to find out if the original piece was compressed before, before having an original waveform to begin with.
Is there an automated method, that'd answer the question with a reasonable probability?
None that I know. Sorry. :(
But that doesn't mean than nobody can make one.
BUT!
A stereo sample is usually split out to two channels. Left and right.
Now if you got a spectrum analyzer in a Digital Audio Workstation,
and take a look only on the left channels of two different samples, you can on the fly see
if they are the same or not I guess.
In order to understand what I mean, take a look at THIS link.
Go at 05:00 and just watch the interface.
Phew. Hope this will help you further, since it took some time. :P
Cheers.
Edit: Fixing some stuff here and there.
I found a description of the problem, a solution and an implementation in Python by Maurits van der Schee, that works with a FLAC though.
From the sample only the first 30 seconds are analyzed. For every
second the frequency spectrum of the sample is computed by applying a
Hanning Window and doing a Fast Fourier Transform. These spectrums are
added, so that eventually you end up with 30 stacked spectrums. These
are divided by 30 to get the average spectrum. Then the spectrum is
normalized using log10. After that we applied a rolling average on the
spectrum with a window size of 1/100th of the frequency, being
44100/100=441 samples.
If there is an unnatural cutoff in the frequency spectrum, this cutoff
is the thing we need to find. We sweep the spectrum from 44100th back
to the 1st frequency, where the variable frequency is f. As soon as
the magnitude at f-220 is more than 1.25 higher than the magnitude at
f and the magnitude at f is no bigger than 1.1x the magnitude at 44100
we have found the cutoff point. The cutoff point is multiplied by 100
and divided by the frequency to get to the percentage of the spectrum
not cut off.
Things to look for:
Cut-off frequency changing on frame boundaries (not going to be a 100% hard cut, but look for "audible" to "inaudible" and vice versa)
Frequencies disappearing or appearing on frame boundaries (again, not 100%)
Noise levels changing on frame boundaries (actually pretty solid for lossy codecs)
For MP3, the frame boundaries are precisely every 1152 samples, though you might be able to "see" the granules every 576 samples.
For Vorbis, the frame boundaries are typically every 128 or 1024 samples depending on transients the encoder "saw". You can probably get away with doing every 128 samples...
You'll have to research the other formats to know their frame sizes (I don't know them offhand).

Resources