Generalizing mapAndUnzip - haskell

I'm looking for an easy way to write the function
mapAndUnzip :: (Functor f) => (a -> (b,c)) -> f a -> (f b, f c)
I'm not entirely convinced that Functor is a strong enough constraint, but I'll use it for concreteness. I want to be able to apply this function when f has type (to name a few) [], Data.Vector.Unboxed.Vector, and my own wrapper types around [a] and Vector a. (Other possible types include Array, Repa vectors, etc.)
My key requirement is that I should not need a constraint like (Unbox (b,c)), only (Unbox b,Unbox c). Subrequirement: compute the function only once for each input element.
I see a way to do this for Vector by building two mutable vectors as I map over the input, but I'm hoping there's a better way than making a new class and my own instances for different types. The list-specific way that GHC.Util defines mapAndUnzip makes me think a generic solution might not be possible, but I figured I'd get a second opinion before hacking my own solution.

Functor is enough, you can do:
(EDIT: Compute g only once)
mapAndUnzip g fa = (fmap fst fbc, fmap snd fbc)
where
fbc = fmap g fa

Related

Hidden forall quantified types in ReifiedTraversal

This question really is more generic, since while I was asking it I found out how to fix it in this particular case (even though I don't like it) but I'll phrase it in my particular context.
Context:
I'm using the lens library and I found it particularly useful to provide functionality for "adding" traversals (conceptually, a traversal that traverses all the elements in both original traversals). I did not find a default implementation so I did it using Monoid. In order to be able to implement an instance, I had to use the ReifiedTraversal wrapper, which I assume is in the library precisely for this purpose:
-- Adding traversals
add_traversals :: Semigroup t => Traversal s t a b -> Traversal s t a b -> Traversal s t a b
add_traversals t1 t2 f s = liftA2 (<>) (t1 f s) (t2 f s)
instance Semigroup t => Semigroup (ReifiedTraversal s t a b) where
a1 <> a2 = Traversal (add_traversals (runTraversal a1) (runTraversal a2))
instance Semigroup s => Monoid (ReifiedTraversal' s a) where
mempty = Traversal (\_ -> pure . id)
The immediate application I want to extract from this is being able to provide a traversal for a specified set of indices in a list. Therefore, the underlying semigroup is [] and so is the underlying Traversable. First, I implemented a lens for an individual index in a list:
lens_idx :: Int -> Lens' [a] a
lens_idx _ f [] = error "No such index in the list"
lens_idx 0 f (x:xs) = fmap (\rx -> rx:xs) (f x)
lens_idx n f (x:xs) = fmap (\rxs -> x:rxs) (lens_idx (n-1) f xs)
All that remains to be done is to combine these two things, ideally to implement a function traversal_idxs :: [Int] -> Traversal' [a] a
Problem:
I get type checking errors when I try to use this. I know it has to do with the fact that Traversal is a type that includes a constrained forall quantifier in its definition. In order to be able to use the Monoid instance, I need to first reify the lenses provided by lens_idx (which are, of course, also traversals). I try to do this by doing:
r_lens_idx :: Int -> ReifiedTraversal' [a] a
r_lens_idx = Traversal . lens_idx
But this fails with two errors (two versions of the same error really):
Couldn't match type ‘f’ with ‘f0’...
Ambiguous type variable ‘f0’ arising from a use of ‘lens_idx’
prevents the constraint ‘(Functor f0)’ from being solved...
I understand this has to do with the hidden forall f. Functor f => in the Traversal definition. While writing this, I realized that the following does work:
r_lens_idx :: Int -> ReifiedTraversal' [a] a
r_lens_idx idx = Traversal (lens_idx idx)
So, by giving it the parameter it can make the f explicit to itself and then it can work with it. However, this feels extremely ad-hoc. Specially because originally I was trying to build this r_lens_idx inline in a where clause in the definition of the traversal_idxs function (in fact... on a function defining this function inline because I'm not really going to use it that often).
So, sure, I guess I can always use lambda abstraction, but... is this really the right way to deal with this? It feels like a hack, or rather, that the original error is an oversight by the type-checker.
The "adding" of traversals that you want was added in the most recent lens release, you can find it under the name adjoin. Note that it is unsound to use if your traversals overlap at all.
I am replying to my own question, although it is only pointing out that what I was trying to do with traversals was not actually possible in that shape and how I overcame it. There is still the underlying problem of the hidden forall quantified variables and how is it possible that lambda abstraction can make code that does not type check suddenly type check (or rather, why it did not type check to start with).
It turns out my implementation of Monoid for Traversal was deeply flawed. I realized when I started debugging it. For instance, I was trying to combine a list of indices, and a function that would return a lens for each index, mapping to that index in a list, to a traversal that would map to exactly those indices. That is possible, but it relies on the fact that List is a Monad, instead of just using the Applicative structure.
The function that I had written originally for add_traversal used only the Applicative structure, but instead of mapping to those indices in the list, it would duplicate the list for each index, concatenating them, each version of the list having applied its lens.
When trying to fix it, I realized I needed to use bind to implement what I really wanted, and then I stumbled upon this: https://www.reddit.com/r/haskell/comments/4tfao3/monadic_traversals/
So the answer was clear: I can do what I want, but it's not a Monoid over Traversal, but instead a Monoid over MTraversal. It still serves my purposes perfectly.
This is the resulting code for that:
-- Monadic traversals: Traversals that only work with monads, but they allow other things that rely on the fact they only need to work with monads, like sum.
type MTraversal s t a b = forall m. Monad m => (a -> m b) -> s -> m t
type MTraversal' s a = MTraversal s s a a
newtype ReifiedMTraversal s t a b = MTraversal {runMTraversal :: MTraversal s t a b}
type ReifiedMTraversal' s a = ReifiedMTraversal s s a a
-- Adding mtraversals
add_mtraversals :: Semigroup t => MTraversal r t a b -> MTraversal s r a b -> MTraversal s t a b
add_mtraversals t1 t2 f s = (t2 f s) >>= (t1 f)
instance Semigroup s => Semigroup (ReifiedMTraversal' s a) where
a1 <> a2 = MTraversal (add_mtraversals (runMTraversal a1) (runMTraversal a2))
instance Semigroup s => Monoid (ReifiedMTraversal' s a) where
mempty = MTraversal (\_ -> return . id)
Note that MTraversal is still a LensLike and an ASetter, so you can use many operators from the lens package, like .~.
As I mentioned, though, I still have to use lambda abstraction when using this for my purposes due to the forall quantifier being in an uncomfortable place, and I'd love if someone could clarify what the heck is up with the type checker in that regard.

Any advantage of using type constructors in type classes?

Take for example the class Functor:
class Functor a
instance Functor Maybe
Here Maybe is a type constructor.
But we can do this in two other ways:
Firstly, using multi-parameter type classes:
class MultiFunctor a e
instance MultiFunctor (Maybe a) a
Secondly using type families:
class MonoFunctor a
instance MonoFunctor (Maybe a)
type family Element
type instance Element (Maybe a) a
Now there's one obvious advantage of the two latter methods, namely that it allows us to do things like this:
instance Text Char
Or:
instance Text
type instance Element Text Char
So we can work with monomorphic containers.
The second advantage is that we can make instances of types that don't have the type parameter as the final parameter. Lets say we make an Either style type but put the types the wrong way around:
data Silly t errorT = Silly t errorT
instance Functor Silly -- oh no we can't do this without a newtype wrapper
Whereas
instance MultiFunctor (Silly t errorT) t
works fine and
instance MonoFunctor (Silly t errorT)
type instance Element (Silly t errorT) t
is also good.
Given these flexibility advantages of only using complete types (not type signatures) in type class definitions, is there any reason to use the original style definition, assuming you're using GHC and don't mind using the extensions? That is, is there anything special you can do putting a type constructor, not just a full type in a type class that you can't do with multi-parameter type classes or type families?
Your proposals ignore some rather important details about the existing Functor definition because you didn't work through the details of writing out what would happen with the class's member function.
class MultiFunctor a e where
mfmap :: (e -> ??) -> a -> ????
instance MultiFunctor (Maybe a) a where
mfmap = ???????
An important property of fmap at the moment is that its first argument can change types. fmap show :: (Functor f, Show a) => f a -> f String. You can't just throw that away, or you lose most of the value of fmap. So really, MultiFunctor would need to look more like...
class MultiFunctor s t a b | s -> a, t -> b, s b -> t, t a -> s where
mfmap :: (a -> b) -> s -> t
instance (a ~ c, b ~ d) => MultiFunctor (Maybe a) (Maybe b) c d where
mfmap _ Nothing = Nothing
mfmap f (Just a) = Just (f a)
Note just how incredibly complicated this has become to try to make inference at least close to possible. All the functional dependencies are in place to allow instance selection without annotating types all over the place. (I may have missed a couple possible functional dependencies in there!) The instance itself grew some crazy type equality constraints to allow instance selection to be more reliable. And the worst part is - this still has worse properties for reasoning than fmap does.
Supposing my previous instance didn't exist, I could write an instance like this:
instance MultiFunctor (Maybe Int) (Maybe Int) Int Int where
mfmap _ Nothing = Nothing
mfmap f (Just a) = Just (if f a == a then a else f a * 2)
This is broken, of course - but it's broken in a new way that wasn't even possible before. A really important part of the definition of Functor is that the types a and b in fmap don't appear anywhere in the instance definition. Just looking at the class is enough to tell the programmer that the behavior of fmap cannot depend on the types a and b. You get that guarantee for free. You don't need to trust that instances were written correctly.
Because fmap gives you that guarantee for free, you don't even need to check both Functor laws when defining an instance. It's sufficient to check the law fmap id x == x. The second law comes along for free when the first law is proven. But with that broken mfmap I just provided, mfmap id x == x is true, even though the second law is not.
As the implementer of mfmap, you have more work to do to prove your implementation is correct. As a user of it, you have to put more trust in the implementation's correctness, since the type system can't guarantee as much.
If you work out more complete examples for the other systems, you find that they have just as many issues if you want to support the full functionality of fmap. And this is why they aren't really used. They add a lot of complexity for only a small gain in utility.
Well, for one thing the traditional functor class is just much simpler. That alone is a valid reason to prefer it, even though this is Haskell and not Python. And it also represents the mathematical idea better of what a functor is supposed to be: a mapping from objects to objects (f :: *->*), with extra property (->Constraint) that each (forall (a::*) (b::*)) morphism (a->b) is lifted to a morphism on the corresponding object mapped to (-> f a->f b). None of that can be seen very clearly in the * -> * -> Constraint version of the class, or its TypeFamilies equivalent.
On a more practical account, yes, there are also things you can only do with the (*->*)->Constraint version.
In particular, what this constraint guarantees you right away is that all Haskell types are valid objects you can put into the functor, whereas for MultiFunctor you need to check every possible contained type, one by one. Sometimes that's just not possible (or is it?), like when you're mapping over infinitely many types:
data Tough f a = Doable (f a)
| Tough (f (Tough f (a, a)))
instance (Applicative f) = Semigroup (Tough f a) where
Doable x <> Doable y = Tough . Doable $ (,)<$>x<*>y
Tough xs <> Tough ys = Tough $ xs <> ys
-- The following actually violates the semigroup associativity law. Hardly matters here I suppose...
xs <> Doable y = xs <> Tough (Doable $ fmap twice y)
Doable x <> ys = Tough (Doable $ fmap twice x) <> ys
twice x = (x,x)
Note that this uses the Applicative instance of f not just on the a type, but also on arbitrary tuples thereof. I can't see how you could express that with a MultiParamTypeClasses- or TypeFamilies-based applicative class. (It might be possible if you make Tough a suitable GADT, but without that... probably not.)
BTW, this example is perhaps not as useless as it may look – it basically expresses read-only vectors of length 2n in a monadic state.
The expanded variant is indeed more flexible. It was used e.g. by Oleg Kiselyov to define restricted monads. Roughly, you can have
class MN2 m a where
ret2 :: a -> m a
class (MN2 m a, MN2 m b) => MN3 m a b where
bind2 :: m a -> (a -> m b) -> m b
allowing monad instances to be parametrized over a and b. This is useful because you can restrict those types to members of some other class:
import Data.Set as Set
instance MN2 Set.Set a where
-- does not require Ord
return = Set.singleton
instance Prelude.Ord b => MN3 SMPlus a b where
-- Set.union requires Ord
m >>= f = Set.fold (Set.union . f) Set.empty m
Note than because of that Ord constraint, we are unable to define Monad Set.Set using unrestricted monads. Indeed, the monad class requires the monad to be usable at all types.
Also see: parameterized (indexed) monad.

Monads: Determining if an arbitrary transformation is possible

There are quite a few of questions here about whether or not certain transformations of types that involve Monads are possible.
For instance, it's possible to make a function of type f :: Monad m => [m a] -> m [a], but impossible to make a function of type g :: Monad m => m [a] -> [m a] as a proper antifunction to the former. (IE: f . g = id)
I want to understand what rules one can use to determine if a function of that type can or cannot be constructed, and why these types cannot be constructed if they disobey these rules.
The way that I've always thought about monads is that a value of type Monad m => m a is some program of type m that executes and produces an a. The monad laws reinforce this notion by thinking of composition of these programs as "do thing one then do thing two", and produce some sort of combination of the results.
Right unit Taking a program and just returning its value should
be the same as just running the original program.
m >>= return = m
Left unit If you create a simple program that just returns a value,
and then pass that value to a function that creates a new program, then
the resulting program should just be as if you called the function on the
value.
return x >>= f = f x
Associativity If you execute a program m, feed its result into a function f that produces another program, and then feed that result into a third function g that also produces a program, then this is identical to creating a new function that returns a program based on feeding the result of f into g, and feeding the result of m into it.
(m >>= f) >>= g = m >>= (\x -> f x >>= g)
Using this intuition about a "program that creates a value" can come to some conclusions about what it means for the functions that you've provided in your examples.
Monad m => [m a] -> m [a] Deviating from the intuitive definition of what this function should do is hard: Execute each program in sequence and collect the results. This produces another program that produces a list of results.
Monad m => m [a] -> [m a] This doesn't really have a clear intuitive definition, since it's a program that produces a list. You can't create a list without getting access to the resulting values which in this case means executing a program. Certain monads, that have a clear way to extract a value from a program, and provide some variant of m a -> a, like the State monad, can have sane implementations of some function like this. It would have to be application specific though. Other monads, like IO, you cannot escape from.
Monad m => (a -> m b) -> m (a -> b) This also doesn't really have a clear intuitive definition. Here you have a function f that produces a program of type m b, but you're trying to return a function of type m (a -> b). Based on the a, f creates completely different programs with different executing semantics. You cannot encompass these variations in a single program of type m (a -> b), even if you can provide a proper mapping of a -> b in the programs resulting value.
This intuition doesn't really encompass the idea behind monads completely. For example, the monadic context of a list doesn't really behave like a program.
Something easy to remember is : "you can't escape from a Monad" (it's kind of design for it). Transforming m [a] to [m a] is a form of escape, so you can't.
On the other hand you can easily create a Monad from something (using return) so traversing ([m a] -> m [a]) is usually possible.
If you take a look at "Monad laws", monad only constrain you to define a composition function but not reverse function.
In the first example you can compose the list elements.
In the second one Monad m => m [a] -> [m a], you cannot split an action into multiple actions ( action composition is not reversible).
Example:
Let's say you have to read 2 values.
s1 <- action
s2 <- action
Doing so, action result s2 depends by the side effect made by s1.
You can bind these 2 actions in 1 action to be executed in the same order, but you cannot split them and execute action from s2 without s1 made the side effect needed by the second one.
Not really an answer, and much too informal for my linking, but nevertheless I have a few interesting observations that won't fit into a comment. First, let's consider this function you refer to:
f :: Monad m => [m a] -> m [a]
This signature is in fact stronger than it needs to be. The current generalization of this is the sequenceA function from Data.Traversable:
sequenceA :: (Traversable t, Applicative f) -> t (f a) -> f (t a)
...which doesn't need the full power of Monad, and can work with any Traversable and not just lists.
Second: the fact that Traversable only requires Applicative is I think really significant to this question, because applicative computations have a "list-like" structure. Every applicative computation can be rewritten to have the form f <$> a1 <*> ... <*> an for some f. Or, informally, every applicative computation can be seen as a list of actions a1, ... an (heterogeneous on the result type, homogeneous in the functor type), plus an n-place function to combine their results.
If we look at sequenceA through this lens, all it does is choose an f built out of the appropriate nested number of list constructors:
sequenceA [a1, ..., an] == f <$> a1 <*> ... <*> an
where f v1 ... vn = v1 : ... : vn : []
Now, I haven't had the chance to try and prove this yet, but my conjectures would be the following:
Mathematically speaking at least, sequenceA has a left inverse in free applicative functors. If you have a Functor f => [FreeA f a] and you sequenceA it, what you get is a list-like structure that contains those computations and a combining function that makes a list out of their results. I suspect however that it's not possible to write such a function in Haskell (unSequenceFreeA :: (Traversable t, Functor f) => FreeA f (t a) -> Maybe (t (Free f a))), because you can't pattern match on the structure of the combining function in the FreeA to tell that it's of the form f v1 ... vn = v1 : ... : vn : [].
sequenceA doesn't have a right inverse in a free applicative, however, because the combining function that produces a list out of the results from the a1, ... an actions may do anything; for example, return a constant list of arbitrary length (unrelated to the computations that the free applicative value performs).
Once you move to non-free applicative functors, there will no longer be a left inverse for sequenceA, because the non-free applicative functor's equations translate into cases where you can no longer tell apart which of two t (f a) "action lists" was the source for a given f (t a) "list-producing action."

Can someone explain the traverse function in Haskell?

I am trying and failing to grok the traverse function from Data.Traversable. I am unable to see its point. Since I come from an imperative background, can someone please explain it to me in terms of an imperative loop? Pseudo-code would be much appreciated. Thanks.
traverse is the same as fmap, except that it also allows you to run effects while you're rebuilding the data structure.
Take a look at the example from the Data.Traversable documentation.
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
The Functor instance of Tree would be:
instance Functor Tree where
fmap f Empty = Empty
fmap f (Leaf x) = Leaf (f x)
fmap f (Node l k r) = Node (fmap f l) (f k) (fmap f r)
It rebuilds the entire tree, applying f to every value.
instance Traversable Tree where
traverse f Empty = pure Empty
traverse f (Leaf x) = Leaf <$> f x
traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
The Traversable instance is almost the same, except the constructors are called in applicative style. This means that we can have (side-)effects while rebuilding the tree. Applicative is almost the same as monads, except that effects cannot depend on previous results. In this example it means that you could not do something different to the right branch of a node depending on the results of rebuilding the left branch for example.
For historical reasons, the Traversable class also contains a monadic version of traverse called mapM. For all intents and purposes mapM is the same as traverse - it exists as a separate method because Applicative only later became a superclass of Monad.
If you would implement this in an impure language, fmap would be the same as traverse, as there is no way to prevent side-effects. You can't implement it as a loop, as you have to traverse your data structure recursively. Here's a small example how I would do it in Javascript:
Node.prototype.traverse = function (f) {
return new Node(this.l.traverse(f), f(this.k), this.r.traverse(f));
}
Implementing it like this limits you to the effects that the language allows though. If you f.e. want non-determinism (which the list instance of Applicative models) and your language doesn't have it built-in, you're out of luck.
traverse turns things inside a Traversable into a Traversable of things "inside" an Applicative, given a function that makes Applicatives out of things.
Let's use Maybe as Applicative and list as Traversable. First we need the transformation function:
half x = if even x then Just (x `div` 2) else Nothing
So if a number is even, we get half of it (inside a Just), else we get Nothing. If everything goes "well", it looks like this:
traverse half [2,4..10]
--Just [1,2,3,4,5]
But...
traverse half [1..10]
-- Nothing
The reason is that the <*> function is used to build the result, and when one of the arguments is Nothing, we get Nothing back.
Another example:
rep x = replicate x x
This function generates a list of length x with the content x, e.g. rep 3 = [3,3,3]. What is the result of traverse rep [1..3]?
We get the partial results of [1], [2,2] and [3,3,3] using rep. Now the semantics of lists as Applicatives is "take all combinations", e.g. (+) <$> [10,20] <*> [3,4] is [13,14,23,24].
"All combinations" of [1] and [2,2] are two times [1,2]. All combinations of two times [1,2] and [3,3,3] are six times [1,2,3]. So we have:
traverse rep [1..3]
--[[1,2,3],[1,2,3],[1,2,3],[1,2,3],[1,2,3],[1,2,3]]
I think it's easiest to understand in terms of sequenceA, as traverse can be defined as
follows.
traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
traverse f = sequenceA . fmap f
sequenceA sequences together the elements of a structure from left to right, returning a structure with the same shape containing the results.
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
sequenceA = traverse id
You can also think of sequenceA as reversing the order of two functors, e.g. going from a list of actions into an action returning a list of results.
So traverse takes some structure, and applies f to transform every element in the structure into some applicative, it then sequences up the effects of those applicatives from left to right, returning a structure with the same shape containing the results.
You can also compare it to Foldable, which defines the related function traverse_.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
So you can see that the key difference between Foldable and Traversable is that the latter allows you to preserve the shape of the structure, whereas the former requires you to fold the result up into some other value.
A simple example of its usage is using a list as the traversable structure, and IO as the applicative:
λ> import Data.Traversable
λ> let qs = ["name", "quest", "favorite color"]
λ> traverse (\thing -> putStrLn ("What is your " ++ thing ++ "?") *> getLine) qs
What is your name?
Sir Lancelot
What is your quest?
to seek the holy grail
What is your favorite color?
blue
["Sir Lancelot","to seek the holy grail","blue"]
While this example is rather unexciting, things get more interesting when traverse is used on other types of containers, or using other applicatives.
It's kind of like fmap, except that you can run effects inside the mapper function, which also changes the result type.
Imagine a list of integers representing user IDs in a database: [1, 2, 3]. If you want to fmap these user IDs to usernames, you can't use a traditional fmap, because inside the function you need to access the database to read the usernames (which requires an effect -- in this case, using the IO monad).
The signature of traverse is:
traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
With traverse, you can do effects, therefore, your code for mapping user IDs to usernames looks like:
mapUserIDsToUsernames :: (Num -> IO String) -> [Num] -> IO [String]
mapUserIDsToUsernames fn ids = traverse fn ids
There's also a function called mapM:
mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b)
Any use of mapM can be replaced with traverse, but not the other way around. mapM only works for monads, whereas traverse is more generic.
If you just want to achieve an effect and not return any useful value, there are traverse_ and mapM_ versions of these functions, both of which ignore the return value from the function and are slightly faster.
traverse is the loop. Its implementation depends on the data structure to be traversed. That might be a list, tree, Maybe, Seq(uence), or anything that has a generic way of being traversed via something like a for-loop or recursive function. An array would have a for-loop, a list a while-loop, a tree either something recursive or the combination of a stack with a while-loop; but in functional languages you do not need these cumbersome loop commands: you combine the inner part of the loop (in the shape of a function) with the data structure in a more directly manner and less verbose.
With the Traversable typeclass, you could probably write your algorithms more independent and versatile. But my experience says, that Traversable is usually only used to simply glue algorithms to existing data structures. It is quite nice not to need to write similar functions for different datatypes qualified, too.

What is <*> called and what does it do? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Closed 5 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
How do these functions in the Applicative typeclass work?
(<*>) :: f (a -> b) -> f a -> f b
(*>) :: f a -> f b -> f b
(<*) :: f a -> f b -> f a
(That is, if they weren't operators, what might they be called?)
As a side note, if you could rename pure to something more friendly to non-mathematicians, what would you call it?
Sorry, I don't really know my math, so I'm curious how to pronounce the functions in the Applicative typeclass
Knowing your math, or not, is largely irrelevant here, I think. As you're probably aware, Haskell borrows a few bits of terminology from various fields of abstract math, most notably Category Theory, from whence we get functors and monads. The use of these terms in Haskell diverges somewhat from the formal mathematical definitions, but they're usually close enough to be good descriptive terms anyway.
The Applicative type class sits somewhere between Functor and Monad, so one would expect it to have a similar mathematical basis. The documentation for the Control.Applicative module begins with:
This module describes a structure intermediate between a functor and a monad: it provides pure expressions and sequencing, but no binding. (Technically, a strong lax monoidal functor.)
Hmm.
class (Functor f) => StrongLaxMonoidalFunctor f where
. . .
Not quite as catchy as Monad, I think.
What all this basically boils down to is that Applicative doesn't correspond to any concept that's particularly interesting mathematically, so there's no ready-made terms lying around that capture the way it's used in Haskell. So, set the math aside for now.
If we want to know what to call (<*>) it might help to know what it basically means.
So what's up with Applicative, anyway, and why do we call it that?
What Applicative amounts to in practice is a way to lift arbitrary functions into a Functor. Consider the combination of Maybe (arguably the simplest non-trivial Functor) and Bool (likewise the simplest non-trivial data type).
maybeNot :: Maybe Bool -> Maybe Bool
maybeNot = fmap not
The function fmap lets us lift not from working on Bool to working on Maybe Bool. But what if we want to lift (&&)?
maybeAnd' :: Maybe Bool -> Maybe (Bool -> Bool)
maybeAnd' = fmap (&&)
Well, that's not what we want at all! In fact, it's pretty much useless. We can try to be clever and sneak another Bool into Maybe through the back...
maybeAnd'' :: Maybe Bool -> Bool -> Maybe Bool
maybeAnd'' x y = fmap ($ y) (fmap (&&) x)
...but that's no good. For one thing, it's wrong. For another thing, it's ugly. We could keep trying, but it turns out that there's no way to lift a function of multiple arguments to work on an arbitrary Functor. Annoying!
On the other hand, we could do it easily if we used Maybe's Monad instance:
maybeAnd :: Maybe Bool -> Maybe Bool -> Maybe Bool
maybeAnd x y = do x' <- x
y' <- y
return (x' && y')
Now, that's a lot of hassle just to translate a simple function--which is why Control.Monad provides a function to do it automatically, liftM2. The 2 in its name refers to the fact that it works on functions of exactly two arguments; similar functions exist for 3, 4, and 5 argument functions. These functions are better, but not perfect, and specifying the number of arguments is ugly and clumsy.
Which brings us to the paper that introduced the Applicative type class. In it, the authors make essentially two observations:
Lifting multi-argument functions into a Functor is a very natural thing to do
Doing so doesn't require the full capabilities of a Monad
Normal function application is written by simple juxtaposition of terms, so to make "lifted application" as simple and natural as possible, the paper introduces infix operators to stand in for application, lifted into the Functor, and a type class to provide what's needed for that.
All of which brings us to the following point: (<*>) simply represents function application--so why pronounce it any differently than you do the whitespace "juxtaposition operator"?
But if that's not very satisfying, we can observe that the Control.Monad module also provides a function that does the same thing for monads:
ap :: (Monad m) => m (a -> b) -> m a -> m b
Where ap is, of course, short for "apply". Since any Monad can be Applicative, and ap needs only the subset of features present in the latter, we can perhaps say that if (<*>) weren't an operator, it should be called ap.
We can also approach things from the other direction. The Functor lifting operation is called fmap because it's a generalization of the map operation on lists. What sort of function on lists would work like (<*>)? There's what ap does on lists, of course, but that's not particularly useful on its own.
In fact, there's a perhaps more natural interpretation for lists. What comes to mind when you look at the following type signature?
listApply :: [a -> b] -> [a] -> [b]
There's something just so tempting about the idea of lining the lists up in parallel, applying each function in the first to the corresponding element of the second. Unfortunately for our old friend Monad, this simple operation violates the monad laws if the lists are of different lengths. But it makes a fine Applicative, in which case (<*>) becomes a way of stringing together a generalized version of zipWith, so perhaps we can imagine calling it fzipWith?
This zipping idea actually brings us full circle. Recall that math stuff earlier, about monoidal functors? As the name suggests, these are a way of combining the structure of monoids and functors, both of which are familiar Haskell type classes:
class Functor f where
fmap :: (a -> b) -> f a -> f b
class Monoid a where
mempty :: a
mappend :: a -> a -> a
What would these look like if you put them in a box together and shook it up a bit? From Functor we'll keep the idea of a structure independent of its type parameter, and from Monoid we'll keep the overall form of the functions:
class (Functor f) => MonoidalFunctor f where
mfEmpty :: f ?
mfAppend :: f ? -> f ? -> f ?
We don't want to assume that there's a way to create an truly "empty" Functor, and we can't conjure up a value of an arbitrary type, so we'll fix the type of mfEmpty as f ().
We also don't want to force mfAppend to need a consistent type parameter, so now we have this:
class (Functor f) => MonoidalFunctor f where
mfEmpty :: f ()
mfAppend :: f a -> f b -> f ?
What's the result type for mfAppend? We have two arbitrary types we know nothing about, so we don't have many options. The most sensible thing is to just keep both:
class (Functor f) => MonoidalFunctor f where
mfEmpty :: f ()
mfAppend :: f a -> f b -> f (a, b)
At which point mfAppend is now clearly a generalized version of zip on lists, and we can reconstruct Applicative easily:
mfPure x = fmap (\() -> x) mfEmpty
mfApply f x = fmap (\(f, x) -> f x) (mfAppend f x)
This also shows us that pure is related to the identity element of a Monoid, so other good names for it might be anything suggesting a unit value, a null operation, or such.
That was lengthy, so to summarize:
(<*>) is just a modified function application, so you can either read it as "ap" or "apply", or elide it entirely the way you would normal function application.
(<*>) also roughly generalizes zipWith on lists, so you can read it as "zip functors with", similarly to reading fmap as "map a functor with".
The first is closer to the intent of the Applicative type class--as the name suggests--so that's what I recommend.
In fact, I encourage liberal use, and non-pronunciation, of all lifted application operators:
(<$>), which lifts a single-argument function into a Functor
(<*>), which chains a multi-argument function through an Applicative
(=<<), which binds a function that enters a Monad onto an existing computation
All three are, at heart, just regular function application, spiced up a little bit.
Since I have no ambitions of improving on C. A. McCann's technical answer, I'll tackle the more fluffy one:
If you could rename pure to something more friendly to podunks like me, what would you call it?
As an alternative, especially since there is no end to the constant angst-and-betrayal-filled cried against the Monad version, called "return", I propose another name, which suggests its function in a way that can satisfy the most imperative of imperative programmers, and the most functional of...well, hopefully, everyone can complain the same about: inject.
Take a value. "Inject" it into the Functor, Applicative, Monad, or what-have-you. I vote for "inject", and I approved this message.
In brief:
<*> you can call it apply. So Maybe f <*> Maybe a can be pronounced as apply Maybe f over Maybe a.
You could rename pure to of, like many JavaScript libraries do. In JS you can create a Maybe with Maybe.of(a).
Also, Haskell's wiki has a page on pronunciation of language operators here
(<*>) -- Tie Fighter
(*>) -- Right Tie
(<*) -- Left Tie
pure -- also called "return"
Source: Haskell Programming from First Principles, by Chris Allen and Julie Moronuki

Resources