Making groovy #Log annotation safeguard calls inside closures - groovy

EDIT: GROOVY-6932 was logged and has now been closed - the problem is marked as fixed in Groovy v2.4.8.
I use the #Slf4j annotation to add a logging to my groovy classes.
I like it because of the AST transformation that wraps my log calls inside an "enablement" check, documented here
What I've found though, is that the guard clause doesn't work if the log method is called from within a closure.
Running on Groovy 2.2.0, this code logs only one message, but prints "called" twice.
#Grapes([
#Grab(group='org.slf4j', module='slf4j-api', version='1.7+'),
#Grab(group='ch.qos.logback', module='logback-classic', version='1.+')])
import groovy.util.logging.Slf4j
new TestCode().doSomethingThatLogs()
#Slf4j
class TestCode {
void doSomethingThatLogs(){
log.info createLogString(1)
log.trace createLogString(2)
Closure c = { log.trace createLogString(3) }
c()
}
String createLogString(int p){
println "called with $p"
return "blah: $p"
}
}
I've tried adding "this", "owner" and "delegate" specifiers to the log statement but same result.
The context I found this in was when I was trying to log some nodes using XmlUtil.serialize while parsing XML with XmlSlurper.
I'm working around the problem by wrapping the NodeChild object in a lightweight object with a toString() method that calls the XmlUtil class. That'll work fine and the overhead of the extra wrapper classes is not worth worrying about. I'm more interested in finding a simple way around this problem so that I can go back to not having to think about the cost of construction of logging messages when they aren't being logged anyway.
The question I'm asking: is there any way to have the logging level guard clause work properly within closures, instead of having to add the "log.traceEnabled" calls myself?

Just a quick thought. How will you know what log.traceEnabled will be on closure execution? See the modified example ...
#Grapes([
#Grab(group='org.slf4j', module='slf4j-api', version='1.7+'),
#Grab(group='ch.qos.logback', module='logback-classic', version='1.+')])
import groovy.util.logging.Slf4j
import jline.internal.Log
import org.slf4j.LoggerFactory;
import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
new TestCode().doSomethingThatLogs()
#Slf4j
class TestCode {
void doSomethingThatLogs(){
log.info createLogString(1)
log.trace createLogString(2)
Closure c = { log.trace createLogString(3) }
Logger root = (Logger)LoggerFactory.getLogger(Logger.ROOT_LOGGER_NAME);
root.setLevel(Level.TRACE);
c()
}
String createLogString(int p){
println "called with $p"
return "blah: $p"
}
}
Now at the time the closure is created log.traceEnabled is false, but when the closure is executed this had changed.
The output is:
called with 1
16:53:15.408 [main] INFO TestCode - blah: 1
called with 3
16:53:15.414 [main] TRACE TestCode - blah: 3
Note the second TRACE is still not printed :-)

Related

Groovy - Type check AST generated code

I have a Groovy application that can be custimized by a small Groovy DSL I wrote. On startup, the application loads several Groovy scripts, applies some AST transformations and finally executes whatever was specified in the scripts.
One of the AST transformations inserts a couple of lines of code into certain methods. That works fine and I can see the different behavior during runtime. However, sometimes the generated code is not correct. Although I load the scripts with the TypeChecked customizer in place, my generated code is never checked for soundness.
To show my problem, I constructed an extreme example. I have the following script:
int test = 10
println test // prints 10 when executed without AST
I load this script and insert a new line of code between the declaration of test and println:
public void visitBlockStatement(BlockStatement block) {
def assignment = (new AstBuilder().buildFromSpec {
binary {
variable "test"
token "="
constant 15
}
}).first()
def newStmt = new ExpressionStatement(assignment)
newStmt.setSourcePosition(block.statements[1])
block.statements.add(2, newStmt)
super.visitBlockStatement(block)
}
After applying this AST, the script prints 15. When I use AstNodeToScriptVisitor to print the Groovy code of the resulting script, I can see the new assignment added to the code.
However, if I change the value of the assignment to a String value:
// ...
def assignment = (new AstBuilder().buildFromSpec {
binary {
variable "test"
token "="
constant "some value"
}
}).first()
// ...
I get a GroovyCastExcpetion at runtime. Although the resulting script looks like this:
int test = 10
test = "some value" // no compile error but a GroovyCastException at runtime here. WHY?
println test
no error is raised by TypeChecked. I read in this mailing list, that you need to set the source position for generated code to be checked, but I'm doing that an it still doesn't work. Can anyone provide some feedback of what I am doing wrong? Thank you very much!
Update
I call the AST by attaching it to the GroovyShell like this:
def config = new CompilerConfiguration()
config.addCompilationCustomizers(
new ASTTransformationCustomizer(TypeChecked)
)
config.addCompilationCustomizers(
new ASTTransformationCustomizer(new AddAssignmentAST())
)
def shell = new GroovyShell(config)
shell.evaluate(new File("./path/to/file.groovy"))
The class for the AST itself looks like this:
#GroovyASTTransformation(phase = CompilePhase.CANONICALIZATION)
class AddAssignmentAST implements ASTTransformation {
#Override
public void visit(ASTNode[] nodes, SourceUnit source) {
def transformer = new AddAssignmentTransformer()
source.getAST().getStatementBlock().visit(transformer)
}
private class AddAssignmentTransformer extends CodeVisitorSupport {
#Override
public void visitBlockStatement(BlockStatement block) {
// already posted above
}
}
}
Since my Groovy script only consists of one block (for this small example) the visitBlockStatement method is called exactly once, adds the assignment (which I can verify since the output changes) but does not ever throw a compile-time error.

In which sequence does method call work in groovy?

I am using groovy 2.3.8
I am trying to figure out how method calls work in groovy. Specifically if we have a Java class hierarchy each having a metaClass like below
class A {
}
A.metaClass.hello = {
"hello superclass"
}
class B extends A {
}
B.metaClass.hello = {
"hello subclass"
}
If I use new B().hello() I get hello subclass. If I remove meta class of B then I get hello superclass.
Based on changing the above example I think groovy goes in the below sequence to find which method to call
method-in-subclass's-metaclass ?: subclass-metho ?: method-in-superclass's metaclass ?: method-in-superclass
So how does groovy lookup which method to call?
Well, the hierarchy is the expected object oriented programming method overloading, which is what you witnessed. What differs is the dispatching. Instead of starting with a method lookup in instance's class, it begins with the MOP (meta object protocol).
In layman's terms, because the MOP is programmable, so is the way methods are invoked :)
How it works
The following diagram from Groovy's documentation shows how methods are looked up.
What's not clear in the diagram is that there's an instance metaclass as well, and it comes before the class's metaclass.
Something that may help is looking at an object's or class's .metaClass.methods Methods added through inheritance, traits, metaclass, etc are listed in a flat list. The inheritance hierarchy is flattened. .metaClass.metaMethods on the other hand seems to contain methods added via the GDK. From the list I could not tell method precedence :(
Based on observation, the rule seems to be this: the last MetaClass standing wins.
class A { }
class B extends A { }
A.metaClass.hello = {
"hello superclass"
}
B.metaClass.hello = {
"hello subclass"
}
def b = new B()
assert b.hello() == "hello subclass"
b.metaClass = A.metaClass
assert b.hello() == "hello superclass"

Intercepting ClassCastException's in Groovy?

I have a lot of code using and expecting java.util.Date which I would like to migrate to org.joda.time.LocalDate. The problem is that most of the code is dynamically typed.
So I wonder if there is any groovy way to intercept the ClassCastException, do the conversion at runtime (instead of letting the exception bubble up) and log the operation (so I could fix the code).
Example:
import org.joda.time.LocalDate
def someMethod(date) {
println date.year()
}
// this call is ok
someMethod(new LocalDate())
// this call raises an exception
someMethod(new Date())
I don't want to modify the code above, like surrounding the second call with a try-catch and recalling with the right type. I wanted a way to do this globally.
Idea 1:
You can benefit from Groovy multimethods: you write a method overload for the JodaTime's and let the java.util.Date method be chosen when it is a dynamic method parameter:
def someMethod(date) {
println date.year()
}
My advice is to write in this class a overload of these methods doing the conversion:
def someMethod(LocalDate date) {
someMethod date.convertToJavaDate()
}
If you don't have access to that code, you can use metaprogramming.
Idea 2:
If you have a huge library, my guess is that you are better mixing JodaTime class. You will get a power benefit from duck typing. You will need to know which members from java.util.Date are called and reroute them to Joda's own methods:
class LocalDateMixin {
def year() { this[Calendar.YEAR] }
}
LocalDate.metaClass.mixin LocalDateMixin
You can also apply the metaprogramming using extension methods.

Best groovy closure idiom replacing java inner classes?

As new to groovy...
I'm trying to replace the java idiom for event listeners, filters, etc.
My working code in groovy is the following:
def find() {
ODB odb = ODBFactory.open(files.nodupes); // data nucleus object database
Objects<Prospect> src = odb.getObjects(new QProspect());
src.each { println it };
odb.close();
}
class QProspect extends SimpleNativeQuery {
public boolean match(Prospect p) {
if (p.url) {
return p.url.endsWith(".biz");
}
return false;
}
}
Now, this is far from what I'm used to in java, where the implementation of the Query interface is done right inside the odb.getObjects() method. If I where to code "java" I'd probably do something like the following, yet it's not working:
Objects<Prospect> src = odb.getObjects( {
boolean match(p) {
if (p.url) {
return p.url.endsWith(".biz");
}
return false;
}
} as SimpleNativeQuery);
Or better, I'd like it to be like this:
Objects<Prospect> src = odb.getObjects(
{ it.url.endsWith(".biz") } as SimpleNativeQuery
);
However, what groovy does it to associate the "match" method with the outer script context and fail me.
I find groovy... groovy anyways so I'll stick to learning more about it. Thanks.
What I should've asked was how do we do the "anonymous" class in groovy. Here's the java idiom:
void defReadAFile() {
File[] files = new File(".").listFiles(new FileFilter() {
public boolean accept(File file) {
return file.getPath().endsWith(".biz");
}
});
}
Can groovy be as concise with no additional class declaration?
I think it would have helped you to get answers if you'd abstracted the problem so that it didn't rely on the Neodatis DB interface -- that threw me for a loop, as I've never used it. What I've written below about it is based on a very cursory analysis.
For that matter, I've never used Groovy either, though I like what I've seen of it. But seeing as no one else has answered yet, you're stuck with me :-)
I think the problem (or at least part of it) may be that you're expecting too much of the SimpleNativeQuery class from Neodatis. It doesn't look like it even tries to filter the objects before it adds them to the returned collection. I think instead you want to use org.neodatis.odb.impl.core.query.criteria.CriteriaQuery. (Note the "impl" in the package path. This has me a bit nervous, as I don't know for sure if this class is meant to be used by callers. But I don't see any other classes in Neodatis that allow for query criteria to be specified.)
But instead of using CriteriaQuery directly, I think you'd rather wrap it inside of a Groovy class so that you can use it with closures. So, I think a Groovy version of your code with closures might look something like this:
// Create a class that wraps CriteriaQuery and allows you
// to pass closures. This is wordy too, but at least it's
// reusable.
import org.neodatis.odb.impl.core.query.criteria;
class GroovyCriteriaQuery extends CriteriaQuery {
private final c;
QProspect(theClosure) {
// I prefer to check for null here, instead of in match()
if (theClosure == null) {
throw new InvalidArgumentException("theClosure can't be null!");
}
c = theClosure;
}
public boolean match(AbstractObjectInfo aoi){
//!! I'm assuming here that 'aoi' can be used as the actual
//!! object instance (or at least as proxy for it.)
//!! (You may have to extract the actual object from aoi before calling c.)
return c(aoi);
}
}
// Now use the query class in some random code.
Objects<Prospect> src = odb.getObjects(
new GroovyCriteriaQuery(
{ it.url.endsWith(".biz") }
)
)
I hope this helps!
I believe your real question is "Can I use closures instead of anonymous classes when calling Java APIs that do not use closures". And the answer is a definite "yes". This:
Objects<Prospect> src = odb.getObjects(
{ it.url.endsWith(".biz") } as SimpleNativeQuery
);
should work. You write "However, what groovy does it to associate the "match" method with the outer script context and fail me". How exactly does it fail? It seems to me like you're having a simple technical problem to get the solution that is both "the groovy way" and exactly what you desire to work.
Yep, thanks y'all, it works.
I also found out why SimpleNativeQuery does not work (per Dan Breslau).
I tried the following and it worked wonderfully. So the idiom does work as expected.
new File("c:\\temp").listFiles({ it.path.endsWith(".html") } as FileFilter);
This next one does not work because of the neodatis interface. The interface does not enforce a match() method! It only mentions it in the documentation yet it's not present in the class file:
public class SimpleNativeQuery extends AbstactQuery{
}
Objects<Prospect> src = odb.getObjects(
{ it.url.endsWith(".biz") } as SimpleNativeQuery
);
In the above, as the SimpleNativeQuery does not have a match() method, it makes it impossible for the groovy compiler to identify which method in the SimpleNativeQuery should the closure be attached to; it then defaults to the outer groovy script.
It's my third day with groovy and I'm loving it.
Both books are great:
- Groovy Recipes (Scott Davis)
- Programming Groovy (Venkat Subramaniam)

How can I intercept execution of all the methods in a Java application using Groovy?

Is it possible to intercept all the methods called in a application? I'd like to do something with them, and then let them execute. I tried to override this behaviour in Object.metaClass.invokeMethod, but it doesn't seem to work.
Is this doable?
Have you looked at Groovy AOP? There's very little documentation, but it allows you to define pointcuts and advice in a conceptually similar way as for AspectJ. Have a look at the unit tests for some more examples
The example below will match all calls to all woven types and apply the advice before proceeding:
// aspect MyAspect
class MyAspect {
static aspect = {
//match all calls to all calls to all types in all packages
def pc = pcall("*.*.*")
//apply around advice to the matched calls
around(pc) { ctx ->
println ctx.args[0]
println ctx.args.length
return proceed(ctx.args)
}
}
}
// class T
class T {
def test() {
println "hello"
}
}
// Script starts here
weave MyAspect.class
new T().test()
unweave MyAspect.class
First of all, overriding Object.metaClass.invokeMethod doesn't work because when Groovy tries to resolve a method call for a type X, it checks the metaClass of X, but not the metaClass of its parent class(es). For example, the following code will print "method intValue intercepted"
Integer.metaClass.invokeMethod = {def name, def args ->
System.out.println("method $name intercepted")
}
6.intValue()
// Reset the metaClass
Integer.metaClass = null
But this code will not:
Object.metaClass.invokeMethod = {def name, def args ->
System.out.println("method $name intercepted")
}
6.intValue()
// Reset the metaClass
Object.metaClass = null
Your question was "Is it possible to intercept all the methods called in a application?", but could you be a bit more precise about whether you want to:
Intercept calls to Groovy methods, Java methods, or both
Intercept calls to only your Groovy/Java methods or also intercept calls to Groovy/Java library classes
For example, if you only want to intercept calls to your Groovy classes, you could change your classes to implement GroovyInterceptable. This ensures that invokeMethod() is invoked for every method called on those classes. If the nature of the interception (i.e. the stuff you want to do before/after invoking the called method) is the same for all classes, you could define invokeMethod() in a separate class and use #Mixin to apply it to all your classes.
Alternatively, if you also want to intercept calls to Java classes, you should check out the DelegatingMetaClass.

Resources