Could not deduce (b ~ a) - haskell

So I have the following code, I'm trying to write an abstract syntax tree for an interpreter, & I prefer not to jam everything in the same data type, so I was going to write a typeclass that had the basic behaviour (in this case AST).
{-# LANGUAGE ExistentialQuantification #-}
import qualified Data.Map as M
-- ...
data Expr = forall a. AST a => Expr a
type Env = [M.Map String Expr]
class AST a where
reduce :: AST b => a -> Env -> b
-- when i remove the line below, it compiles fine
reduce ast _ = ast
-- ...
When I remove the default implementation of reduce in the typeclass AST it compiles fine, but when ever I provide an implementation that returns it's self it complains. I get the following compiler error
src/Data/AbstractSyntaxTree.hs:13:18:
Could not deduce (b ~ a)
from the context (AST a)
bound by the class declaration for `AST'
at src/Data/AbstractSyntaxTree.hs:(11,1)-(13,20)
or from (AST b)
bound by the type signature for reduce :: AST b => a -> Env -> b
at src/Data/AbstractSyntaxTree.hs:12:13-36
`b' is a rigid type variable bound by
the type signature for reduce :: AST b => a -> Env -> b
at src/Data/AbstractSyntaxTree.hs:12:13
`a' is a rigid type variable bound by
the class declaration for `AST'
at src/Data/AbstractSyntaxTree.hs:11:11
In the expression: ast
In an equation for `reduce': reduce ast _ = ast
The behaviour of AST's reduce will evaluate an AST, and occasionally return a different type of AST, and sometimes the same type of AST.
Edit: Regarding data Expr = forall a. AST a => Expr a & GADTs
I originally went with data Expr = forall a. AST a => Expr a because I wanted to represent types like this.
(+ 2 true) -> Compound [Expr (Ref "+"), Expr 2, Expr true]
(+ a 2) -> Compound [Expr (Ref "+"), Expr (Ref "a"), Expr 2]
(eval (+ 2 2)) -> Compound [Expr (Ref "eval"),
Compound [
Expr (Ref "+"),
Expr 2,
Expr 2]]
((lambda (a b) (+ a b)) 2 2) -> Compound [Expr SomeLambdaAST, Expr 2, Expr 2]
Since I'm generating ASTs from text I feel it would be a burden to represent a strictly typed ASTs in a GADT, although I do see where they could be useful in case like DSLs in Haskell.
But since I'm generating the AST from text (which could contain some of the examples above), it might be a bit hard to predict what AST I'll end up with. I don't want to start juggling between Eithers & Maybes. That is what I ended up doing last time & it was a mess, & I gave up trying to attempt this in Haskell.
But again I'm not the most experienced Haskell programmer so maybe I'm looking at this the wrong way, maybe I can implement an AST with so more rigours typing, so I'll have a look and see if I can come up with GADTs, but I have my doubts & I have a feeling that it might end the way it did last time.
Ultimately I'm just trying to learn Haskell at the moment with a fun finish able project, so I don't mind if my first Haskell project isn't really idiomatic Haskell. Getting something working is a higher priority just so I can make my way around the language and have something to show for it.
Update:
I've taken #cdk's & #bheklilr advice and ditched the existential type, although I've gone with a much simpler type, as opposed to utilising GADTs (also suggested by #cdk's & #bheklilr). It could possibly be a stronger type but again I'm just trying to get familiar with Haskell, so I gave up up after a few hours & went with a simple data type like so :P
import qualified Data.Map as M
type Environment = [M.Map String AST]
data AST
= Compound [AST]
| FNum Double
| Func Function
| Err String
| Ref String
data Function
= NativeFn ([AST] -> AST)
| LangFn [String] AST
-- previously called reduce
eval :: Environment -> AST -> AST
eval env ast = case ast of
Ref ref -> case (lookup ref env ) of
Just ast -> ast
Nothing -> Err ("Not in scope `" ++ ref ++ "'")
Compound elements -> case elements of
[] -> Err "You tried to invoke `()'"
function : args -> case (eval env function) of
Func fn -> invoke env fn args
other -> Err $ "Cannot invoke " ++ (show other)
_ -> ast
-- invoke & lookup are defined else where
Although I will still probably look at GADTs as they seem to be pretty interesting & have lead me to some interesting reading material regarding implementing abstract syntax trees in haskell.

What part of the error message are you having difficulties understanding? I think it's quite clear.
The type of reduce is
reduce :: AST b => a -> Env -> b
The first argument has type a and GHC expects reduce to return something of type b, which may be entirely different from a. GHC is correct to complain that you've tried to return a value of a when it expects b.
The "existential quantification with type class" is (as noted by bheklilr) an anti-pattern. A better approach would be to create an Algebraic Data Type for AST:
data AST a
now reduce becomes a simple function:
reduce :: Env -> AST a -> AST b
if you want reduce to be able to return a different type of AST, you could use Either
reduce :: Env -> AST a -> Either (AST a) (AST b)
but I don't think this is what you really want. My advice is to take a look at the GADT style of creating ASTs and re-evaluate your approach.

You are interpreting this type signature incorrectly (in a way that is common to OO programmers):
reduce :: AST b => a -> Env -> b
This does not mean that reduce can choose any type it likes (that is a member of AST) and return a value of that type. If it did, your implementation would be valid. Rather, it means that for any type b the caller likes (that is a member of AST), reduce must be able to return a value in that type. b could well be the same as a sometimes, but it's the caller's choice, not the choice of reduce.
If your implementation returns a value of type a, then this can only be true if b is always equal to a, which is what the compiler is on about when it reports failing to prove that b ~ a.
Haskell does not have subtypes. Type variables are not supertypes of all the concrete types that could instantiate them, as you might be used to using Object or abstract interface types in OO languages. Rather type variables are parameters; any implementation which claims to have a parametric type must work regardless of what types are chosen for the parameters.
If you want to use a design where reduce can return a value in whatever type of AST it feels like (rather than whatever type of AST is asked of it), then you need to use your Expr box again, since Expr is not parameterized by the type of AST it contains, but can still contain any AST:
reduce :: a -> Env -> Expr
reduce ast _ = Expr ast
Now reduce can work regardless of the types chosen for its type parameters, since there's only a. Consumers of the returned Expr will have no way of constraining the type inside the Expr, so they'll have to be written to work regardless of what that type is.

Your default implementation doesn't compile, because it has the wrong definition.
reduce :: AST b => a -> b -> Env -> b
reduce ast _ = ast
Now ast has the type a and reduce function returns type b but according to your implementation you return ast which is of type a but the compiler expects b.
Even something like this will work:
reduce :: AST b => a -> b -> Env -> b
reduce _ ast _ = ast

Related

Subset algebraic data type, or type-level set, in Haskell

Suppose you have a large number of types and a large number of functions that each return "subsets" of these types.
Let's use a small example to make the situation more explicit. Here's a simple algebraic data type:
data T = A | B | C
and there are two functions f, g that return a T
f :: T
g :: T
For the situation at hand, assume it is important that f can only return a A or B and g can only return a B or C.
I would like to encode this in the type system. Here are a few reasons/circumstances why this might be desirable:
Let the functions f and g have a more informative signature than just ::T
Enforce that implementations of f and g do not accidentally return a forbidden type that users of the implementation then accidentally use
Allow code reuse, e.g. when helper functions are involved that only operate on subsets of type T
Avoid boilerplate code (see below)
Make refactoring (much!) easier
One way to do this is to split up the algebraic datatype and wrap the individual types as needed:
data A = A
data B = B
data C = C
data Retf = RetfA A | RetfB B
data Retg = RetgB B | RetgC C
f :: Retf
g :: Retg
This works, and is easy to understand, but carries a lot of boilerplate for frequent unwrapping of the return types Retf and Retg.
I don't see polymorphism being of any help, here.
So, probably, this is a case for dependent types. It's not really a type-level list, rather a type-level set, but I've never seen a type-level set.
The goal, in the end, is to encode the domain knowledge via the types, so that compile-time checks are available, without having excessive boilerplate. (The boilerplate gets really annoying when there are lots of types and lots of functions.)
Define an auxiliary sum type (to be used as a data kind) where each branch corresponds to a version of your main type:
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE DataKinds #-}
import Data.Kind
import Data.Void
import GHC.TypeLits
data Version = AllEnabled | SomeDisabled
Then define a type family that maps the version and the constructor name (given as a type-level Symbol) to the type () if that branch is allowed, and to the empty type Void if it's disallowed.
type Enabled :: Version -> Symbol -> Type
type family Enabled v ctor where
Enabled SomeDisabled "C" = Void
Enabled _ _ = ()
Then define your type as follows:
type T :: Version -> Type
data T v = A !(Enabled v "A")
| B !(Enabled v "B")
| C !(Enabled v "C")
(The strictness annotations are there to help the exhaustivity checker.)
Typeclass instances can be derived, but separately for each version:
deriving instance Show (T AllEnabled)
deriving instance Eq (T AllEnabled)
deriving instance Show (T SomeDisabled)
deriving instance Eq (T SomeDisabled)
Here's an example of use:
noC :: T SomeDisabled
noC = A ()
main :: IO ()
main = print $ case noC of
A _ -> "A"
B _ -> "B"
-- this doesn't give a warning with -Wincomplete-patterns
This solution makes pattern-matching and construction more cumbersome, because those () are always there.
A variation is to have one type family per branch (as in Trees that Grow) instead of a two-parameter type family.
I tried to achieve something like this in the past, but without much success -- I was not too satisfied with my solution.
Still, one can use GADTs to encode this constraint:
data TagA = IsA | NotA
data TagC = IsC | NotC
data T (ta :: TagA) (tc :: TagC) where
A :: T 'IsA 'NotC
B :: T 'NotA 'NotC
C :: T 'NotA 'IsC
-- existential wrappers
data TnotC where TnotC :: T ta 'NotC -> TnotC
data TnotA where TnotA :: T 'NotA tc -> TnotA
f :: TnotC
g :: TnotA
This however gets boring fast, because of the wrapping/unwrapping of the exponentials. Consumer functions are more convenient since we can write
giveMeNotAnA :: T 'NotA tc -> Int
to require anything but an A. Producer functions instead need to use existentials.
In a type with many constructors, it also gets inconvenient since we have to use a GADT with many tags/parameters. Maybe this can be streamlined with some clever typeclass machinery.
Giving each individual value its own type scales extremely badly, and is quite unnecessarily fine-grained.
What you probably want is just restrict the types by some property on their values. In e.g. Coq, that would be a subset type:
Inductive T: Type :=
| A
| B
| C.
Definition Retf: Type := { x: T | x<>C }.
Definition Retg: Type := { x: T | x<>A }.
Well, Haskell has no way of expressing such value constraints, but that doesn't stop you from creating types that conceptually fulfill them. Just use newtypes:
newtype Retf = Retf { getRetf :: T }
mkRetf :: T -> Maybe Retf
mkRetf C = Nothing
mkRetf x = Retf x
newtype Retg = Retg { getRetg :: T }
mkRetg :: ...
Then in the implementation of f, you match for the final result of mkRetf and raise an error if it's Nothing. That way, an implementation mistake that makes it give a C will unfortunately not give a compilation error, but at least a runtime error from within the function that's actually at fault, rather than somewhere further down the line.
An alternative that might be ideal for you is Liquid Haskell, which does support subset types. I can't say too much about it, but it's supposedly pretty good (and will in new GHC versions have direct support).

Heterogeneous Data.Map in Haskell

Is it possible to do heterogeneous Data.Map in Haskell with GADT instead of Dynamic? I tried to model heterogeneous collection as laid out in this answer:
{-# LANGUAGE GADTs #-}
class Contract a where
toString :: a -> String
data Encapsulated where
Encapsulate :: Contract a => a -> Encapsulated
getTypedObject :: Encapsulated -> a
getTypedObject (Encapsulate x) = x
The idea being that Encapsulated could be used to store different objects of TypeClass a, and then extracted at run-time for specific type.
I get error about type of x not matching Contract a. Perhaps I need to specify some kind of class constraints to tell GHC that type of x in Encapsulate x is same as a in Contract a?
T.hs:10:34:
Couldn't match expected type ‘a’ with actual type ‘a1’
‘a1’ is a rigid type variable bound by
a pattern with constructor
Encapsulate :: forall a. Contract a => a -> Encapsulated,
in an equation for ‘getTypedObject’
at T.hs:10:17
‘a’ is a rigid type variable bound by
the type signature for getTypedObject :: Encapsulated -> a
at T.hs:9:19
Relevant bindings include
x :: a1 (bound at T.hs:10:29)
getTypedObject :: Encapsulated -> a (bound at T.hs:10:1)
In the expression: x
In an equation for ‘getTypedObject’:
getTypedObject (Encapsulate x) = x
I am trying this approach because I have JSON objects of different types, and depending on the type that is decoded at run-time over the wire, we want to retrieve appropriate type-specific builder from Map (loaded at run-time IO in main from configuration files, and passed to the function) and pass it decoded JSON data of the same type.
Dynamic library would work here. However, I am interested in finding out if there are other possible approaches such as GADTs or datafamilies.
your problem is that you push the a out again (which will not work) - what you can do is using the contract internally like this:
useEncapsulateContract :: Encapsulated -> String
useEncapsulateContract (Encapsulate x) = toString x
basically the compiler is telling you everything you need to know: inside you have a forall a. Contract a (so basically a constraint a to be a Contract)
On getTypedObject :: Encapsulated -> a you don't have this constraint - you are telling the compiler: "look this works for every a I'll demand"
To get it there you would have to parametrize Encapsulated to Encapsulated a which you obviously don't want.
The second version (the internal I gave) works because you have the constraint on the data-constructor and so you can use it there
to extent this a little:
this
getTypedObject :: Contract a => Encapsulated -> a
getTypedObject (Encapsulate x) = x
wouldn't work either as now the you would have Contract a but still it could be two different types which just share this class.
And to give hints to the compiler that both should be the same you would have to parametrize Encapsulate again ....
right now by doing this:
Encapsulate :: Contract a => a -> Encapsulated
you erase that information
#Carsten answer is obviously right, but my two cents that helped me understand that before.
When you write:
getTypedObject :: Encapsulated -> a
What you are "saying" is:
getTypedObject is a function that can take a value of the Encapsulated type and its result can be used whenever any type whatsoever is needed.
You can't obviously satisfy that, and the compiler won't allow you to try. You can only use the knowledge about the value inside of Encapsulated to bring out something meaningful based on the Contract. In other words, if the Contract wasn't there, there'd be no way for you to do anything meaningful with that value.
The concept here can be succintly described as type erasure and is also present in other languages, C++ being one I know of. Hence the value is in erasing every information about the type except the things you want to preserve via the contract they satisfy. The downside is that getting the original types back requires runtime inspection.
As a bonus, here's how a dynamic approach might work:
{-# LANGUAGE GADTs #-}
import Unsafe.Coerce
data Encapsulated where
Encapsulate :: Show a => a -> Encapsulated
getTypedObject :: Encapsulated -> a
getTypedObject (Encapsulate x) = unsafeCoerce x
printString :: String -> IO ()
printString = print
x = Encapsulate "xyz"
y = getTypedObject x
main = printString y
But it's very easy to see how that could break, right? :)

How are variable names chosen in type signatures inferred by GHC?

When I play with checking types of functions in Haskell with :t, for example like those in my previous question, I tend to get results such as:
Eq a => a -> [a] -> Bool
(Ord a, Num a, Ord a1, Num a1) => a -> a1 -> a
(Num t2, Num t1, Num t, Enum t2, Enum t1, Enum t) => [(t, t1, t2)]
It seems that this is not such a trivial question - how does the Haskell interpreter pick literals to symbolize typeclasses? When would it choose a rather than t? When would it choose a1 rather than b? Is it important from the programmer's point of view?
The names of the type variables aren't significant. The type:
Eq element => element -> [element] -> Bool
Is exactly the same as:
Eq a => a -> [a] -> Bool
Some names are simply easier to read/remember.
Now, how can an inferencer choose the best names for types?
Disclaimer: I'm absolutely not a GHC developer. However I'm working on a type-inferencer for Haskell in my bachelor thesis.
During inferencing the names chosen for the variables aren't probably that readable. In fact they are almost surely something along the lines of _N with N a number or aN with N a number.
This is due to the fact that you often have to "refresh" type variables in order to complete inferencing, so you need a fast way to create new names. And using numbered variables is pretty straightforward for this purpose.
The names displayed when inference is completed can be "pretty printed". The inferencer can rename the variables to use a, b, c and so on instead of _1, _2 etc.
The trick is that most operations have explicit type signatures. Some definitions require to quantify some type variables (class, data and instance for example).
All these names that the user explicitly provides can be used to display the type in a better way.
When inferencing you can somehow keep track of where the fresh type variables came from, in order to be able to rename them with something more sensible when displaying them to the user.
An other option is to refresh variables by adding a number to them. For example a fresh type of return could be Monad m0 => a0 -> m0 a0 (Here we know to use m and a simply because the class definition for Monad uses those names). When inferencing is finished you can get rid of the numbers and obtain the pretty names.
In general the inferencer will try to use names that were explicitly provided through signatures. If such a name was already used it might decide to add a number instead of using a different name (e.g. use b1 instead of c if b was already bound).
There are probably some other ad hoc rules. For example the fact that tuple elements have like t, t1, t2, t3 etc. is probably something done with a custom rule. In fact t doesn't appear in the signature for (,,) for example.
How does GHCi pick names for type variables? explains how many of these variable names come about. As Ganesh Sittampalam pointed out in a comment, something strange seems to be happening with arithmetic sequences. Both the Haskell 98 report and the Haskell 2010 report indicate that
[e1..] = enumFrom e1
GHCi, however, gives the following:
Prelude> :t [undefined..]
[undefined..] :: Enum t => [t]
Prelude> :t enumFrom undefined
enumFrom undefined :: Enum a => [a]
This makes it clear that the weird behavior has nothing to do with the Enum class itself, but rather comes in from some stage in translating the syntactic sequence to the enumFrom form. I wondered if maybe GHC wasn't really using that translation, but it really is:
{-# LANGUAGE NoMonomorphismRestriction #-}
module X (aoeu,htns) where
aoeu = [undefined..]
htns = enumFrom undefined
compiled using ghc -ddump-simpl enumlit.hs gives
X.htns :: forall a_aiD. GHC.Enum.Enum a_aiD => [a_aiD]
[GblId, Arity=1]
X.htns =
\ (# a_aiG) ($dEnum_aiH :: GHC.Enum.Enum a_aiG) ->
GHC.Enum.enumFrom # a_aiG $dEnum_aiH (GHC.Err.undefined # a_aiG)
X.aoeu :: forall t_aiS. GHC.Enum.Enum t_aiS => [t_aiS]
[GblId, Arity=1]
X.aoeu =
\ (# t_aiV) ($dEnum_aiW :: GHC.Enum.Enum t_aiV) ->
GHC.Enum.enumFrom # t_aiV $dEnum_aiW (GHC.Err.undefined # t_aiV)
so the only difference between these two representations is the assigned type variable name. I don't know enough about how GHC works to know where that t comes from, but at least I've narrowed it down!
Ørjan Johansen has noted in a comment that something similar seems to happen with function definitions and lambda abstractions.
Prelude> :t \x -> x
\x -> x :: t -> t
but
Prelude> :t map (\x->x) $ undefined
map (\x->x) $ undefined :: [b]
In the latter case, the type b comes from an explicit type signature given to map.
Are you familiar with the concepts of alpha equivalence and alpha substitution? This captures the notion that, for example, both of the following are completely equivalent and interconvertible (in certain circumstances) even though they differ:
\x -> (x, x)
\y -> (y, y)
The same concept can be extended to the level of types and type variables (see "System F" for further reading). Haskell in fact has a notion of "lambdas at the type level" for binding type variables, but it's hard to see because they're implicit by default. However, you can make them explicit by using the ExplicitForAll extension, and play around with explicitly binding your type variables:
ghci> :set -XExplicitForAll
ghci> let f x = x; f :: forall a. a -> a
In the second line, I use the forall keyword to introduce a new type variable, which is then used in a type.
In other words, it doesn't matter whether you choose a or t in your example, as long as the type expressions satisfy alpha-equivalence. Choosing type variable names so as to maximize human convenience is an entirely different topic, and probably far more complicated!

Programmatic type annotations in Haskell

When metaprogramming, it may be useful (or necessary) to pass along to Haskell's type system information about types that's known to your program but not inferable in Hindley-Milner. Is there a library (or language extension, etc) that provides facilities for doing this—that is, programmatic type annotations—in Haskell?
Consider a situation where you're working with a heterogenous list (implemented using the Data.Dynamic library or existential quantification, say) and you want to filter the list down to a bog-standard, homogeneously typed Haskell list. You can write a function like
import Data.Dynamic
import Data.Typeable
dynListToList :: (Typeable a) => [Dynamic] -> [a]
dynListToList = (map fromJust) . (filter isJust) . (map fromDynamic)
and call it with a manual type annotation. For example,
foo :: [Int]
foo = dynListToList [ toDyn (1 :: Int)
, toDyn (2 :: Int)
, toDyn ("foo" :: String) ]
Here foo is the list [1, 2] :: [Int]; that works fine and you're back on solid ground where Haskell's type system can do its thing.
Now imagine you want to do much the same thing but (a) at the time you write the code you don't know what the type of the list produced by a call to dynListToList needs to be, yet (b) your program does contain the information necessary to figure this out, only (c) it's not in a form accessible to the type system.
For example, say you've randomly selected an item from your heterogenous list and you want to filter the list down by that type. Using the type-checking facilities supplied by Data.Typeable, your program has all the information it needs to do this, but as far as I can tell—this is the essence of the question—there's no way to pass it along to the type system. Here's some pseudo-Haskell that shows what I mean:
import Data.Dynamic
import Data.Typeable
randList :: (Typeable a) => [Dynamic] -> IO [a]
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (dynListToList dl :: [<tr>]) -- This thing should have the type
-- represented by `tr`
(Assume randItem selects a random item from a list.)
Without a type annotation on the argument of return, the compiler will tell you that it has an "ambiguous type" and ask you to provide one. But you can't provide a manual type annotation because the type is not known at write-time (and can vary); the type is known at run-time, however—albeit in a form the type system can't use (here, the type needed is represented by the value tr, a TypeRep—see Data.Typeable for details).
The pseudo-code :: [<tr>] is the magic I want to happen. Is there any way to provide the type system with type information programatically; that is, with type information contained in a value in your program?
Basically I'm looking for a function with (pseudo-) type ??? -> TypeRep -> a that takes a value of a type unknown to Haskell's type system and a TypeRep and says, "Trust me, compiler, I know what I'm doing. This thing has the value represented by this TypeRep." (Note that this is not what unsafeCoerce does.)
Or is there something completely different that gets me the same place? For example, I can imagine a language extension that permits assignment to type variables, like a souped-up version of the extension enabling scoped type variables.
(If this is impossible or highly impractical,—e.g., it requires packing a complete GHCi-like interpreter into the executable—please try to explain why.)
No, you can't do this. The long and short of it is that you're trying to write a dependently-typed function, and Haskell isn't a dependently typed language; you can't lift your TypeRep value to a true type, and so there's no way to write down the type of your desired function. To explain this in a little more detail, I'm first going to show why the way you've phrased the type of randList doesn't really make sense. Then, I'm going to explain why you can't do what you want. Finally, I'll briefly mention a couple thoughts on what to actually do.
Existentials
Your type signature for randList can't mean what you want it to mean. Remembering that all type variables in Haskell are universally quantified, it reads
randList :: forall a. Typeable a => [Dynamic] -> IO [a]
Thus, I'm entitled to call it as, say, randList dyns :: IO [Int] anywhere I want; I must be able to provide a return value for all a, not simply for some a. Thinking of this as a game, it's one where the caller can pick a, not the function itself. What you want to say (this isn't valid Haskell syntax, although you can translate it into valid Haskell by using an existential data type1) is something more like
randList :: [Dynamic] -> (exists a. Typeable a => IO [a])
This promises that the elements of the list are of some type a, which is an instance of Typeable, but not necessarily any such type. But even with this, you'll have two problems. First, even if you could construct such a list, what could you do with it? And second, it turns out that you can't even construct it in the first place.
Since all that you know about the elements of the existential list is that they're instances of Typeable, what can you do with them? Looking at the documentation, we see that there are only two functions2 which take instances of Typeable:
typeOf :: Typeable a => a -> TypeRep, from the type class itself (indeed, the only method therein); and
cast :: (Typeable a, Typeable b) => a -> Maybe b (which is implemented with unsafeCoerce, and couldn't be written otherwise).
Thus, all that you know about the type of the elements in the list is that you can call typeOf and cast on them. Since we'll never be able to usefully do anything else with them, our existential might just as well be (again, not valid Haskell)
randList :: [Dynamic] -> IO [(TypeRep, forall b. Typeable b => Maybe b)]
This is what we get if we apply typeOf and cast to every element of our list, store the results, and throw away the now-useless existentially typed original value. Clearly, the TypeRep part of this list isn't useful. And the second half of the list isn't either. Since we're back to a universally-quantified type, the caller of randList is once again entitled to request that they get a Maybe Int, a Maybe Bool, or a Maybe b for any (typeable) b of their choosing. (In fact, they have slightly more power than before, since they can instantiate different elements of the list to different types.) But they can't figure out what type they're converting from unless they already know it—you've still lost the type information you were trying to keep.
And even setting aside the fact that they're not useful, you simply can't construct the desired existential type here. The error arises when you try to return the existentially-typed list (return $ dynListToList dl). At what specific type are you calling dynListToList? Recall that dynListToList :: forall a. Typeable a => [Dynamic] -> [a]; thus, randList is responsible for picking which a dynListToList is going to use. But it doesn't know which a to pick; again, that's the source of the question! So the type that you're trying to return is underspecified, and thus ambiguous.3
Dependent types
OK, so what would make this existential useful (and possible)? Well, we actually have slightly more information: not only do we know there's some a, we have its TypeRep. So maybe we can package that up:
randList :: [Dynamic] -> (exists a. Typeable a => IO (TypeRep,[a]))
This isn't quite good enough, though; the TypeRep and the [a] aren't linked at all. And that's exactly what you're trying to express: some way to link the TypeRep and the a.
Basically, your goal is to write something like
toType :: TypeRep -> *
Here, * is the kind of all types; if you haven't seen kinds before, they are to types what types are to values. * classifies types, * -> * classifies one-argument type constructors, etc. (For instance, Int :: *, Maybe :: * -> *, Either :: * -> * -> *, and Maybe Int :: *.)
With this, you could write (once again, this code isn't valid Haskell; in fact, it really bears only a passing resemblance to Haskell, as there's no way you could write it or anything like it within Haskell's type system):
randList :: [Dynamic] -> (exists (tr :: TypeRep).
Typeable (toType tr) => IO (tr, [toType tr]))
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (tr, dynListToList dl :: [toType tr])
-- In fact, in an ideal world, the `:: [toType tr]` signature would be
-- inferable.
Now, you're promising the right thing: not that there exists some type which classifies the elements of the list, but that there exists some TypeRep such that its corresponding type classifies the elements of the list. If only you could do this, you would be set. But writing toType :: TypeRep -> * is completely impossible in Haskell: doing this requires a dependently-typed language, since toType tr is a type which depends on a value.
What does this mean? In Haskell, it's perfectly acceptable for values to depend on other values; this is what a function is. The value head "abc", for instance, depends on the value "abc". Similarly, we have type constructors, so it's acceptable for types to depend on other types; consider Maybe Int, and how it depends on Int. We can even have values which depend on types! Consider id :: a -> a. This is really a family of functions: id_Int :: Int -> Int, id_Bool :: Bool -> Bool, etc. Which one we have depends on the type of a. (So really, id = \(a :: *) (x :: a) -> x; although we can't write this in Haskell, there are languages where we can.)
Crucially, however, we can never have a type that depends on a value. We might want such a thing: imagine Vec 7 Int, the type of length-7 lists of integers. Here, Vec :: Nat -> * -> *: a type whose first argument must be a value of type Nat. But we can't write this sort of thing in Haskell.4 Languages which support this are called dependently-typed (and will let us write id as we did above); examples include Coq and Agda. (Such languages often double as proof assistants, and are generally used for research work as opposed to writing actual code. Dependent types are hard, and making them useful for everyday programming is an active area of research.)
Thus, in Haskell, we can check everything about our types first, throw away all that information, and then compile something that refers only to values. In fact, this is exactly what GHC does; since we can never check types at run-time in Haskell, GHC erases all the types at compile-time without changing the program's run-time behavior. This is why unsafeCoerce is easy to implement (operationally) and completely unsafe: at run-time, it's a no-op, but it lies to the type system. Consequently, something like toType is completely impossible to implement in the Haskell type system.
In fact, as you noticed, you can't even write down the desired type and use unsafeCoerce. For some problems, you can get away with this; we can write down the type for the function, but only implement it with by cheating. That's exactly how fromDynamic works. But as we saw above, there's not even a good type to give to this problem from within Haskell. The imaginary toType function allows you to give the program a type, but you can't even write down toType's type!
What now?
So, you can't do this. What should you do? My guess is that your overall architecture isn't ideal for Haskell, although I haven't seen it; Typeable and Dynamic don't actually show up that much in Haskell programs. (Perhaps you're "speaking Haskell with a Python accent", as they say.) If you only have a finite set of data types to deal with, you might be able to bundle things into a plain old algebraic data type instead:
data MyType = MTInt Int | MTBool Bool | MTString String
Then you can write isMTInt, and just use filter isMTInt, or filter (isSameMTAs randomMT).
Although I don't know what it is, there's probably a way you could unsafeCoerce your way through this problem. But frankly, that's not a good idea unless you really, really, really, really, really, really know what you're doing. And even then, it's probably not. If you need unsafeCoerce, you'll know, it won't just be a convenience thing.
I really agree with Daniel Wagner's comment: you're probably going to want to rethink your approach from scratch. Again, though, since I haven't seen your architecture, I can't say what that will mean. Maybe there's another Stack Overflow question in there, if you can distill out a concrete difficulty.
1 That looks like the following:
{-# LANGUAGE ExistentialQuantification #-}
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
However, since none of this code compiles anyway, I think writing it out with exists is clearer.
2 Technically, there are some other functions which look relevant, such as toDyn :: Typeable a => a -> Dynamic and fromDyn :: Typeable a => Dynamic -> a -> a. However, Dynamic is more or less an existential wrapper around Typeables, relying on typeOf and TypeReps to know when to unsafeCoerce (GHC uses some implementation-specific types and unsafeCoerce, but you could do it this way, with the possible exception of dynApply/dynApp), so toDyn doesn't do anything new. And fromDyn doesn't really expect its argument of type a; it's just a wrapper around cast. These functions, and the other similar ones, don't provide any extra power that isn't available with just typeOf and cast. (For instance, going back to a Dynamic isn't very useful for your problem!)
3 To see the error in action, you can try to compile the following complete Haskell program:
{-# LANGUAGE ExistentialQuantification #-}
import Data.Dynamic
import Data.Typeable
import Data.Maybe
randItem :: [a] -> IO a
randItem = return . head -- Good enough for a short and non-compiling example
dynListToList :: Typeable a => [Dynamic] -> [a]
dynListToList = mapMaybe fromDynamic
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
randList dl = do
tr <- randItem $ map dynTypeRep dl
return . TypeableList $ dynListToList dl -- Error! Ambiguous type variable.
Sure enough, if you try to compile this, you get the error:
SO12273982.hs:17:27:
Ambiguous type variable `a0' in the constraint:
(Typeable a0) arising from a use of `dynListToList'
Probable fix: add a type signature that fixes these type variable(s)
In the second argument of `($)', namely `dynListToList dl'
In a stmt of a 'do' block: return . TypeableList $ dynListToList dl
In the expression:
do { tr <- randItem $ map dynTypeRep dl;
return . TypeableList $ dynListToList dl }
But as is the entire point of the question, you can't "add a type signature that fixes these type variable(s)", because you don't know what type you want.
4 Mostly. GHC 7.4 has support for lifting types to kinds and for kind polymorphism; see section 7.8, "Kind polymorphism and promotion", in the GHC 7.4 user manual. This doesn't make Haskell dependently typed—something like TypeRep -> * example is still out5—but you will be able to write Vec by using very expressive types that look like values.
5 Technically, you could now write down something which looks like it has the desired type: type family ToType :: TypeRep -> *. However, this takes a type of the promoted kind TypeRep, and not a value of the type TypeRep; and besides, you still wouldn't be able to implement it. (At least I don't think so, and I can't see how you would—but I am not an expert in this.) But at this point, we're pretty far afield.
What you're observing is that the type TypeRep doesn't actually carry any type-level information along with it; only term-level information. This is a shame, but we can do better when we know all the type constructors we care about. For example, suppose we only care about Ints, lists, and function types.
{-# LANGUAGE GADTs, TypeOperators #-}
import Control.Monad
data a :=: b where Refl :: a :=: a
data Dynamic where Dynamic :: TypeRep a -> a -> Dynamic
data TypeRep a where
Int :: TypeRep Int
List :: TypeRep a -> TypeRep [a]
Arrow :: TypeRep a -> TypeRep b -> TypeRep (a -> b)
class Typeable a where typeOf :: TypeRep a
instance Typeable Int where typeOf = Int
instance Typeable a => Typeable [a] where typeOf = List typeOf
instance (Typeable a, Typeable b) => Typeable (a -> b) where
typeOf = Arrow typeOf typeOf
congArrow :: from :=: from' -> to :=: to' -> (from -> to) :=: (from' -> to')
congArrow Refl Refl = Refl
congList :: a :=: b -> [a] :=: [b]
congList Refl = Refl
eq :: TypeRep a -> TypeRep b -> Maybe (a :=: b)
eq Int Int = Just Refl
eq (Arrow from to) (Arrow from' to') = liftM2 congArrow (eq from from') (eq to to')
eq (List t) (List t') = liftM congList (eq t t')
eq _ _ = Nothing
eqTypeable :: (Typeable a, Typeable b) => Maybe (a :=: b)
eqTypeable = eq typeOf typeOf
toDynamic :: Typeable a => a -> Dynamic
toDynamic a = Dynamic typeOf a
-- look ma, no unsafeCoerce!
fromDynamic_ :: TypeRep a -> Dynamic -> Maybe a
fromDynamic_ rep (Dynamic rep' a) = case eq rep rep' of
Just Refl -> Just a
Nothing -> Nothing
fromDynamic :: Typeable a => Dynamic -> Maybe a
fromDynamic = fromDynamic_ typeOf
All of the above is pretty standard. For more on the design strategy, you'll want to read about GADTs and singleton types. Now, the function you want to write follows; the type is going to look a bit daft, but bear with me.
-- extract only the elements of the list whose type match the head
firstOnly :: [Dynamic] -> Dynamic
firstOnly [] = Dynamic (List Int) []
firstOnly (Dynamic rep v:xs) = Dynamic (List rep) (v:go xs) where
go [] = []
go (Dynamic rep' v:xs) = case eq rep rep' of
Just Refl -> v : go xs
Nothing -> go xs
Here we've picked a random element (I rolled a die, and it came up 1) and extracted only the elements that have a matching type from the list of dynamic values. Now, we could have done the same thing with regular boring old Dynamic from the standard libraries; however, what we couldn't have done is used the TypeRep in a meaningful way. I now demonstrate that we can do so: we'll pattern match on the TypeRep, and then use the enclosed value at the specific type the TypeRep tells us it is.
use :: Dynamic -> [Int]
use (Dynamic (List (Arrow Int Int)) fs) = zipWith ($) fs [1..]
use (Dynamic (List Int) vs) = vs
use (Dynamic Int v) = [v]
use (Dynamic (Arrow (List Int) (List (List Int))) f) = concat (f [0..5])
use _ = []
Note that on the right-hand sides of these equations, we are using the wrapped value at different, concrete types; the pattern match on the TypeRep is actually introducing type-level information.
You want a function that chooses a different type of values to return based on runtime data. Okay, great. But the whole purpose of a type is to tell you what operations can be performed on a value. When you don't know what type will be returned from a function, what do you do with the values it returns? What operations can you perform on them? There are two options:
You want to read the type, and perform some behaviour based on which type it is. In this case you can only cater for a finite list of types known in advance, essentially by testing "is it this type? then we do this operation...". This is easily possible in the current Dynamic framework: just return the Dynamic objects, using dynTypeRep to filter them, and leave the application of fromDynamic to whoever wants to consume your result. Moreover, it could well be possible without Dynamic, if you don't mind setting the finite list of types in your producer code, rather than your consumer code: just use an ADT with a constructor for each type, data Thing = Thing1 Int | Thing2 String | Thing3 (Thing,Thing). This latter option is by far the best if it is possible.
You want to perform some operation that works across a family of types, potentially some of which you don't know about yet, e.g. by using type class operations. This is trickier, and it's tricky conceptually too, because your program is not allowed to change behaviour based on whether or not some type class instance exists – it's an important property of the type class system that the introduction of a new instance can either make a program type check or stop it from type checking, but it can't change the behaviour of a program. Hence you can't throw an error if your input list contains inappropriate types, so I'm really not sure that there's anything you can do that doesn't essentially involve falling back to the first solution at some point.

GADT for polymorphic list

I am parsing a few statements of the form
v1 = expression1
v2 = expression2
...
I am using the State Monad and my state should be a pair of (String, Expr a), I really insist on having the expressions typed. I tried to implement the state as [PPair] where I define PPair by the GADT:
data PPair where
PPair :: (String, Expr a) -> PPair
Once this line passed the compiler, I felt that I am doing something really really wrong. I suppressed the thought and went on coding. When I came to writing the code that would extract the value of the variable from the State, I realized the problem:
evalVar k ((PPair (kk, v)):s) = if k == kk then v else evalVar k s
I get:
Inferred type is less polymorphic than expected
which is quite expected. How do I work around this problem? I know I can solve it by breaking up the type over all candidate types a, but is there no neater way?
The problem is that there's no possible type evalVar can have:
evalVar :: String -> [PPair] -> Expr ?
You can't say ? is a, because then you're claiming your return value works for any value of a. What you can do, however, is wrap up "an Expr with an unknown type" into its own data type:
data SomeExpr where
SomeExpr :: Expr a -> SomeExpr
or, equivalently, with RankNTypes rather than GADTs:
data SomeExpr = forall a. SomeExpr (Expr a)
This is called existential quantification. You can then rewrite PPair using SomeExpr:
data PPair = PPair String SomeExpr
and evalVar works out:
evalVar k (PPair kk v : xs)
| k == kk = v
| otherwise = evalVar k xs
(Of course, you could just use a [(String,SomeExpr)] instead, and the standard lookup function.)
In general, though, trying to keep expressions completely typed at the Haskell level like this is probably an exercise in futility; a dependently-typed language like Agda would have no trouble with it, but you'll probably end up running into something Haskell can't do quite quickly, or weakening things to the point where the compile-time safety you wanted out of the effort is lost.
That's not to say it never works, of course; typed languages were one of the motivating examples for GADTs. But it might not work as well as you want, and you'll probably run into trouble if your language has any non-trivial type system features like polymorphism.
If you really want to keep the typing, then I'd use a richer structure than strings to name variables; have a Var a type that explicitly carries the type, like this:
data PPair where
PPair :: Var a -> Expr a -> PPair
evalVar :: Var a -> [PPair] -> Maybe (Expr a)
A good way to achieve something similar to this would be to use the vault package; you can construct Keys from ST and IO, and use Vault as a heterogeneous container. It's basically like a Map where the keys hold the type of the corresponding value. Specifically, I'd suggest defining Var a as Key (Expr a) and using a Vault instead of your [PPair]. (Full disclosure: I've worked on the vault package.)
Of course, you'll still have to map the variable names to the Key values, but you could create all the Keys right after parsing, and carry those around instead of the strings. (It'd be a bit of work to go from a Var to its corresponding variable name with this strategy, though; you can do it with a list of existentials, but the solution is too long to put in this answer.)
(By the way, you can have multiple arguments to a data constructor with GADTs, just like regular types: data PPair where PPair :: String -> Expr a -> PPair.)

Resources