My CouchDB view indexes are being created slower than I would like. Writing the documents is not such a problem but the users can edit them offline and then bulk update, which seems to slow things right down.
This answer helped but I was just wondering is it better to separate out various views into different design documents (eg1) or to store them all in one (eg2).
Eg. 1
_design/posts/_view/id
_design/comments/_view/id
_design/tags/_view/id
Eg.2
_design/webresources/_view/_id?key="posts"
_design/webresources/_view/_id?key="comments"
_design/webresources/_view/_id?key="tags"
*This example is just for illustration purposes. I am only concerned with the time it takes to build the indexes.
You will gain better performance if you read often. Couchdb views are updated and build at read time. So you can can read the view every time the document updates to keep it hot*.
Or maybe listen to the changes feed and keep a track of documents updated. Once they reach a certain threshold value read a view.
Another option is use stale parameter.
If stale=ok is set, CouchDB will not refresh the view even if it is stale, the benefit is a an improved query latency. If stale=update_after is set, CouchDB will update the view after the stale result is returned
Every design document is a separate erlang process. So separating your views across different design documents will cause them to be built concurrently. However each view will still be built in a blocking manner. That is the two views across different design documents can start updating at the same time but the time it takes to update the individual views will be the same as if they were in the same design document.
*You don't necessarily have to care about the result. Our goal here is to trick couchdb to update the view. So you can fire off a request in a separate async process and be done with it.
Related
Application: The purposed application has an tcp server able to handle several connections with the robots.
I choosed to work with database/ no files, so i'm using a sqlite db to save information about the robots and their full history, models of robots, tasks, etc...
The robots send us several data like odometry, tasks information, and so on...
I create a thread for every new robot's connection to handle the messages and update the informations of the robots on the database. Now lets start talk about my problems:
The application got to show information about the robots in realtime, and I was thinking about using QSqlQueryModel, set the right query and the show it on a QTableView but then I got to some problems/ solutions to think about:
Problem number 1: There are informations to show on the QTableView that are not on the database: I have the current consumption on the database and the actual charge on the database in capacity, but I want to show also on my table the remaining battery time, how can I add that column with the right behaviour (math implemented) in my TableView.
Problem number 2: I will be receiving messages each second for each robot, so, updating the db and the the gui(loading the query) may not be the best solution when I have a big number of robots connected? Is it better to update the table, and only update the db each minute or something like this? If I use this method I cant work with the table with the QSqlQueryModel to update the tables, so what is the approach that you recommend me to use?
Thanks
SancheZ
I have run into similar problem before; my conclusion was QSqlQueryModel is not the best option for display purposes. You may want some processing on query results, or you may want to create, remove, change display data based on the result for a fancier gui. I think best is to implement your own delegates and override the view related methods - setData, setEditor
This way you have the control over all your columns and direct union of raw data and its display equivalent (i.e. EditData, UserData).
Yes, it is better if you update your view real-time and run a batch execute at lower frequency to update the big data. In general app is the middle layer and db is a bottom layer for data monitoring, unless you use db in memory shared cache.
EDIT: One important point, you cannot run updates in multiple threads (you can, but sqlite blocks the thread until it gets the lock) so it is best to run update from a single thread
for my application I implemented a logical seperation of my documents with a type attribute. I have several views. I implemented for every view a dedicated change feed which gets triggerd if a certain document was added or updated. At the moment the performance is quite well, do I have to expect a slow down in the future?
Well, every filter function associated with your feed is executed once for each new (or updated) document. So, you may expect a slowdown with a large number of concurrent inserts and updates. It's not something related to the database dimension, but to the number of concurrent updates.
I'm playing around with the map and reduce through temporary views, but at 1,000,000+ documents it is a bit slow, rather than creating a separate dataset for testing, is it possible to only use a subset of data in the temporary view?
A map-reduce view is more like "CREATE INDEX" than it is like "SELECT * FROM".
In other words, when you do a map-reduce view, CouchDB will crunch through every document.
However, for testing, one thing you can do is make a normal view (not temporary). Just develop your work in a temporary design document, _design/my_experiments.
Save your map-reduce view code and then query the view with the ?stale=update_after option. You will probably get no results, however stale=update_after will tell CouchDB to begin processing the view. Now try your query again. You will see the results that have been processed so far. Now try a third time. You will see even more data reflected.
Roughly speaking, views process documents in the same order that a _changes query returns them to you: basically the first update is processed first, and then in order and the most recent change is processed last.
Is it possible to delete all documents in a couchdb database, except design documents, without creating a specific view for that?
My first approach has been to access the _all_docs standard view, and discard those documents starting with _design. This works but, for large databases, is too slow, since the documents need to be requested from the database (in order to get the document revision) one at a time.
If this is the only valid approach, I think it is much more practical to delete the complete database, and create it from scratch inserting the design documents again.
I can think of a couple of ideas.
Use _all_docs
You do not need to fetch all the documents, only the ID and revisions. By default, that is all that _all_docs returns. You can make a pretty big request in a batch (10k or 100k docs at a time should be fine).
Replicate then delete
You could use an _all_docs query to get the IDs of all design documents.
GET /db/_all_docs?startkey="_design/"&endkey="_design0"
Then replicate them somewhere temporary.
POST /_replicator
{ "source":"db", "target":"db_ddocs", "create_target":true
, "user_ctx": {"roles":["_admin"]}
, "doc_ids": ["_design/ddoc_1", "_design/ddoc_2", "etc..."]
}
Now you can just delete the original database and replicate the temporary one back by swapping the "source" and "target" values.
Deleting vs "deleting"
Note, these are really apples vs. oranges techniques. By deleting a database, you are wiping out the edit history of all its documents. In other words, you cannot replicate those deletion events to any other database. When you "delete" a document in CouchDB, it stores a record of that deletion. If you replicate that database, those deletions will be reflected in the target. (CouchDB stores "tombstones" indicating the document ID, its revision history, and its deleted state.)
That may or may not be important to you. The first idea is probably considered more "correct" however I can see the value of the second. You can visualize the entire program to accomplish this in your head. It's only a few queries and you're done. No looping through _all_docs batches, no headache. Your specific situation will probably make it obvious which is better.
Install couchapp, pull down the design doc to your hard disk, delete the db in futon, push the design doc back up to your recreated database. =)
You could write a shell script that goes through the list of all documents and deletes them all one by one except design docs. Apparently couch-batch can do that. Note that you don't need to fetch the whole docs to do that, just the id and revision.
Other than that, I think filtered replication (or the replication proposed by JasonSmith) is your best bet.
Can CouchDB handle thousands of separate databases on the same machine?
Imagine you have a collection of BankTransactions. There are many thousands of records. (EDIT: not actually storing transactions--just think of a very large number of very small, frequently updating records. It's basically a join table from SQL-land.)
Each day you want a summary view of transactions that occurred only at your local bank branch. If all the records are in a single database, regenerating the view will process all of the transactions from all of the branches. This is a much bigger chunk of work, and unnecessary for the user who cares only about his particular subset of documents.
This makes it seem like each bank branch should be partitioned into its own database, in order for the views to be generated in smaller chunks, and independently of each other. But I've never heard of anyone doing this, and it seems like an anti-pattern (e.g. duplicating the same design document across thousands of different databases).
Is there a different way I should be modeling this problem? (Should the partitioning happen between separate machines, not separate databases on the same machine?) If not, can CouchDB handle the thousands of databases it will take to keep the partitions small?
(Thanks!)
[Warning, I'm assuming you're running this in some sort of production environment. Just go with the short answer if this is for a school or pet project.]
The short answer is "yes".
The longer answer is that there are some things you need to watch out for...
You're going to be playing whack-a-mole with a lot of system settings like max file descriptors.
You'll also be playing whack-a-mole with erlang vm settings.
CouchDB has a "max open databases" option. Increase this or you're going to have pending requests piling up.
It's going to be a PITA to aggregate multiple databases to generate reports. You can do it by polling each database's _changes feed, modifying the data, and then throwing it back into a central/aggregating database. The tooling to make this easier is just not there yet in CouchDB's API. Almost, but not quite.
However, the biggest problem that you're going to run into if you try to do this is that CouchDB does not horizontally scale [well] by itself. If you add more CouchDB servers they're all going to have duplicates of the data. Sure, your max open dbs count will scale linearly with each node added, but other things like view build time won't (ex., they'll all need to do their own view builds).
Whereas I've seen thousands of open databases on a BigCouch cluster. Anecdotally that's because of dynamo clustering: more nodes doing different things in parallel, versus walled off CouchDB servers replicating to one another.
Cheers.
I know this question is old, but wanted to note that now with more recent versions of CouchDB (3.0+), partitioned databases are supported, which addresses this situation.
So you can have a single database for transactions, and partition them by bank branch. You can then query all transactions as you would before, or query just for those from a specific branch, and only the shards where that branch's data is stored will be accessed.
Multiple databases are possible, but for most cases I think the aggregate database will actually give better performance to your branches. Keep in mind that you're only optimizing when a document is updated into the view; each document will only be parsed once per view.
For end-of-day polling in an aggregate database, the first branch will cause 100% of the new docs to be processed, and pay 100% of the delay. All other branches will pay 0%. So most branches benefit. For end-of-day polling in separate databases, all branches pay a portion of the penalty proportional to their volume, so most come out slightly behind.
For frequent view updates throughout the day, active branches prefer the aggregate and low-volume branches prefer separate. If one branch in 10 adds 99% of the documents, most of the update work will be done on other branch's polls, so 9 out of 10 prefer separate dbs.
If this latency matters, and assuming couch has some clock cycles going unused, you could write a 3-line loop/view/sleep shell script that updates some documents before any user is waiting.
I would add that having a large number of databases creates issues around compaction and replication. Not only do things like continuous replication need to be triggered on a per-database basis (meaning you will have to write custom logic to loop over all the databases), but they also spawn replication daemons per database. This can quickly become prohibitive.