How do I print a column matrix? - haskell

I am trying to print out the contents of a column matrix in Haskell:
data Vector n e where
Nil :: Vector Zero e
(:>) :: e -> Vector n e -> Vector (Succ n) e
infixr :>
data Matrix r c e where
ColMatrix :: Vector r e -> Matrix r One e
(:|) :: Vector r e -> Matrix r c e -> Matrix r (Succ c) e
infixr :|
instance Show e => Show (Matrix r c e) where
show (ColMatrix v) = -- ...
show (v :| m) = -- ...
I'm not sure how to implement this, though. The logical progression is to go
1 4 7
2 5 8
3 6 9
but printing to the terminal doesn't make this especially easy.
How do I implement this instance of Show for a ColMatrix?

You might want to consider something like Brent Yorgey's boxes package, whose maintenance I recently took over. Use text to put each number in a box, use // to build the columns, and then use <+> to put the columns together into a matrix. Then render the result. You can use cols to compare the widths of the columns before pasting them together so you can pad them all to the same width, if you like.
Please note that Show is not for pretty printing. It is intended for human-readable serialization to a Haskell-like format.

Here is a solution that uses ordinary lists and list library functions.
toList :: Vector n e -> [e]
toList Nil = []
toList (a :> v) = a : toList v
instance Show e => Show (Matrix r c e) where
show (ColMatrix v) = concat $ intersperse " " (map show (toList v))
show (v :| m) = show (ColMatrix v) ++ "\n" ++ show m

Related

Haskell - Transform a list of unions into a tuple of lists

I'm looking for a way to transform a list into an n-tuple with one list for each of the n constructors in a disjoint union. The standard library defines a similar function specifically for Eithers:
partitionEithers :: [Either a b] -> ([a], [b])
I'm looking for techniques for solving the generalized problem with the following requirements:
convenient to write
as little boilerplate as possible
processes the list in a single pass
datatype-generics, metaprogramming, existing libraries etc are all permitted
Example
Here is an example specification with two proposed solutions:
partitionSum :: [MySum] -> ([A], [B], [C], [D])
data MySum
= CaseA A
| CaseB B
| CaseC C
| CaseD D
data A = A deriving Show
data B = B deriving Show
data C = C deriving Show
data D = D deriving Show
-- expect "([A,A],[B,B,B],[],[D])"
test :: IO ()
test = print . partitionSum $
[CaseD D, CaseB B, CaseA A, CaseA A, CaseB B, CaseB B]
First attempt: n list comprehensions that traverse the list n times.
partitionSum1 :: [MySum] -> ([A], [B], [C], [D])
partitionSum1 xs =
( [a | CaseA a <- xs]
, [b | CaseB b <- xs]
, [c | CaseC c <- xs]
, [d | CaseD d <- xs]
)
Second attempt: a single traversal of the input list. I have to manually thread the state through the fold which makes the solution a little repetitive and annoying to write.
partitionSum2 :: [MySum] -> ([A], [B], [C], [D])
partitionSum2 = foldr f ([], [], [], [])
where
f x (as, bs, cs, ds) =
case x of
CaseA a -> (a : as, bs, cs, ds)
CaseB b -> (as, b : bs, cs, ds)
CaseC c -> (as, bs, c : cs, ds)
CaseD d -> (as, bs, cs, d : ds)
In addition to the Representable answer:
A thing that came to me from seeing foldr f ([], [], [], []) was to define a monoid where the nil case is mempty
{-# DerivingVia #-}
..
import GHC.Generics (Generically(..), ..)
type Classify :: Type
type Classify = C [A] [B] [C] [D]
deriving
stock Generic
deriving (Semigroup, Monoid)
via Generically Classify
-- mempty = C [] [] [] []
-- C as bs cs ds <> C as1 bs1 cd1 ds1 = C (as ++ as1) (bs ++ bs1) (cs ++ cs1) (ds ++ ds1)
Generically will be exported from GHC.Generics in the future. It defines Classify as a semigroup and monoid through generic pointwise lifting.
With this all you need is a classifier function, that classifies a MySum into Classify and you can define partition in terms of foldMap
classify :: MySum -> Classify
classify = \case
SumA a -> C [a] [] [] []
SumB b -> C [] [b] [] []
SumC c -> C [] [] [c] []
SumD d -> C [] [] [] [d]
partition :: Foldable f => f MySum -> Classify
partition = foldMap classify
As your function is a transformation from sums to products, there's a fairly simple implementation using generics-sop. This is a library which enhances GHCs generics with more specialized types that make induction on algebriac type (i.e. sums of products) simpler.
First, a prelude:
{-# LANGUAGE DeriveGeneric, StandaloneDeriving #-}
import Generics.SOP hiding ((:.:))
import qualified GHC.Generics as GHC
import GHC.Generics ((:.:)(..))
partitionSum :: (Generic t) => [t] -> NP ([] :.: NP I) (Code t)
This is the method you want to write. Let's examine its type.
the single argument is a list of some generic type. Pretty straightforward. Note here that Generic is the one from generics-sop, not from GHC
the returned value is an n-ary product (n-tuple) where each element is a list composed with NP I (itself an n-ary product, because generally, algebraic datatype constructors might have more than one field)
Code t is the sum-of-products type representation of t. It's a list of lists of type. e.g. Code (Either a b) ~ '[ '[a], '[b] ]. The generic value representation of t is SOP I (Code t) - a sum of of products over the "code".
To implement this, we can convert each t to its generic representation, then fold over the resulting list:
partitionSum = partitionSumGeneric . map from
partitionSumGeneric :: SListI xss => [SOP I xss] -> NP ([] :.: NP I) xss
partitionSumGeneric = foldr (\(SOP x) -> classifyGeneric x) emptyClassifier
partitionSumGeneric is pretty much the same as partitionSum, but operates on generic representations of values.
Now for the interesting part. Let's begin with the base case of our fold. This should contain empty lists in every position. generics-sop provides a handy mechanism for generating a product type with a uniform value in each position:
emptyClassifier :: SListI xs => NP ([] :.: NP I) xs
emptyClassifier = hpure (Comp1 [])
The recursive case is as follows: if the value has tag at index k, add that value to the list at index k in the accumulator. We can do this with simultaneous recursion on both the sum type (it's generic now, so a value of type NS (NP I) xs - a sum of products) and on the accumulator.
classifyGeneric :: NS (NP I) xss -> NP ([] :.: NP I) xss -> NP ([] :.: NP I) xss
classifyGeneric (Z x) (Comp1 l :* ls) = (Comp1 $ x : l) :* ls
classifyGeneric (S xs) ( l :* ls) = l :* classifyGeneric xs ls
Your example with some added data to make it a bit more interesting:
data MySum
= CaseA A
| CaseB B
| CaseC C
| CaseD D
-- All that's needed for `partitionSum' to work with your type
deriving instance GHC.Generic MySum
instance Generic MySum
data A = A Int deriving Show
data B = B String Int deriving Show
data C = C deriving Show
data D = D Integer deriving Show
test = partitionSum $
[CaseD $ D 0, CaseB $ B "x" 1, CaseA $ A 2, CaseA $ A 3, CaseB $ B "y" 4, CaseB $ B "z" 5]
the result is:
Comp1 {unComp1 = [I (A 2) :* Nil,I (A 3) :* Nil]} :* Comp1 {unComp1 = [I (B "x" 1) :* Nil,I (B "y" 4) :* Nil,I (B "z" 5) :* Nil]} :* Comp1 {unComp1 = []} :* Comp1 {unComp1 = [I (D 0) :* Nil]} :*Nil

Map-like container with intervals as keys and zip-like combining operation

I'm looking for a Haskell container type like Data.Map that uses intervals as keys, where the left-most and right-most keys may also be unbounded intervals, but are otherwise non-overlapping. Additionally, the container should support a function similar to zipWith that allows to merge two containers into a new one, using the intersection of both key sets as the new key set and the argument function for a pointwise combination of both value sets.
There already are several packages that provide interval-based maps. I've had a look at IntervalMap, fingertree and SegmentTree, but none of these packages seem to provide the desired combination function. They all seem to use intervals for the intersection functions, that are equal in both maps, while I need a version that breaks intervals down into smaller ones if necessary.
The container should basically provide an efficient and storable mapping for key/value series of the form Ord k => k -> Maybe a, i.e. functions only defined on specific intervals or having larger intervals mapping to the same value.
Here is a small example to demonstrate the issue:
... -4 -3 -2 -1 0 1 2 3 4 ... -- key set
-----------------------------------
... -1 -1 -1 -1 0 1 1 1 1 ... -- series corresponding to signum
... 5 5 5 5 5 5 5 5 5 ... -- series corresponding to const 5
The first series could be efficiently expressed by a mapping [-infinity, -1] -> -1; [0, 0] -> 0; [1, infinity] -> 1 and the second one by [-infinity, infinity] -> 5. Now applying a combination function with (*) as arument function should give a new series
... -4 -3 -2 -1 0 1 2 3 4 ... -- key set
-----------------------------------
... -5 -5 -5 -5 0 5 5 5 5 ... -- combined series
The crucial point here—and all of the afore-mentioned packages don't seem to be able to do that—is that, when combining the key sets for these two series, you have to take the different values also into account. Both series span the full range of [-infinity, infinity] but it's necessary to break it into three parts for the final series.
There are also packages for working with intervals, e.g. the range package, which also provides an intersection operation on lists of intervals. However, I didn't found a way to use that in combination with one of the Map variants because it collapses adjacents intervals when doing calculations with them.
NB: Such a container is somewhat similar to a ZipList that extends to both sides, which is why I think it should also be possible to define a lawful Applicative instance for it, where <*> corresponds to the above-mentioned combining function.
To cut a long story short, is there already a package that provides such a container? Or is there an easy way to use the existing packages to build one?
The best suggestion from the comments above seems to be the step-function package, as suggested by B. Mehta. I haven't tried that package yet, but it looks like building a wrapper around that SF type is what I was looking for.
Meanwhile, I implemented another solution which I'd like to share. The code for the combining function (combineAscListWith in the code below) is a bit clumsy as it's more general than for just getting the intersection of both maps, so I'll sketch the idea:
First we need an Interval type with an Ord instance which stores pairs of Val a values which can either be -infinity, some value x or +infinity. Form that we can build an IntervalMap which is just a normal Map that maps these intervals to the final values.
When combining two such IntervalMaps by intersection, we first convert the maps into lists of key/value pairs. Next we traverse both lists in parallel to zip both lists into another one which corresponds to the final intersection map. There are two main cases when combining the list elements:
Both left-most intervals start at the same value. In that case we found an interval that actually overlaps/intersects. We clip the longer interval to the shorter one, and use the values associated with the two intervals to get the result value, which now—together with the shorter interval—goes into the result list. The rest of the longer interval goes back to the input lists.
One of the intervals starts at a smaller value than the other, which means we found a part of the two series that do not overlap. So for the intersection, all of the non-overlapping part of the interval (or even the whole interval) can be discared. The rest (if any) goes back to the input list.
For completeness, here's the full example code. Again, the code is rather clumsy; a step-function-based implementation would certainly be more elegant.
import Control.Applicative
import Data.List
import qualified Data.Map as Map
data Val a = NegInf | Val a | Inf deriving (Show, Read, Eq, Ord)
instance Enum a => Enum (Val a) where
succ v = case v of
NegInf -> NegInf
Val x -> Val $ succ x
Inf -> Inf
pred v = case v of
NegInf -> NegInf
Val x -> Val $ pred x
Inf -> Inf
toEnum = Val . toEnum
fromEnum (Val x) = fromEnum x
data Interval a = Interval { lowerBound :: Val a, upperBound :: Val a } deriving (Show, Read, Eq)
instance Ord a => Ord (Interval a) where
compare ia ib = let (a, a') = (lowerBound ia, upperBound ia)
(b, b') = (lowerBound ib, upperBound ib)
in case () of
_ | a' < b -> LT
_ | b' < a -> GT
_ | a == b && a' == b' -> EQ
_ -> error "Ord.Interval.compare: undefined for overlapping intervals"
newtype IntervalMap i a = IntervalMap { unIntervalMap :: Map.Map (Interval i) a }
deriving (Show, Read)
instance Functor (IntervalMap i) where
fmap f = IntervalMap . fmap f . unIntervalMap
instance (Ord i, Enum i) => Applicative (IntervalMap i) where
pure = IntervalMap . Map.singleton (Interval NegInf Inf)
(<*>) = intersectionWith ($)
intersectionWith :: (Ord i, Enum i) => (a -> b -> c)
-> IntervalMap i a -> IntervalMap i b -> IntervalMap i c
intersectionWith f = combineWith (liftA2 f)
combineWith :: (Ord i, Enum i) => (Maybe a -> Maybe b -> Maybe c)
-> IntervalMap i a -> IntervalMap i b -> IntervalMap i c
combineWith f (IntervalMap mpA) (IntervalMap mpB) =
let cs = combineAscListWith f (Map.toAscList mpA) (Map.toAscList mpB)
in IntervalMap $ Map.fromList [ (i, v) | (i, Just v) <- cs ]
combineAscListWith :: (Ord i, Enum i) => (Maybe a -> Maybe b -> c)
-> [(Interval i, a)] -> [(Interval i, b)] -> [(Interval i, c)]
combineAscListWith f as bs = case (as, bs) of
([], _) -> map (\(i, v) -> (i, f Nothing (Just v))) bs
(_, []) -> map (\(i, v) -> (i, f (Just v) Nothing)) as
((Interval a a', va) : as', (Interval b b', vb) : bs')
| a == b -> case () of
_ | a' == b' -> (Interval a a', f (Just va) (Just vb)) : combineAscListWith f as' bs'
_ | a' < b' -> (Interval a a', f (Just va) (Just vb)) : combineAscListWith f as' ((Interval (succ a') b', vb) : bs')
_ | a' > b' -> (Interval a b', f (Just va) (Just vb)) : combineAscListWith f ((Interval (succ b') a', va) : as') bs'
| a < b -> case () of
_ | a' < b -> ((Interval a a', f (Just va) Nothing)) :
(if succ a' == b then id else ((Interval (succ a') (pred b), f Nothing Nothing) :)) (combineAscListWith f as' bs)
_ | True -> (Interval a (pred b), f (Just va) Nothing) : combineAscListWith f ((Interval b a', va) : as') bs
| a > b -> case () of
_ | b' < a -> ((Interval b b', f Nothing (Just vb))) :
(if succ b' == a then id else ((Interval (succ b') (pred a), f Nothing Nothing) :)) (combineAscListWith f as bs')
_ | True -> (Interval b (pred a), f Nothing (Just vb)) : combineAscListWith f as ((Interval a b', vb) : bs')
showIntervalMap :: (Show i, Show a, Eq i) => IntervalMap i a -> String
showIntervalMap = intercalate "; " . map (\(i, v) -> showInterval i ++ " -> " ++ show v)
. Map.toAscList . unIntervalMap
where
showInterval (Interval (Val a) (Val b)) | a == b = "[" ++ show a ++ "]"
showInterval (Interval a b) = "[" ++ showVal a ++ " .. " ++ showVal b ++ "]"
showVal NegInf = "-inf"
showVal (Val x) = show x
showVal Inf = "inf"
main :: IO ()
main = do
let signumMap = IntervalMap $ Map.fromList [(Interval NegInf (Val $ -1), -1),
(Interval (Val 0) (Val 0), 0), (Interval (Val 1) Inf, 1)]
putStrLn $ showIntervalMap $ (*) <$> signumMap <*> pure 5

Haskell Function for checking if element is in Tree, returning Depth

I am currently doing an assigment for a class in which I have to implement a function which checks if an element is in a tree.
It is supposed to return Nothing when the element is not in the tree and Just (depth at which it was found) when it is.
An example:
sample1
##1
#3 2
###7 5 6 4
- contains 6 sample1 returns Just 2
- contains 1 sample1 returns Just 0
- contains 2 sample1 returns Just 1
- contains 8 sample1 returns Nothing
Here is what we are given:
Heap functional data structure:
module Fdata.Heap where
-- A signature for min-heaps
data Heap e t = Heap {
empty :: t e,
insert :: e -> t e -> t e,
findMin :: t e -> Maybe e,
deleteMin :: t e -> Maybe (t e),
merge :: t e -> t e -> t e,
contains :: e -> t e -> Maybe Int
}
An implementation of self-adjusting heaps:
import Fdata.Heap
import Fdata.Tree
-- An implementation of self-adjusting heaps
heap :: (Eq e, Ord e) => Heap e Tree
heap = Heap {
empty = Empty,
insert = \x t -> merge' (Node x Empty Empty) t,
findMin = \t -> case t of
Empty -> Nothing
(Node x _ _) -> Just x,
deleteMin = \t -> case t of
Empty -> Nothing
(Node _ l r) -> Just (merge' r l),
merge = \l r -> case (l, r) of
(Empty, t) -> t
(t, Empty) -> t
(t1#(Node x1 l1 r1), t2#(Node x2 l2 r2)) ->
if x1 <= x2
then Node x1 (merge' t2 r1) l1
else Node x2 (merge' t1 r2) l2,
contains = \x t -> case (x,t) of
(x,Empty)-> Nothing
(x,tx#(Node x1 l1 r1) ->
|x==x1 = Just 0
|x>x1 = (1+ (contains x l)
|x<x1 = (1+ (contains x r)
}
where
merge' = merge heap
The tree implementation
module Fdata.Tree where
import Fdata.Heap
data Tree x
= Empty
| Node x (Tree x) (Tree x)
deriving (Eq, Show)
leaf x = Node x Empty Empty
-- Convert a list to a heap
list2heap :: Heap x t -> [x] -> t x
list2heap i = foldl f z
where
f = flip $ insert i
z = empty i
-- Convert a heap to a list
heap2list :: Heap x t -> t x -> [x]
heap2list i t
= case (findMin i t, deleteMin i t) of
(Nothing, Nothing) -> []
(Just x, Just t') -> x : heap2list i t'
I am supposed to implement the contains function in the implementation for self-adjusting heaps.
I am not allowed to use any helper functions and I am supposed to use the maybe function.
My current implementation:
contains = \x t -> case (x,t) of
(x,Empty) -> Nothing
(x,tx#(Node x1 l1 r1))
|x==x1 -> Just 0
|x>x1 -> (1+ (contains x l1)
|x<x1 -> (1+ (contains x r1)
This does not work, since I get a parse error on input |.
I really dont know how to fix this since I did use 4 spaces instead of tabs and according to this: https://wiki.haskell.org/Case
the syntax is correct...
I once managed to fix this, but I got a type error about (1+ (contains x l), so this probably is not correct.
Any hint would be appreciated.
EDIT:
Thanks to everyone who answered!
Really appreciate that everyone took the time to explain their answers in great detail.
First of all:
there were some smaller mistakes, as pointed out by some of you in the comments:
I missed one closing parenthesis and accidentially named one argument l1 and another r1 and afterwards used r and l.
Fixed both mistakes.
Someone wrote that I do not need to use a lambda function. The problem is when I use something like:
contains _ Empty = Nothing
I get the error:
parse Error on input '_'.
However, lambda functions do not give me any errors about the input arguments.
Currently the only function that works without any errors is:
contains = \e t -> case (e,t) of
(_,Empty) -> Nothing
(e , Node x t1 t2) ->
if e == (head (heap2list heap (Node x t1 t2)))
then Just 0
else if (fmap (+1) (contains heap e t1))== Nothing
then (fmap (+1) (contains heap e t2))
else (fmap (+1) (contains heap e t1))
Found at:
Counting/Getting "Level" of a hierarchical data
Found by:Krom
One way of structuring contains :: Eq a => a -> Tree a -> Maybe Integer is to first label each element in your tree with its depth, using something like this, then fold the tree to find the element you're looking for, pulling its depth out with it. You can do this without very much code!
Jumping right in where this answer left off, here's contains.
contains :: Eq a => a -> Tree a -> Maybe Integer
contains x = fmap fst . find ((== x) . snd) . labelDepths
That's the whole function! This is classic functional programming style: rather than hand-crank a bespoke recursive tree traversal function I've structured the code as a pipeline of reusable operations. In Haskell pipelines are constructed using the composition operator (.) and are read from left to right. The result of labelDepths is passed to find ((== x) . snd), whose result is then passed to fmap fst.
labelDepths :: Tree a -> Tree (Integer, a), which I've explained in detail in the answer I linked above, attaches an Integer depth to each element of the input tree.
find :: Foldable t => (a -> Bool) -> t a -> Maybe a is a standard function which extracts the first element of a container (like a tree, or a list) that satisfies a predicate. In this instance, the Foldable structure in question is a Tree, so t ~ Tree and find :: (a -> Bool) -> Tree a -> Maybe a. The predicate I've given to find is ((== x) . snd), which returns True if the second element of its input tuple equals x: find ((== x) . snd) :: Tree (Integer, a) -> Maybe (Integer, a). find works by folding the input structure - testing its elements one at a time until it finds one that matches the predicate. The order in which elements are processed is defined by the container's Foldable instance, of which more below.
fmap :: Functor f => (a -> b) -> f a -> f b is another standard function. It applies a mapping function uniformly to each element of a container, transforming its elements from type a to type b. This time the container in question is the return value of find, which is a Maybe, so fmap :: (a -> b) -> Maybe a -> Maybe b. The mapping function I've supplied is fst, which extracts the first element of a tuple: fmap fst :: Maybe (Integer, a) -> Maybe Integer.
So putting it all together, you can see that this is a fairly direct implementation of my English description of the process above. First we label every element in the tree with its depth, then we find an element which matches the item we're looking for, then we extract the depth with which the element was previously labelled.
I mentioned above that Tree is a Foldable container. In fact, this isn't the case quite yet - there's no instance of Foldable for Tree. The easiest way to get a Foldable instance for Tree is to turn on the DeriveFoldable GHC extension and utter the magic words deriving Foldable.
{-# LANGUAGE DeriveFoldable #-}
data Tree x = Empty | Node x (Tree x) (Tree x) deriving Foldable
This automatically-implemented instance of Foldable will perform a preorder traversal, processing the tree in a top-down fashion. (x is considered to be "to the left of" l and r in the expression Node x l r.) You can adjust the derived traversal order by adjusting the layout of the Node constructor.
That said, I'm guessing that this is an assignment and you're not allowed to modify the definition of Tree or apply any language extensions. So you'll need to hand-write your own instance of Foldable, following the template at the bottom of this post. Here's an implementation of foldr which performs a preorder traversal.
instance Foldable Tree where
foldr f z Empty = z
foldr f z (Node x l r) = f x (foldr f (foldr f z r) l)
The Node case is the interesting one. We fold the tree from right to left (since this is a foldr) and from bottom to top. First we fold the right subtree, placing z at the rightmost leaf. Then we use the aggregated result of the right subtree as the seed for folding the left subtree. Finally we use the result of folding all of the Node's children as the aggregator to apply to f x.
Hopefully you didn't find this answer too advanced! (Happy to answer any questions you have.) While the other answers do a good job of showcasing how to write recursive tree traversal functions, I really wanted to give you a glimpse of the real power of functional programming. When you think at a higher level - breaking down a problem into its component parts, structuring operations as pipelines, and learning to spot common patterns like zipping, folding and mapping - you can be very productive and solve problems with very little code.
An instance of Foldable for a binary tree
To instantiate Foldable you need to provide a definition for at least foldMap or foldr.
data Tree a = Leaf
| Node (Tree a) a (Tree a)
instance Foldable Tree where
foldMap f Leaf = mempty
foldMap f (Node l x r) = foldMap f l `mappend` f x `mappend` foldMap f r
foldr f acc Leaf = acc
foldr f acc (Node l x r) = foldr f (f x (foldr f acc r)) l
This implementation performs an in-order traversal of the tree.
ghci> let myTree = Node (Node Leaf 'a' Leaf) 'b' (Node Leaf 'c' Leaf)
-- +--'b'--+
-- | |
-- +-'a'-+ +-'c'-+
-- | | | |
-- * * * *
ghci> toList myTree
"abc"
The DeriveFoldable extension allows GHC to generate Foldable instances based on the structure of the type. We can vary the order of the machine-written traversal by adjusting the layout of the Node constructor.
data Inorder a = ILeaf
| INode (Inorder a) a (Inorder a) -- as before
deriving Foldable
data Preorder a = PrLeaf
| PrNode a (Preorder a) (Preorder a)
deriving Foldable
data Postorder a = PoLeaf
| PoNode (Postorder a) (Postorder a) a
deriving Foldable
-- injections from the earlier Tree type
inorder :: Tree a -> Inorder a
inorder Leaf = ILeaf
inorder (Node l x r) = INode (inorder l) x (inorder r)
preorder :: Tree a -> Preorder a
preorder Leaf = PrLeaf
preorder (Node l x r) = PrNode x (preorder l) (preorder r)
postorder :: Tree a -> Postorder a
postorder Leaf = PoLeaf
postorder (Node l x r) = PoNode (postorder l) (postorder r) x
ghci> toList (inorder myTree)
"abc"
ghci> toList (preorder myTree)
"bac"
ghci> toList (postorder myTree)
"acb"
This function doesn't need to be a lambda:
contains x t =
Adding x to the case serves no purpose, since you only match it back to x. You can instead use pattern matching in the function head:
contains _ Empty = Nothing
The Node case has three sub-cases, where the value being searched for is less-than, greater-than, or equal to the value in the Node. If you order them that way, you get a symmetry from the less-than and greater-than tests, and can handle the equal case with an otherwise.
When recusring, you are going to get a Maybe Int, to which you want to add one. You can't do that directly because the Int is inside the Maybe. Normally, you would lift the addition, but I suspect that this is where the required call to maybe should go (however unnatural it may seem):
contains x (Node x' l r) | x < x' = maybe Nothing (Just . (+1)) $ contains x l
| x > x' = maybe Nothing (Just . (+1)) $ contains x r
| otherwise = Just 0
Instead of using maybe, the (+1) could have been lifted into the Maybe with fmap (or <$>):
... = fmap (+1) $ contains ...
Using maybe is unnatural because it has to explicitly pass the Nothing, and also re-wrap the Just.
This does not work, since I get a parse error on input |
Your previous line misses a closing parenthesis.
I got a Typ error about (1+ (contains x l)), so this probably is not correct.
The idea is totally correct, the issue is that contains x l returns a Maybe Int instead of an Int so you cannot directly add to that. You can only add to the result when it's a Just. There's a helper function that does exactly that, do something to Justs and keep Nothings: fmap (from Functor).
contains = \x t -> case (x,t) of
(x,Empty)-> Nothing
(x,tx#(Node x1 l1 r1))
|x==x1 -> Just 0
|x>x1 -> fmap (1+) (contains x l)
|x<x1 -> fmap (1+) (contains x r)
Btw, I'd write this as
contains x Empty = Nothing
contains x (Node v l r) = if x == v
then Just 0
else fmap (+1) $ contains x $ if x > v then l else r

Indexing into containers: the mathematical underpinnings

When you want to pull an element out of a data structure, you have to give its index. But the meaning of index depends on the data structure itself.
class Indexed f where
type Ix f
(!) :: f a -> Ix f -> Maybe a -- indices can be out of bounds
For example...
Elements in a list have numeric positions.
data Nat = Z | S Nat
instance Indexed [] where
type Ix [] = Nat
[] ! _ = Nothing
(x:_) ! Z = Just x
(_:xs) ! (S n) = xs ! n
Elements in a binary tree are identified by a sequence of directions.
data Tree a = Leaf | Node (Tree a) a (Tree a)
data TreeIx = Stop | GoL TreeIx | GoR TreeIx -- equivalently [Bool]
instance Indexed Tree where
type Ix Tree = TreeIx
Leaf ! _ = Nothing
Node l x r ! Stop = Just x
Node l x r ! GoL i = l ! i
Node l x r ! GoR j = r ! j
Looking for something in a rose tree entails stepping down the levels one at a time by selecting a tree from the forest at each level.
data Rose a = Rose a [Rose a] -- I don't even like rosé
data RoseIx = Top | Down Nat RoseIx -- equivalently [Nat]
instance Indexed Rose where
type Ix Rose = RoseIx
Rose x ts ! Top = Just x
Rose x ts ! Down i j = ts ! i >>= (! j)
It seems that the index of a product type is a sum (telling you which arm of the product to look at), the index of an element is the unit type, and the index of a nested type is a product (telling you where to look in the nested type). Sums seem to be the only one which aren't somehow linked to the derivative. The index of a sum is also a sum - it tells you which part of the sum the user is hoping to find, and if that expectation is violated you're left with a handful of Nothing.
In fact I had some success implementing ! generically for functors defined as the fixed point of a polynomial bifunctor. I won't go into detail, but Fix f can be made an instance of Indexed when f is an instance of Indexed2...
class Indexed2 f where
type IxA f
type IxB f
ixA :: f a b -> IxA f -> Maybe a
ixB :: f a b -> IxB f -> Maybe b
... and it turns out you can define an instance of Indexed2 for each of the bifunctor building blocks.
But what's really going on? What is the underlying relationship between a functor and its index? How does it relate to the functor's derivative? Does one need to understand the theory of containers (which I don't, really) to answer this question?
It seems like the index into the type is an index into the set of constructors, following by an index into the product representing that constructor. This can be implemented quite naturally with e.g. generics-sop.
First you need a datatype to represent possible indices into a single element of the product. This could be an index pointing to an element of type a,
or an index pointing to something of type g b - which requires an index pointing into g and an index pointing to an element of type a in b. This is encoded with the following type:
import Generics.SOP
data ArgIx f x x' where
Here :: ArgIx f x x
There :: (Generic (g x')) => Ix g -> ArgIx f x x' -> ArgIx f x (g x')
newtype Ix f = ...
The index itself is just a sum (implemented by NS for n-ary sum) of sums over the generic representation of the type (choice of constructor, choice of constructor element):
newtype Ix f = MkIx (forall x . NS (NS (ArgIx f x)) (Code (f x)))
You can write smart constructors for various indices:
listIx :: Natural -> Ix []
listIx 0 = MkIx $ S $ Z $ Z Here
listIx k = MkIx $ S $ Z $ S $ Z $ There (listIx (k-1)) Here
treeIx :: [Bool] -> Ix Tree
treeIx [] = MkIx $ S $ Z $ S $ Z Here
treeIx (b:bs) =
case b of
True -> MkIx $ S $ Z $ Z $ There (treeIx bs) Here
False -> MkIx $ S $ Z $ S $ S $ Z $ There (treeIx bs) Here
roseIx :: [Natural] -> Ix Rose
roseIx [] = MkIx $ Z $ Z Here
roseIx (k:ks) = MkIx $ Z $ S $ Z $ There (listIx k) (There (roseIx ks) Here)
Note that e.g. in the list case, you cannot construct an (non-bottom) index pointing to the [] constructor - likewise for Tree and Empty, or constructors containing values whose type is not a or something containing some values of type a. The quantification in MkIx prevents the construction bad things like an index pointing to the first Int in data X x = X Int x where x is instantiated to Int.
The implementation of the index function is fairly straightforward, even if the types are scary:
(!) :: (Generic (f x)) => f x -> Ix f -> Maybe x
(!) arg (MkIx ix) = go (unSOP $ from arg) ix where
atIx :: a -> ArgIx f x a -> Maybe x
atIx a Here = Just a
atIx a (There ix0 ix1) = a ! ix0 >>= flip atIx ix1
go :: (All SListI xss) => NS (NP I) xss -> NS (NS (ArgIx f x)) xss -> Maybe x
go (Z a) (Z b) = hcollapse $ hzipWith (\(I x) -> K . atIx x) a b
go (S x) (S x') = go x x'
go Z{} S{} = Nothing
go S{} Z{} = Nothing
The go function compares the constructor pointed to by the index and the actual constructor used by the type. If the constructors don't match, the indexing returns Nothing. If they do, the actual indexing is done - which is trivial in the case that the index points exactly Here, and in the case of some substructure, both indexing operations must succeed one after the other, which is handled by >>=.
And a simple test:
>map (("hello" !) . listIx) [0..5]
[Just 'h',Just 'e',Just 'l',Just 'l',Just 'o',Nothing]

How can I check if a BST is valid?

How can I check if a BST is a valid one, given its definition and using a generalized version of fold for BST?
data(Ord a, Show a, Read a) => BST a = Void | Node {
val :: a,
left, right :: BST a
} deriving (Eq, Ord, Read, Show)
fold :: (Read a, Show a, Ord a) => (a -> b -> b -> b) -> b -> BST a -> b
fold _ z Void = z
fold f z (Node x l r) = f x (fold f z l) (fold f z r)
The idea is to check that a node value is greater then all values in left-subtree and smaller than all values in its right-subtree. This must be True for all nodes in the tree. A function bstList simply output the list of (ordered) values in the BST.
Of course something like this won't work:
--isBST :: (Read a, Show a, Ord a) => BST a -> Bool
isBST t = fold (\x l r -> all (<x) (bstList l) && all (>x) (bstList r)) (True) t
because, for example, applying the fold function to the node 19 ends up all (<19) (bstList True) && all (>19) (bstList True).
Your problem seems to be that you lose information because your function only returns a boolean when it examines the left and right subtrees. So change it to also return the minimum and maximum values of the subtrees. (This is probably more efficient as well, since you don't need to used bslist to check all elements anymore)
And make a wrapper function to ignore these "auxiliary" values after you are done, of course.
(Please don't put typeclass constraints on the data type.)
A BST is valid iff an in-order traversal is monotonically increasing.
flatten tree = fold (\a l r -> l . (a:) . r) id tree []
ordered list#(_:rest) = and $ zipWith (<) list rest
ordered _ = True
isBST = ordered . flatten
A nice way of encoding this is to lean on the traversal provided by Data.Foldable.
{-# LANGUAGE DeriveFunctor, DeriveFoldable #-}
import Data.Foldable
import Data.Monoid
We can derive an instance of it automatically using an extension, but we need to reorder the fields of the Node constructor to provide us an in-order traversal.
While we're at it, we should eliminate the constraints on the data type itself. They actually provide no benefit, and has been removed from the language as of Haskell 2011. (When you want to use such constraints you should put them on instances of classes, not on the data type.)
data BST a
= Void
| Node
{ left :: BST a
, val :: a
, right :: BST a
} deriving (Eq, Ord, Read, Show, Foldable)
First we define what it means for a list to be strictly sorted.
sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted [x] = True
sorted (x:xs) = x < head xs && sorted xs
-- head is safe because of the preceeding match.
Then we can use the toList method provided by Data.Foldable and the above helper.
isBST :: Ord a => BST a -> Bool
isBST = sorted . toList
We can also implement this more directly, like you asked. Since we removed the spurious constraints on the data type, we can simplify the definition of your fold.
cata :: (b -> a -> b -> b) -> b -> BST a -> b
cata _ z Void = z
cata f z (Node l x r) = f (cata f z l) x (cata f z r)
Now we need a data type to model the result of our catamorphism, which is that we either have no nodes (Z), or a range of strictly increasing nodes (T) or have failed (X)
data T a = Z | T a a | X deriving Eq
And we can then implement isBST directly
isBST' :: Ord a => BST a -> Bool
isBST' b = cata phi Z b /= X where
phi X _ _ = X
phi _ _ X = X
phi Z a Z = T a a
phi Z a (T b c) = if a < b then T a c else X
phi (T a b) c Z = if b < c then T a c else X
phi (T a b) c (T d e) = if b < c && c < d then T a e else X
This is a bit tedious, so perhaps it would be better to decompose the way we compose the interim states a bit:
cons :: Ord a => a -> T a -> T a
cons _ X = X
cons a Z = T a a
cons a (T b c) = if a < b then T a c else X
instance Ord a => Monoid (T a) where
mempty = Z
Z `mappend` a = a
a `mappend` Z = a
X `mappend` _ = X
_ `mappend` X = X
T a b `mappend` T c d = if b < c then T a d else X
isBST'' :: Ord a => BST a -> Bool
isBST'' b = cata phi Z b /= X where
phi l a r = l `mappend` cons a r
Personally, I'd probably just use the Foldable instance.
If you don't insist on using a fold you can do it like this:
ord Void = True
ord (Node v l r) = every (< v) l && every (> v) r && ord l && ord r where
every p Void = True
every p (Node v l r) = p v && every p l && every p r

Resources