Changing frequency amplitude with RealFFT, flickering sound - audio

i have been trying to modify the amplitude for specific frequencies. Here is what i have done:
I get the data 2048 as float array which have a value range of [-1,1]. It's raw data.
I use this RealFFT algorithm http://www.lomont.org/Software/Misc/FFT/LomontFFT.html
I divide the raw data into left and right channel (this works great).
I perform RealFFT (forward enable) on both left and right and i use this equation to find which index is the right frequency that i want: freq/(samplerate/sizeOfBuffer/2.0)
I modify the frequency that i want.
I perform RealFFT (forward disable) to go back to frequency domain.
Now when i play back, i hear the change tat i did to the frequency but there is a flickering noise ( kinda the same flickering when you play an old vinyl song).
Any idea what i might do wrong?
It was a while ago i took my signal processing course at my university so i might have forgot something.
Thanks in advance!

The comments may be confusing. Here are some clarifications.
The imaginary part is not the phase. The real and imaginary parts form a vector, think of a 2-d plot where real is on the x axis and imaginary on the y. The amplitude of a frequency is the length of the line formed from the origin to the point. So, the phase is the arctan of the real and imaginary parts divided. The magnitude is the square root of the sum of squares of the real and imaginary parts.
So. The first step is that you want to change the magnitude of the vector, you must scale both the real and imaginary parts.
That's easy. The second part is much more complicated. The Fourier transform's "view" of the world is that it is infinitely periodic - that is, it looks like the signal wraps from the end, back to the beginning. If you put a perfect sine tone into your algorithm, and say that the period of the sine tone is 4096 samples. The first sample into the FFT is +1, then the last sample into the FFT is -1. If you look at the spectrum in the FFT, it will appear as if there are lots of high frequencies, which are the harmonics of transforming a signal that has a jump from -1 to 1. The longer and longer the FFT, the closer that the FFT shows you the "real" view of the signal.
Techniques to smooth out the transitions between FFT blocks have been developed, by windowing and overlapping the FFT blocks, so that the transitions between the blocks are not so "discontinuous". A fairly common technique is to use a Hann window and overlap by a factor of 4. That is, for every 2048 samples, you actually do 4 FFTs, and every FFT overlaps the previous block by 1536. The Hann window gets mathy, but basically it has nice properties so that you can do overlaps like this and everything sums up nicely.
I found this pretty fun blog showing exactly the same learning pains that you're going through: http://www.katjaas.nl/FFTwindow/FFTwindow&filtering.html
This technique is different from another commenter who mentions Overlap-Save. This is a a method developed to use FFTs to do FIR filtering. However, designing the FIR filter will typically be done in a mathematical package like Matlab/Octave.

If you use a series of shorter FFTs to modify a longer signal, then one should zero-pad each window so that it uses a longer FFT (longer by the impulse response of the modification's spectrum), and combine the series of longer FFTs by overlap-add or overlap-save. Otherwise, waveform changes that should ripple past the end of each FFT/IFFT modification will , due to circular convolution, ripple around to the beginning of each window, and cause that periodic flickering distortion you hear.

Related

Efficient generation of sampled waveforms without aliasing artifacts

For a project of mine I am working with sampled sound generation and I need to create various waveforms at various frequencies. When the waveform is sinusoidal, everything is fine, but when the waveform is rectangular, there is trouble: it sounds as if it came from the eighties, and as the frequency increases, the notes sound wrong. On the 8th octave, each note sounds like a random note from some lower octave.
The undesirable effect is the same regardless of whether I use either one of the following two approaches:
The purely mathematical way of generating a rectangular waveform as sample = sign( secondsPerHalfWave - (timeSeconds % secondsPerWave) ) where secondsPerWave = 1.0 / wavesPerSecond and secondsPerHalfWave = secondsPerWave / 2.0
My preferred way, which is to describe one period of the wave using line segments and to interpolate along these lines. So, a rectangular waveform is described (regardless of sampling rate and regardless of frequency) by a horizontal line from x=0 to x=0.5 at y=1.0, followed by another horizontal line from x=0.5 to x=1.0 at y=-1.0.
From what I gather, the literature considers these waveform generation approaches "naive", resulting in "aliasing", which is the cause of all the undesirable effects.
What this all practically translates to when I look at the generated waveform is that the samples-per-second value is not an exact multiple of the waves-per-second value, so each wave does not have an even number of samples, which in turn means that the number of samples at level 1.0 is often not equal to the number of samples at level -1.0.
I found a certain solution here: https://www.nayuki.io/page/band-limited-square-waves which even includes source code in Java, and it does indeed sound awesome: all undesirable effects are gone, and each note sounds pure and at the right frequency. However, this solution is entirely unsuitable for me, because it is extremely computationally expensive. (Even after I have replaced sin() and cos() with approximations that are ten times faster than Java's built-in functions.) Besides, when I look at the resulting waveforms they look awfully complex, so I wonder whether they can legitimately be called rectangular.
So, my question is:
What is the most computationally efficient method for the generation of periodic waveforms such as the rectangular waveform that does not suffer from aliasing artifacts?
Examples of what the solution could entail:
The computer audio problem of generating correct sample values at discrete time intervals to describe a sound wave seems to me somewhat related to the computer graphics problem of generating correct integer y coordinates at discrete integer x coordinates for drawing lines. The Bresenham line generation algorithm is extremely efficient, (even if we disregard for a moment the fact that it is working with integer math,) and it works by accumulating a certain error term which, at the right time, results in a bump in the Y coordinate. Could some similar mechanism perhaps be used for calculating sample values?
The way sampling works is understood to be as reading the value of the analog signal at a specific, infinitely narrow point in time. Perhaps a better approach would be to consider reading the area of the entire slice of the analog signal between the last sample and the current sample. This way, sampling a 1.0 right before the edge of the rectangular waveform would contribute a little to the sample value, while sampling a -1.0 considerable time after the edge would contribute a lot, thus naturally yielding a point which is between the two extreme values. Would this solve the problem? Does such an algorithm exist? Has anyone ever tried it?
Please note that I have posted this question here as opposed to dsp.stackexchange.com because I do not want to receive answers with preposterous jargon like band-limiting, harmonics and low-pass filters, lagrange interpolations, DC compensations, etc. and I do not want answers that come from the purely analog world or the purely theoretical outer space and have no chance of ever receiving a practical and efficient implementation using a digital computer.
I am a programmer, not a sound engineer, and in my little programmer's world, things are simple: I have an array of samples which must all be between -1.0 and 1.0, and will be played at a certain rate (44100 samples per second.) I have arithmetic operations and trigonometric functions at my disposal, I can describe lines and use simple linear interpolation, and I need to generate the samples extremely efficiently because the generation of a dozen waveforms simultaneously and also the mixing of them together may not consume more than 1% of the total CPU time.
I'm not sure but you may have a few of misconceptions about the nature of aliasing. I base this on your putting the term in quotes, and from the following quote:
What this all practically translates to when I look at the generated
waveform is that the samples-per-second value is not an exact multiple
of the waves-per-second value, so each wave does not have an even
number of samples, which in turn means that the number of samples at
level 1.0 is often not equal to the number of samples at level -1.0.
The samples/sec and waves/sec don't have to be exact multiples at all! One can play back all pitches below the Nyquist. So I'm not clear what your thinking on this is.
The characteristic sound of a square wave arises from the presence of odd harmonics, e.g., with a note of 440 (A5), the square wave sound could be generated by combining sines of 440, 1320, 2200, 3080, 3960, etc. progressing in increments of 880. This begs the question, how many odd harmonics? We could go to infinity, theoretically, for the sharpest possible corner on our square wave. If you simply "draw" this in the audio stream, the progression will continue well beyond the Nyquist number.
But there is a problem in that harmonics that are higher than the Nyquist value cannot be accurately reproduced digitally. Attempts to do so result in aliasing. So, to get as good a sounding square wave as the system is able to produce, one has to avoid the higher harmonics that are present in the theoretically perfect square wave.
I think the most common solution is to use a low-pass filtering algorithm. The computations are definitely more cpu-intensive than just calculating sine waves (or doing FM synthesis, which was my main interest). I am also weak on the math for DSP and concerned about cpu expense, and so, avoided this approach for long time. But it is quite viable and worth an additional look, imho.
Another approach is to use additive synthesis, and include as many sine harmonics as you need to get the tonal quality you want. The problem then is that the more harmonics you add, the more computation you are doing. Also, the top harmonics must be kept track of as they limit the highest note you can play. For example if using 10 harmonics, the note 500Hz would include content at 10500 Hz. That's below the Nyquist value for 44100 fps (which is 22050 Hz). But you'll only be able to go up about another octave (doubles everything) with a 10-harmonic wave and little more before your harmonic content goes over the limit and starts aliasing.
Instead of computing multiple sines on the fly, another solution you might consider is to instead create a set of lookup tables (LUTs) for your square wave. To create the values in the table, iterate through and add the values from the sine harmonics that will safely remain under the Nyquist for the range in which you use the given table. I think a table of something like 1024 values to encode a single period could be a good first guess as to what would work.
For example, I am guestimating, but the table for the octave C4-C5 might use 10 harmonics, the table for C5-C6 only 5, the table for C3-C4 might have 20. I can't recall what this strategy/technique is called, but I do recall it has a name, it is an accepted way of dealing with the situation. Depending on how the transitions sound and the amount of high-end content you want, you can use fewer or more LUTs.
There may be other methods to consider. The wikipedia entry on Aliasing describes a technique it refers to as "bandpass" that seems to be intentionally using aliasing. I don't know what that is about or how it relates to the article you cite.
The Soundpipe library has the concept of a frequency table, which is a data structure that holds a precomputed waveform such as a sine. You can initialize the frequency table with the desired waveform and play it through an oscilator. There is even a module named oscmorph which allows you to morph between two or more wavetables.
This is an example of how to generate a sine wave, taken from Soundpipe's documentation.
int main() {
UserData ud;
sp_data *sp;
sp_create(&sp);
sp_ftbl_create(sp, &ud.ft, 2048);
sp_osc_create(&ud.osc);
sp_gen_sine(sp, ud.ft);
sp_osc_init(sp, ud.osc, ud.ft);
ud.osc->freq = 500;
sp->len = 44100 * 5;
sp_process(sp, &ud, write_osc);
sp_ftbl_destroy(&ud.ft);
sp_osc_destroy(&ud.osc);
sp_destroy(&sp);
return 0;
}

I get strange sizzle/artifacts in my audio when doing differnt FFT approaches

I am doing filter convolution by using fft (FFTW). I experience something I can not understand.
I have an input x(n) which I want to apply a filter IR u(n). Both length N. So I zero pad both e.g. to 2n and do FFT of both to get X(n) and U(n). if I just do X(n)*U(n) and IFFT I get a signal y(t). If I listen to the signal there is no sizzling, all sounds ok. For speeding up the programm and saving memory I tried to take advantage of symmetrie of U(n) and X(n)and to use only first half of U(n) and X(n) and zero padding the second half. So I did X(n0...n/2,0,0,0,0,..,N)U(n0,..,n/2,0,0,0,..,N) and IFFT.
The resulting output sounds not different to the result when multipling full length XU but there is strange subtile sizzling noise audible laying on the output. Mostley apparent on loud/resonant input signal parts, sounds almost like clipping the stage. I did not change anything in the scaling in both methods so, I donĀ“t understand whats going on. Could someone help me out with an idea?
Is it wrong to just use half of U and X and zero pad the rest , must I use the full length? Or does this change e.g. scaling?
You can not simply set part of your signal spectra to zero. Any real signal (with no imaginary component) has a conjugate complex spectrum. I guess this is the symmetry you are talking about. If you set part of the spectrum to zero your signal in the time domain will be complex and completely different from the original signal you started with.
If you want to speed up your computation reduce the number of your samples you are working with

Note Onset Detection using Spectral Difference

Im fairly new to onset detection. I read some papers about it and know that when working only with the time-domain, it is possible that there will be a large number of false-positives/negatives, and that it is generally advisable to work with either both the time-domain and frequency-domain or the frequency domain.
Regarding this, I am a bit confused because, I am having trouble on how the spectral energy or the results from the FFT bin can be used to determine note onsets. Because, aren't note onsets represented by sharp peaks in amplitude?
Can someone enlighten me on this? Thank you!
This is the easiest way to think about note onset:
think of a music signal as a flat constant signal. When and onset occurs you look at it as a large rapid CHANGE in signal (a positive or negative peak)
What this means in the frequency domain:
the FT of a constant signal is, well, CONSTANT! and flat
When the onset event occurs there is a rapid increase in spectrial content.
While you may think "Well you're actually talking about the peak of the onset right?" not at all. We are not actually interested in the peak of the onset, but rather the rising edge of the signal. When there is a sharp increase in the signal, the high frequency content increases.
one way to do this is using the spectrial difference function:
take your time domain signal and cut it up into overlaping strips (typically 50% overlap)
apply a hamming/hann window (this is to reduce spectrial smudging) (remember cutting up the signal into windows is like multiplying it by a pulse, in the frequency domain its like convolving the signal with a sinc function)
Apply the FFT algorithm on two sucessive windows
For each DFT bin, calculate the difference between the Xn and Xn-1 bins if it is negative set it to zero
square the results and sum all th bins together
repeat till end of signal.
look for peaks in signal using median thresholding and there are your onset times!
Source:
https://adamhess.github.io/Onset_Detection_Nov302011.pdf
and
http://www.elec.qmul.ac.uk/people/juan/Documents/Bello-TSAP-2005.pdf
You can look at sharp differences in amplitude at a specific frequency as suspected sound onsets. For instance if a flute switches from playing a G5 to playing a C, there will be a sharp drop in amplitude of the spectrum at around 784 Hz.
If you don't know what frequency to examine, the magnitude of an FFT vector will give you the amplitude of every frequency over some window in time (with a resolution dependent on the length of the time window). Pick your frequency, or a bunch of frequencies, and diff two FFTs of two different time windows. That might give you something that can be used as part of a likelihood estimate for a sound onset or change somewhere between the two time windows. Sliding the windows or successive approximation of their location in time might help narrow down the time of a suspected note onset or other significant change in the sound.
"Because, aren't note onsets represented by sharp peaks in amplitude?"
A: Not always. On percussive instruments (including piano) this is true, but for violin, flute, etc. notes often "slide" into each other as frequency changes without sharp amplitude increases.
If you stick to a single instrument like the piano onset detection is do-able. Generalized onset detection is a much more difficult problem. There are about a dozen primitive features that have been used for onset detection. Once you code them, you still have to decide how best to use them.

8 bit audio samples to 16 bit

This is my "weekend" hobby problem.
I have some well-loved single-cycle waveforms from the ROMs of a classic synthesizer.
These are 8-bit samples (256 possible values).
Because they are only 8 bits, the noise floor is pretty high. This is due to quantization error. Quantization error is pretty weird. It messes up all frequencies a bit.
I'd like to take these cycles and make "clean" 16-bit versions of them. (Yes, I know people love the dirty versions, so I'll let the user interpolate between dirty and clean to whatever degree they like.)
It sounds impossible, right, because I've lost the low 8 bits forever, right? But this has been in the back of my head for a while, and I'm pretty sure I can do it.
Remember that these are single-cycle waveforms that just get repeated over and over for playback, so this is a special case. (Of course, the synth does all kinds of things to make the sound interesting, including envelopes, modulations, filters cross-fading, etc.)
For each individual byte sample, what I really know is that it's one of 256 values in the 16-bit version. (Imagine the reverse process, where the 16-bit value is truncated or rounded to 8 bits.)
My evaluation function is trying to get the minimum noise floor. I should be able to judge that with one or more FFTs.
Exhaustive testing would probably take forever, so I could take a lower-resolution first pass. Or do I just randomly push randomly chosen values around (within the known values that would keep the same 8-bit version) and do the evaluation and keep the cleaner version? Or is there something faster I can do? Am I in danger of falling into local minimums when there might be some better minimums elsewhere in the search space? I've had that happen in other similar situations.
Are there any initial guesses I can make, maybe by looking at neighboring values?
Edit: Several people have pointed out that the problem is easier if I remove the requirement that the new waveform would sample to the original. That's true. In fact, if I'm just looking for cleaner sounds, the solution is trivial.
You could put your existing 8-bit sample into the high-order byte of your new 16-bit sample, and then use the low order byte to linear interpolate some new 16 bit datapoints between each original 8-bit sample.
This would essentially connect a 16 bit straight line between each of your original 8-bit samples, using several new samples. It would sound much quieter than what you have now, which is a sudden, 8-bit jump between the two original samples.
You could also try apply some low-pass filtering.
Going with the approach in your question, I would suggest looking into hill-climbing algorithms and the like.
http://en.wikipedia.org/wiki/Hill_climbing
has more information on it and the sidebox has links to other algorithms which may be more suitable.
AI is like alchemy - we never reached the final goal, but lots of good stuff came out along the way.
Well, I would expect some FIR filtering (IIR if you really need processing cycles, but FIR can give better results without instability) to clean up the noise. You would have to play with it to get the effect you want but the basic problem is smoothing out the sharp edges in the audio created by sampling it at 8 bit resolutions. I would give a wide birth to the center frequency of the audio and do a low pass filter, and then listen to make sure I didn't make it sound "flat" with the filter I picked.
It's tough though, there is only so much you can do, the lower 8 bits is lost, the best you can do is approximate it.
It's almost impossible to get rid of noise that looks like your signal. If you start tweeking stuff in your frequency band it will take out the signal of interest.
For upsampling, since you're already using an FFT, you can add zeros to the end of the frequency domain signal and do an inverse FFT. This completely preserves the frequecy and phase information of the original signal, although it spreads the same energy over more samples. If you shift it 8bits to be a 16bit samples first, this won't be a too much of a problem. But I usually kick it up by an integer gain factor before doing the transform.
Pete
Edit:
The comments are getting a little long so I'll move some to the answer.
The peaks in the FFT output are harmonic spikes caused by the quantitization. I tend to think of them differently than the noise floor. You can dither as someone mentioned and eliminate the amplitude of the harmonic spikes and flatten out the noise floor, but you loose over all signal to noise on the flat part of your noise floor. As far as the FFT is concerned. When you interpolate using that method, it retains the same energy and spreads over more samples, this reduces the amplitude. So before doing the inverse, give your signal more energy by multipling by a gain factor.
Are the signals simple/complex sinusoids, or do they have hard edges? i.e. Triangle, square waves, etc. I'm assuming they have continuity from cycle to cycle, is that valid? If so you can also increase your FFT resolution to more precisely pinpoint frequencies by increasing the number of waveform cycles fed to your FFT. If you can precisely identify the frequencies use, assuming they are somewhat discrete, you may be able to completely recreate the intended signal.
The 16-bit to 8-bit via truncation requirement will produce results that do not match the original source. (Thus making finding an optimal answer more difficult.) Typically you would produce a fixed point waveform by attempting to "get the closest match" that means rounding to the nearest number (trunking is a floor operation). That is most likely how they were originally generated. Adding 0.5 (in this case 0.5 is 128) and then trunking the output would allow you to generate more accurate results. If that's not a worry then ok, but it definitely will have a negative effect on accuracy.
UPDATED:
Why? Because the goal of sampling a signal is to be able to as close a possible reproduce the signal. If conversion threshold is set poorly on the sampling all you're error is to one side of signal and not well distributed and centered about zero. On such systems you typically try to maximize the use the availiable dynamic range, particularly if you have low resolution such as an 8-bit ADC.
Band limited versions? If they are filtered at different frequencies, I'd suspect it was to allow you to play the same sound with out distortions when you went too far out from the other variation. Kinda like mipmapping in graphics.
I suspect the two are the same signal with different aliasing filters applied, this may be useful in reproducing the original. They should be the same base signal with different convolutions applied.
There might be a simple approach taking advantange of the periodicity of the waveforms. How about if you:
Make a 16-bit waveform where the high bytes are the waveform and the low bytes are zero - call it x[n].
Calculate the discrete Fourier transform of x[n] = X[w].
Make a signal Y[w] = (dBMag(X[w]) > Threshold) ? X[w] : 0, where dBMag(k) = 10*log10(real(k)^2 + imag(k)^2), and Threshold is maybe 40 dB, based on 8 bits being roughly 48 dB dynamic range, and allowing ~1.5 bits of noise.
Inverse transform Y[w] to get y[n], your new 16 bit waveform.
If y[n] doesn't sound nice, dither it with some very low level noise.
Notes:
A. This technique only works in the original waveforms are exactly periodic!
B. Step 5 might be replaced with setting the "0" values to random noise in Y[w] in step 3, you'd have to experiment a bit to see what works better.
This seems easier (to me at least) than an optimization approach. But truncated y[n] will probably not be equal to your original waveforms. I'm not sure how important that constraint is. I feel like this approach will generate waveforms that sound good.

Identifying common periodic waveforms (square, sine, sawtooth, ...)

Without any user interaction, how would a program identify what type of waveform is present in a recording from an ADC?
For the sake of this question: triangle, square, sine, half-sine, or sawtooth waves of constant frequency. Level and frequency are arbitrary, and they will have noise, small amounts of distortion, and other imperfections.
I'll propose a few (naive) ideas, too, and you can vote them up or down.
You definitely want to start by taking an autocorrelation to find the fundamental.
With that, take one period (approximately) of the waveform.
Now take a DFT of that signal, and immediately compensate for the phase shift of the first bin (the first bin being the fundamental, your task will be simpler if all phases are relative).
Now normalise all the bins so that the fundamental has unity gain.
Now compare and contrast the rest of the bins (representing the harmonics) against a set of pre-stored waveshapes that you're interested in testing for. Accept the closest, and reject overall if it fails to meet some threshold for accuracy determined by measurements of the noisefloor.
Do an FFT, find the odd and even harmonic peaks, and compare the rate at which they decrease to a library of common waveform.. peak... ratios.
Perform an autocorrelation to find the fundamental frequency, measure the RMS level, find the first zero-crossing, and then try subtracting common waveforms at that frequency, phase, and level. Whichever cancels out the best (and more than some threshold) wins.
This answer presumes no noise and that this is a simple academic exercise.
In the time domain, take the sample by sample difference of the waveform. Histogram the results. If the distribution has a sharply defined peak (mode) at zero, it is a square wave. If the distribution has a sharply defined peak at a positive value, it is a sawtooth. If the distribution has two sharply defined peaks, one negative and one positive,it is a triangle. If the distribution is broad and is peaked at either side, it is a sine wave.
arm yourself with more information...
I am assuming that you already know that a theoretically perfect sine wave has no harmonic partials (ie only a fundamental)... but since you are going through an ADC you can throw the idea of a theoretically perfect sine wave out the window... you have to fight against aliasing and determining what are "real" partials and what are artifacts... good luck.
the following information comes from this link about csound.
(*) A sawtooth wave contains (theoretically) an infinite number of harmonic partials, each in the ratio of the reciprocal of the partial number. Thus, the fundamental (1) has an amplitude of 1, the second partial 1/2, the third 1/3, and the nth 1/n.
(**) A square wave contains (theoretically) an infinite number of harmonic partials, but only odd-numbered harmonics (1,3,5,7,...) The amplitudes are in the ratio of the reciprocal of the partial number, just as sawtooth waves. Thus, the fundamental (1) has an amplitude of 1, the third partial 1/3, the fifth 1/5, and the nth 1/n.
I think that all of these answers so far are quite bad (including my own previous...)
after having thought the problem through a bit more I would suggest the following:
1) take a 1 second sample of the input signal (doesn't need to be so big, but it simplifies a few things)
2) over the entire second, count the zero-crossings. at this point you have the cps (cycles per second) and know the frequency of the oscillator. (in case that's something you wanted to know)
3) now take a smaller segment of the sample to work with: take precisely 7 zero-crossings worth. (so your work buffer should now, if visualized, look like one of the graphical representations you posted with the original question.) use this small work buffer to perform the following tests. (normalizing the work buffer at this point could make life easier)
4) test for square-wave: zero crossings for a square wave are always very large differences, look for a large signal delta followed by little to no movement until the next zero crossing.
5) test for saw-wave: similar to square-wave, but a large signal delta will be followed by a linear constant signal delta.
6) test for triangle-wave: linear constant (small) signal deltas. find the peaks, divide by the distance between them and calculate what the triangle wave should look like (ideally) now test the actual signal for deviance. set a deviance tolerance threshold and you can determine whether you are looking at a triangle or a sine (or something parabolic).
First find the base frequency and the phase. You can do that with FFT. Normalize the sample. Then subtract each sample with the sample of the waveform you want to test (same frequency and same phase). Square the result add it all up and divide it by the number of samples. The smallest number is the waveform you seek.

Resources