The dimension of dual_coef_ in sklearn. SVC - scikit-learn

In SVC() for multi-classification, the one-vs-one classifiers are trained. So there are supposed to be n_class * (n_class - 1)/2 classifiers in total. But why clf.dual_coef_ returns me only (n_class - 1) * n_SV? What does each row represent then?

The dual coefficients of a sklearn.svm.SVC in the multiclass setting are tricky to interpret. There is an explanation in the scikit-learn documentation. The sklearn.svm.SVC uses libsvm for the calculations and adopts the same data structure for the dual coefficients. Another explanation of the organization of these coefficients is in the FAQ. In the case of the coefficients you find in the fitted SVC classifier, interpretation goes as follows:
The support vectors identified by the SVC each belong to a certain class. In the dual coefficients, they are ordered according to the class they belong to.
Given a fitted SVC estimator, e.g.
from sklearn.svm import SVC
svc = SVC()
svc.fit(X, y)
you will find
svc.classes_ # represents the unique classes
svc.n_support_ # represents the number of support vectors per class
The support vectors are organized according to these two variables. Each support vector being clearly identified with one class, it becomes evident that it can be implied in at most n_classes-1 one-vs-one problems, viz every comparison with all the other classes. But it is entirely possible that a given support vector will not be implied in all one-vs-one problems.
Taking a look at
support_indices = np.cumsum(svc.n_support_)
svc.dual_coef_[0:support_indices[0]] # < ---
# weights on support vectors of class 0
# for problems 0v1, 0v2, ..., 0v(n-1)
# so n-1 columns for each of the
# svc.n_support_[0] support vectors
svc.dual_coef_[support_indices[1]:support_indices[2]]
# ^^^
# weights on support vectors of class 1
# for problems 0v1, 1v2, ..., 1v(n-1)
# so n-1 columns for each of the
# svc.n_support_[1] support vectors
...
svc.dual_coef_[support_indices[n_classes - 2]:support_indices[n_classes - 1]]
# ^^^
# weights on support vectors of class n-1
# for problems 0vs(n-1), 1vs(n-1), ..., (n-2)v(n-1)
# so n-1 columns for each of the
# svc.n_support_[-1] support vectors
gives you the weights of the support vectors for the classes 0, 1, ..., n-1 in their respective one-vs-one problems. Comparisons to all other classes except its own are made, resulting in n_classes - 1 columns. The order in which this happens follows the order of the unique classes exposed above. There are as many rows in each group as there are support vectors.
Possibly what you are looking for are the primal weights, which live in feature space, in order to inspect them as to their "importance" for classification. This is only possible with a linear kernel. Try this
from sklearn.svm import SVC
svc = SVC(kernel="linear")
svc.fit(X, y) # X is your data, y your labels
Then take a look at
svc.coef_
This is an array of shape ((n_class * (n_class -1) / 2), n_features) and represents the aforementioned weights.
According to the doc the weights are ordered as:
class 0 vs class 1
class 0 vs class 2
...
class 0 vs class n-1
class 1 vs class 2
class 1 vs class 3
...
...
class n-2 vs class n-1

Related

What is the difference between decision function and score_samples in isolation_forest in SKLearn

I have read the documentation of the decision function and score_samples here, but could not figure out what is the difference between these two methods and which one should I use for an outlier detection algorithm.
Any help would be appreciated.
See the documentation for the attribute offset_:
Offset used to define the decision function from the raw scores. We have the relation: decision_function = score_samples - offset_. offset_ is defined as follows. When the contamination parameter is set to “auto”, the offset is equal to -0.5 as the scores of inliers are close to 0 and the scores of outliers are close to -1. When a contamination parameter different than “auto” is provided, the offset is defined in such a way we obtain the expected number of outliers (samples with decision function < 0) in training.
The User Guide references the paper Isolation forest written by Fei Tony, Kai Ming and Zhi-Hua.
I did not read the paper, but I think you can use either output to detect outliers. The documentation says score_samples is the opposite of decision_function, so I thought they would be inversely related, but both outputs seem to have the exact same relationship with the target. The only difference is that they are on different ranges. In fact, they even have the same variance.
To see this, I fit the model to the breast cancer dataset available in sklearn and visualized the average of the target variable grouped by the deciles of each output. As you can see, they both have the exact same relationship.
# Import libraries
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import IsolationForest
# Load data
X = load_breast_cancer()['data']
y = load_breast_cancer()['target']
# Fit model
clf = IsolationForest()
clf.fit(X, y)
# Split the outputs into deciles to see their relationship with target
t = pd.DataFrame({'target':y,
'decision_function':clf.decision_function(X),
'score_samples':clf.score_samples(X)})
t['bins_decision_function'] = pd.qcut(t['decision_function'], 10)
t['bins_score_samples'] = pd.qcut(t['score_samples'], 10)
# Visualize relationship
plt.plot(t.groupby('bins_decision_function')['target'].mean().values, lw=3, label='Decision Function')
plt.plot(t.groupby('bins_score_samples')['target'].mean().values, ls='--', label='Score Samples')
plt.legend()
plt.show()
Like I said, they even have the same variance:
t[['decision_function','score_samples']].var()
> decision_function 0.003039
> score_samples 0.003039
> dtype: float64
In conclusion, you can use them interchangeably as they both share the same relationship with the target.
As was previously stated in #Ben Reiniger's answer,
decision_function = score_samples - offset_. For further clarification...
If contamination = 'auto', then offset_ is fixed to 0.5
If contamination is set to something other than 'auto', then
offset is no longer fixed.
This can be seen under the fit function in the source code:
def fit(self, X, y=None, sample_weight=None):
...
if self.contamination == "auto":
# 0.5 plays a special role as described in the original paper.
# we take the opposite as we consider the opposite of their score.
self.offset_ = -0.5
return self
# else, define offset_ wrt contamination parameter
self.offset_ = np.percentile(self.score_samples(X),
100. * self.contamination)
Thus, it's important to take note of what contamination is set to, as well as which anomaly scores you are using. score_samples returns what can be thought of as the "raw" scores, as it is unaffected by offset_, whereas decision_function is dependent on offset_

Removing the redundant feature from classification dataset ( make_classification )

In the make_classification method,
X,y = make_classification(n_samples=10, n_features=8, n_informative=7, n_redundant=1, n_repeated=0 , n_classes=2,random_state=6)
Docstring about n_redundant: The number of redundant features. These features are generated as
random linear combinations of the informative features.
Docstring about n_repeated: The number of duplicated features, drawn randomly from the informative
n_repeated features are picked easily as they are highly correlated with informative features.
The docstring for repeated and redundant features indicates that both are drawn from informative features.
My question is: how redundant features can be removed/highlighted, what are their characteristics.
Attached is the correlation heatmap among all the features, Which feature in the image is redundant.
Please help.
To check how many independent columns use np.linalg.matrix_rank(X)
To find indices of linearly independent rows of matrix X use sympy.Matrix(X).rref()
DEMO
Generate dataset and check number of independent columns (matrix rank):
from sklearn.datasets import make_classification
from sympy import Matrix
X, _ = make_classification(
n_samples=10, n_features=8, n_redundant=2,random_state=6
)
np.linalg.matrix_rank(X, tol=1e-3)
# 6
Find indices of linearly independent columns:
_, inds = Matrix(X).rref(iszerofunc=lambda x: abs(x)<1e-3)
inds
#(0, 1, 2, 3, 6, 7)
Remove dependent columns and check matrix rank (num of independent columns):
#linearly independent
X_independent = X[:,inds]
assert np.linalg.matrix_rank(X_independent, tol=1e-3) == X_independent.shape[1]

How to deal with imbalanced classes in Keras

I am working on a multi-label image classification problem with Keras and so I utilize functions flow_from_dataframe() and fit_generator().
I have about 2000 classes and as you can guess they are highly skewed / imbalanced. After searching a bit I came across with arguments class_weight and classes and I decided to give them a try. My problem is, I am not sure if I use them correctly. Here is an example:
Let's assume that I have flatten all class occurrences so that I get the following list of (duplicated) labels:
labels = ['classD', 'classA', 'classA', 'classC', 'classD', 'classD']
And this is the function that computes classes and class_weight:
from collections import Counter
def get_classes_weights(l, n):
counter = Counter(l).most_common(n)
classes = [cls for cls, ocu in counter]
majority = max([ocu for cls, ocu in counter])
weights = {idx: float(majority/ocu) for idx, (cls, ocu) in enumerate(counter)}
return classes, weights
Let's also assume that I what to consider the top-2 classes only:
classes, class_weight = get_classes_weights(labels, 2)
This gives:
classes: ['classD', 'classA']
and:
class_weight: {0: 1.0, 1: 1.5}
And finally, this is how I use them within the functions:
generator_train.flow_from_dataframe(
classes=classes,
)
model.fit_generator(
class_weight=class_weight
)
So my question are:
Is the above the right way to apply weights given that I work on a multi-label image classification problem?
Does my validation set need to be balanced or it is OK if it has been taken from the same distribution as the training set (20% and 80% random selection, respectively)?

Role of class_weight in loss functions for linearSVC and LogisticRegression

I am trying to figure out what exactly the loss function formula is and how I can manually calculate it when class_weight='auto' in case of svm.svc, svm.linearSVC and linear_model.LogisticRegression.
For balanced data, say you have a trained classifier: clf_c. Logistic loss should be (am I correct?):
def logistic_loss(x,y,w,b,b0):
'''
x: nxp data matrix where n is number of data points and p is number of features.
y: nx1 vector of true labels (-1 or 1).
w: nx1 vector of weights (vector of 1./n for balanced data).
b: px1 vector of feature weights.
b0: intercept.
'''
s = y
if 0 in np.unique(y):
print 'yes'
s = 2. * y - 1
l = np.dot(w, np.log(1 + np.exp(-s * (np.dot(x, np.squeeze(b)) + b0))))
return l
I realized that logisticRegression has predict_log_proba() which gives you exactly that when data is balanced:
b, b0 = clf_c.coef_, clf_c.intercept_
w = np.ones(len(y))/len(y)
-(clf_c.predict_log_proba(x[xrange(len(x)), np.floor((y+1)/2).astype(np.int8)]).mean() == logistic_loss(x,y,w,b,b0)
Note, np.floor((y+1)/2).astype(np.int8) simply maps y=(-1,1) to y=(0,1).
But this does not work when data is imbalanced.
What's more, you expect the classifier (here, logisticRegression) to perform similarly (in terms of loss function value) when data in balance and class_weight=None versus when data is imbalanced and class_weight='auto'. I need to have a way to calculate the loss function (without the regularization term) for both scenarios and compare them.
In short, what does class_weight = 'auto' exactly mean? Does it mean class_weight = {-1 : (y==1).sum()/(y==-1).sum() , 1 : 1.} or rather class_weight = {-1 : 1./(y==-1).sum() , 1 : 1./(y==1).sum()}?
Any help is much much appreciated. I tried going through the source code, but I am not a programmer and I am stuck.
Thanks a lot in advance.
class_weight heuristics
I am a bit puzzled by your first proposition for the class_weight='auto' heuristic, as:
class_weight = {-1 : (y == 1).sum() / (y == -1).sum(),
1 : 1.}
is the same as your second proposition if we normalize it so that the weights sum to one.
Anyway to understand what class_weight="auto" does, see this question:
what is the difference between class weight = none and auto in svm scikit learn.
I am copying it here for later comparison:
This means that each class you have (in classes) gets a weight equal
to 1 divided by the number of times that class appears in your data
(y), so classes that appear more often will get lower weights. This is
then further divided by the mean of all the inverse class frequencies.
Note how this is not completely obvious ;).
This heuristic is deprecated and will be removed in 0.18. It will be replaced by another heuristic, class_weight='balanced'.
The 'balanced' heuristic weighs classes proportionally to the inverse of their frequency.
From the docs:
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data:
n_samples / (n_classes * np.bincount(y)).
np.bincount(y) is an array with the element i being the count of class i samples.
Here's a bit of code to compare the two:
import numpy as np
from sklearn.datasets import make_classification
from sklearn.utils import compute_class_weight
n_classes = 3
n_samples = 1000
X, y = make_classification(n_samples=n_samples, n_features=20, n_informative=10,
n_classes=n_classes, weights=[0.05, 0.4, 0.55])
print("Count of samples per class: ", np.bincount(y))
balanced_weights = n_samples /(n_classes * np.bincount(y))
# Equivalent to the following, using version 0.17+:
# compute_class_weight("balanced", [0, 1, 2], y)
print("Balanced weights: ", balanced_weights)
print("'auto' weights: ", compute_class_weight("auto", [0, 1, 2], y))
Output:
Count of samples per class: [ 57 396 547]
Balanced weights: [ 5.84795322 0.84175084 0.60938452]
'auto' weights: [ 2.40356854 0.3459682 0.25046327]
The loss functions
Now the real question is: how are these weights used to train the classifier?
I don't have a thorough answer here unfortunately.
For SVC and linearSVC the docstring is pretty clear
Set the parameter C of class i to class_weight[i]*C for SVC.
So high weights mean less regularization for the class and a higher incentive for the svm to classify it properly.
I do not know how they work with logistic regression. I'll try to look into it but most of the code is in liblinear or libsvm and I'm not too familiar with those.
However, note that the weights in class_weight do not influence directly methods such as predict_proba. They change its ouput because the classifier optimizes a different loss function.
Not sure this is clear, so here's a snippet to explain what I mean (you need to run the first one for the imports and variable definition):
lr = LogisticRegression(class_weight="auto")
lr.fit(X, y)
# We get some probabilities...
print(lr.predict_proba(X))
new_lr = LogisticRegression(class_weight={0: 100, 1: 1, 2: 1})
new_lr.fit(X, y)
# We get different probabilities...
print(new_lr.predict_proba(X))
# Let's cheat a bit and hand-modify our new classifier.
new_lr.intercept_ = lr.intercept_.copy()
new_lr.coef_ = lr.coef_.copy()
# Now we get the SAME probabilities.
np.testing.assert_array_equal(new_lr.predict_proba(X), lr.predict_proba(X))
Hope this helps.

How to find key trees/features from a trained random forest?

I am using Scikit-Learn Random Forest Classifier and trying to extract the meaningful trees/features in order to better understand the prediction results.
I found this method which seems relevant in the documention (http://scikit-learn.org/dev/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.get_params), but couldn't find an example how to use it.
I am also hoping to visualize those trees if possible, any relevant code would be great.
Thank you!
I think you're looking for Forest.feature_importances_. This allows you to see what the relative importance of each input feature is to your final model. Here's a simple example.
import random
import numpy as np
from sklearn.ensemble import RandomForestClassifier
#Lets set up a training dataset. We'll make 100 entries, each with 19 features and
#each row classified as either 0 and 1. We'll control the first 3 features to artificially
#set the first 3 features of rows classified as "1" to a set value, so that we know these are the "important" features. If we do it right, the model should point out these three as important.
#The rest of the features will just be noise.
train_data = [] ##must be all floats.
for x in range(100):
line = []
if random.random()>0.5:
line.append(1.0)
#Let's add 3 features that we know indicate a row classified as "1".
line.append(.77)
line.append(.33)
line.append(.55)
for x in range(16):#fill in the rest with noise
line.append(random.random())
else:
#this is a "0" row, so fill it with noise.
line.append(0.0)
for x in range(19):
line.append(random.random())
train_data.append(line)
train_data = np.array(train_data)
# Create the random forest object which will include all the parameters
# for the fit. Make sure to set compute_importances=True
Forest = RandomForestClassifier(n_estimators = 100, compute_importances=True)
# Fit the training data to the training output and create the decision
# trees. This tells the model that the first column in our data is the classification,
# and the rest of the columns are the features.
Forest = Forest.fit(train_data[0::,1::],train_data[0::,0])
#now you can see the importance of each feature in Forest.feature_importances_
# these values will all add up to one. Let's call the "important" ones the ones that are above average.
important_features = []
for x,i in enumerate(Forest.feature_importances_):
if i>np.average(Forest.feature_importances_):
important_features.append(str(x))
print 'Most important features:',', '.join(important_features)
#we see that the model correctly detected that the first three features are the most important, just as we expected!
To get the relative feature importances, read the relevant section of the documentation along with the code of the linked examples in that same section.
The trees themselves are stored in the estimators_ attribute of the random forest instance (only after the call to the fit method). Now to extract a "key tree" one would first require you to define what it is and what you are expecting to do with it.
You could rank the individual trees by computing there score on held out test set but I don't know what expect to get out of that.
Do you want to prune the forest to make it faster to predict by reducing the number of trees without decreasing the aggregate forest accuracy?
Here is how I visualize the tree:
First make the model after you have done all of the preprocessing, splitting, etc:
# max number of trees = 100
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 100, criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
Make predictions:
# Predicting the Test set results
y_pred = classifier.predict(X_test)
Then make the plot of importances. The variable dataset is the name of the original dataframe.
# get importances from RF
importances = classifier.feature_importances_
# then sort them descending
indices = np.argsort(importances)
# get the features from the original data set
features = dataset.columns[0:26]
# plot them with a horizontal bar chart
plt.figure(1)
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), features[indices])
plt.xlabel('Relative Importance')
This yields a plot as below:

Resources