Omitting function arguments is a nice tool for concise Haskell code.
h :: String -> Int
h = (4 +) . length
What about omitting data constructor arguments in case statements. The following code might be considered a little grungy, where s and i are the final arguments in A and B but are repeated as the final arguments in the body of each case match.
f :: Foo -> Int
f = \case
A s -> 4 + length s
B i -> 2 + id i
Is there a way to omit such arguments in case pattern matching? For constructors with a large number of arguments, this would radically shorten code width. E.g. the following pseudo code.
g :: Foo -> Int
g = \case
{- match `A` constructor -> function application to A's arguments -}
A -> (4 +) . length
{- match `B` constructor -> function application to B's arguments -}
B -> (2 +) . id
The GHC extension RecordWildCards lets you concisely bring all the fields of a constructor into scope (of course, this requires you to give names to those fields).
{-# LANGUAGE LambdaCase, RecordWildCards #-}
data Foo = Foo {field1, field2 :: Int} | Bar {field1 :: Int}
baz = \case
Foo{..} -> 4 + field2
Bar{..} -> 2 + field1
-- plus it also "sucks in" fields from a scope
mkBar400 = let field1 = 400 in Bar{..}
`
You can always refactor case statements on constructors into a single function so that from then on you only pass your concise function definitions as arguments to these specific functions. Allow me to illustrate.
Consider the Maybe a datatype:
data Maybe a = Nothing | Just a
Should you now need to define a function f :: Maybe a -> b (for some fixed b and perhaps also a), instead of writing it like
f Nothing = this
f (Just x) = that x
you could start by first defining a function
maybe f _ Nothing = f
maybe _ g (Just x) = g x
and then f can by defined as maybe this that. Pretty much as what happens with all the familiar recursion patterns.
This way you're effectively refactoring out case statements. The code gets arguably cleaner and it does not require language extensions.
Related
Is there a way in haskell to get all function arguments as a list.
Let's supose we have the following program, where we want to add the two smaller numbers and then subtract the largest. Suppose, we can't change the function definition of foo :: Int -> Int -> Int -> Int. Is there a way to get all function arguments as a list, other than constructing a new list and add all arguments as an element of said list? More importantly, is there a general way of doing this independent of the number of arguments?
Example:
module Foo where
import Data.List
foo :: Int -> Int -> Int -> Int
foo a b c = result!!0 + result!!1 - result!!2 where result = sort ([a, b, c])
is there a general way of doing this independent of the number of arguments?
Not really; at least it's not worth it. First off, this entire idea isn't very useful because lists are homogeneous: all elements must have the same type, so it only works for the rather unusual special case of functions which only take arguments of a single type.
Even then, the problem is that “number of arguments” isn't really a sensible concept in Haskell, because as Willem Van Onsem commented, all functions really only have one argument (further arguments are actually only given to the result of the first application, which has again function type).
That said, at least for a single argument- and final-result type, it is quite easy to pack any number of arguments into a list:
{-# LANGUAGE FlexibleInstances #-}
class UsingList f where
usingList :: ([Int] -> Int) -> f
instance UsingList Int where
usingList f = f []
instance UsingList r => UsingList (Int -> r) where
usingList f a = usingList (f . (a:))
foo :: Int -> Int -> Int -> Int
foo = usingList $ (\[α,β,γ] -> α + β - γ) . sort
It's also possible to make this work for any type of the arguments, using type families or a multi-param type class. What's not so simple though is to write it once and for all with variable type of the final result. The reason being, that would also have to handle a function as the type of final result. But then, that could also be intepreted as “we still need to add one more argument to the list”!
With all respect, I would disagree with #leftaroundabout's answer above. Something being
unusual is not a reason to shun it as unworthy.
It is correct that you would not be able to define a polymorphic variadic list constructor
without type annotations. However, we're not usually dealing with Haskell 98, where type
annotations were never required. With Dependent Haskell just around the corner, some
familiarity with non-trivial type annotations is becoming vital.
So, let's take a shot at this, disregarding worthiness considerations.
One way to define a function that does not seem to admit a single type is to make it a method of a
suitably constructed class. Many a trick involving type classes were devised by cunning
Haskellers, starting at least as early as 15 years ago. Even if we don't understand their
type wizardry in all its depth, we may still try our hand with a similar approach.
Let us first try to obtain a method for summing any number of Integers. That means repeatedly
applying a function like (+), with a uniform type such as a -> a -> a. Here's one way to do
it:
class Eval a where
eval :: Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval i = \y -> eval (i + y)
instance Eval Integer where
eval i = i
And this is the extract from repl:
λ eval 1 2 3 :: Integer
6
Notice that we can't do without explicit type annotation, because the very idea of our approach is
that an expression eval x1 ... xn may either be a function that waits for yet another argument,
or a final value.
One generalization now is to actually make a list of values. The science tells us that
we may derive any monoid from a list. Indeed, insofar as sum is a monoid, we may turn arguments to
a list, then sum it and obtain the same result as above.
Here's how we can go about turning arguments of our method to a list:
class Eval a where
eval2 :: [Integer] -> Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [Integer] where
eval2 is i = i:is
This is how it would work:
λ eval2 [] 1 2 3 4 5 :: [Integer]
[5,4,3,2,1]
Unfortunately, we have to make eval binary, rather than unary, because it now has to compose two
different things: a (possibly empty) list of values and the next value to put in. Notice how it's
similar to the usual foldr:
λ foldr (:) [] [1,2,3,4,5]
[1,2,3,4,5]
The next generalization we'd like to have is allowing arbitrary types inside the list. It's a bit
tricky, as we have to make Eval a 2-parameter type class:
class Eval a i where
eval2 :: [i] -> i -> a
instance (Eval a i) => Eval (i -> a) i where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [i] i where
eval2 is i = i:is
It works as the previous with Integers, but it can also carry any other type, even a function:
(I'm sorry for the messy example. I had to show a function somehow.)
λ ($ 10) <$> (eval2 [] (+1) (subtract 2) (*3) (^4) :: [Integer -> Integer])
[10000,30,8,11]
So far so good: we can convert any number of arguments into a list. However, it will be hard to
compose this function with the one that would do useful work with the resulting list, because
composition only admits unary functions − with some trickery, binary ones, but in no way the
variadic. Seems like we'll have to define our own way to compose functions. That's how I see it:
class Ap a i r where
apply :: ([i] -> r) -> [i] -> i -> a
apply', ($...) :: ([i] -> r) -> i -> a
($...) = apply'
instance Ap a i r => Ap (i -> a) i r where
apply f xs x = \y -> apply f (x:xs) y
apply' f x = \y -> apply f [x] y
instance Ap r i r where
apply f xs x = f $ x:xs
apply' f x = f [x]
Now we can write our desired function as an application of a list-admitting function to any number
of arguments:
foo' :: (Num r, Ord r, Ap a r r) => r -> a
foo' = (g $...)
where f = (\result -> (result !! 0) + (result !! 1) - (result !! 2))
g = f . sort
You'll still have to type annotate it at every call site, like this:
λ foo' 4 5 10 :: Integer
-1
− But so far, that's the best I can do.
The more I study Haskell, the more I am certain that nothing is impossible.
Say, I have a data type
data FooBar a = Foo String Char [a]
| Bar String Int [a]
I need to create values of this type and give empty list as the second field:
Foo "hello" 'a' []
or
Bar "world" 1 []
1) I do this everywhere in my code and I think it would be nice if I could omit the empty list part somehow and have the empty list assigned implicitly. Is this possible? Something similar to default function arguments in other languages.
2) Because of this [] "default" value, I often need to have a partial constructor application that results in a function that takes the first two values:
mkFoo x y = Foo x y []
mkBar x y = Bar x y []
Is there a "better" (more idiomatic, etc) way to do it? to avoid defining new functions?
3) I need a way to add things to the list:
add (Foo u v xs) x = Foo u v (x:xs)
add (Bar u v xs) x = Bar u v (x:xs)
Is this how it is done idiomatically? Just a general purpose function?
As you see I am a beginner, so maybe these questions make little sense. Hope not.
I'll address your questions one by one.
Default arguments do not exist in Haskell. They are simply not worth the added complexity and loss of compositionally. Being a functional language, you do a lot more function manipulation in Haskell, so funkiness like default arguments would be tough to handle.
One thing I didn't realize when I started Haskell is that data constructors are functions just like everything else. In your example,
Foo :: String -> Char -> [a] -> FooBar a
Thus you can write functions for filling in various arguments of other functions, and then those functions will work with Foo or Bar or whatever.
fill1 :: a -> (a -> b) -> b
fill1 a f = f a
--Note that fill1 = flip ($)
fill2 :: b -> (a -> b -> c) -> (a -> c)
--Equivalently, fill2 :: b -> (a -> b -> c) -> a -> c
fill2 b f = \a -> f a b
fill3 :: c -> (a -> b -> c -> d) -> (a -> b -> d)
fill3 c f = \a b -> f a b c
fill3Empty :: (a -> b -> [c] -> d) -> (a -> b -> d)
fill3Empty f = fill3 [] f
--Now, we can write
> fill3Empty Foo x y
Foo x y []
The lens package provides elegant solutions to questions like this. However, you can tell at a glance that this package is enormously complicated. Here is the net result of how you would call the lens package:
_list :: Lens (FooBar a) (FooBar b) [a] [b]
_list = lens getter setter
where getter (Foo _ _ as) = as
getter (Bar _ _ as) = as
setter (Foo s c _) bs = Foo s c bs
setter (Bar s i _) bs = Bar s i bs
Now we can do
> over _list (3:) (Foo "ab" 'c' [2,1])
Foo "ab" 'c' [3,2,1]
Some explanation: the lens function produces a Lens type when given a getter and a setter for some type. Lens s t a b is a type that says "s holds an a and t holds a b. Thus, if you give me a function a -> b, I can give you a function s -> t". That is exactly what over does: you provide it a lens and a function (in our case, (3:) was a function that adds 3 to the front of a List) and it applies the function "where the lens indicates". This is very similar to a functor, however, we have significantly more freedom (in this example, the functor instance would be obligated to change every element of the lists, not operate on the lists themselves).
Note that our new _list lens is very generic: it works equally well over Foo and Bar and the lens package provides many functions other than over for doing magical things.
The idiomatic thing is to take those parameters of a function or constructor that you commonly want to partially apply, and move them toward the beginning:
data FooBar a = Foo [a] String Char
| Bar [a] String Int
foo :: String -> Char -> FooBar a
foo = Foo []
bar :: String -> Int -> FooBar a
bar = Bar []
Similarly, reordering the parameters to add lets you partially apply add to get functions of type FooBar a -> FooBar a, which can be easily composed:
add :: a -> FooBar a -> FooBar a
add x (Foo xs u v) = Foo (x:xs) u v
add123 :: FooBar Int -> FooBar Int
add123 = add 1 . add 2 . add 3
add123 (foo "bar" 42) == Foo [1, 2, 3] "bar" 42
(2) and (3) are perfectly normal and idiomatic ways of doing such things. About (2) in particular, one expression you will occasionally hear is "smart constructor". That just means a function like your mkFoo/mkBar that produces a FooBar a (or a Maybe (FooBar a) etc.) with some extra logic to ensure only reasonable values can be constructed.
Here are some additional tricks that might (or might not!) make sense, depending on what you are trying to do with FooBar.
If you use Foo values and Barvalues in similar ways most of the time (i.e. the difference between having the Char field and the Int one is a minor detail), it makes sense to factor out the similarities and use a single constructor:
data FooBar a = FooBar String FooBarTag [a]
data FooBarTag = Foo Char | Bar Int
Beyond avoiding case analysis when you don't care about the FooBarTag, that allows you to safely use record syntax (records and types with multiple constructors do not mix well).
data FooBar a = FooBar
{ fooBarName :: String
, fooBarTag :: FooBarTag
, fooBarList :: [a]
}
Records allow you to use the fields without having to pattern match the whole thing.
If there are sensible defaults for all fields in a FooBar, you can go one step beyond mkFoo-like constructors and define a default value.
defaultFooBar :: FooBar a
defaultFooBar = FooBar
{ fooBarName = ""
, fooBarTag = Bar 0
, fooBarList = []
}
You don't need records to use a default, but they allow overriding default fields conveniently.
myFooBar = defaultFooBar
{ fooBarTag = Foo 'x'
}
If you ever get tired of typing long names for the defaults over and over, consider the data-default package:
instance Default (FooBar a) where
def = defaultFooBar
myFooBar = def { fooBarTag = Foo 'x' }
Do note that a significant number of people do not like the Default class, and not without reason. Still, for types which are very specific to your application (e.g. configuration settings) Default is perfectly fine IMO.
Finally, updating record fields can be messy. If you end up annoyed by that, you will find lens very useful. Note that it is a big library, and it might be a little overwhelming to a beginner, so take a deep breath beforehand. Here is a small sample:
{-# LANGUAGE TemplateHaskell #-} -- At the top of the file. Needed for makeLenses.
import Control.Lens
-- Note the underscores.
-- If you are going to use lenses, it is sensible not to export the field names.
data FooBar a = FooBar
{ _fooBarName :: String
, _fooBarTag :: FooBarTag
, _fooBarList :: [a]
}
makeLenses ''FooBar -- Defines lenses for the fields automatically.
defaultFooBar :: FooBar a
defaultFooBar = FooBar
{ _fooBarName = ""
, _fooBarTag = Bar 0
, _fooBarList = []
}
-- Using a lens (fooBarTag) to set a field without record syntax.
-- Note the lack of underscores in the name of the lens.
myFooBar = set fooBarTag (Foo 'x') defaultFooBar
-- Using a lens to access a field.
myTag = view fooBarTag myFooBar -- Results in Foo 'x'
-- Using a lens (fooBarList) to modify a field.
add :: a -> FooBar a -> FooBar a
add x fb = over fooBarList (x :) fb
-- set, view and over have operator equivalents, (.~). (^.) and (%~) respectively.
-- Note that (^.) is flipped with respect to view.
Here is a gentle introduction to lens which focuses on aspects I have not demonstrated here, specially in how nicely lenses can be composed.
Lately I've been experimenting with the general question, what will GHC allow me to do? I was surprised to find, that it considers the following program as valid
module BrokenRecursiveType where
data FooType = Foo FooType
main = print "it compiles!"
At first I thought, how is this useful? Then I remembered that Haskell is lazy, so I could, perhaps, define a function like the following to use it
allTheFoos = Foo allTheFoos
Then I thought, so how is this useful?
Are there any valuable use cases (thought up or actually experienced) for types of similar form to FooType?
An evaluation counter
You could, hypothetically, use FooType to optionally abort a recursive function early: For example, take this code:
foo _ 0 = 1
foo (Foo x) n = n * foo x (n-1)
If you call foo allTheFoos, then you get the plain factorial function. But you can pass a different value of type FooType, e.g.
atMostFiveSteps = Foo (Foo (Foo (Foo (Foo (error "out of steps")))))
and then foo atMostFiveSteps will only work for values smaller than 6.
I’m neither saying that this is particularly useful nor that this is the best way to implement such a feature...
A void type
BTW, there is a similar construction, namely
newtype FooType' = Foo' FooType'
which is useful: It is one way to define the void type that has no values besides ⊥. You can still define
allTheFoos' = Foo' allTheFoos'
as before, but because operationally, Foo does nothing, this is equivalent to x = x and hence also ⊥.
Let's just slightly extend your data type - let's wrap the recursion into a type parameters:
data FooType f = Foo (f (FooType f))
(so your original data type would be FooType Identity).
Now we can modulate the recursive reference by any f :: * -> *. But this extended type is extremely useful! In fact, it can be used to express any recursive data type using a non-recursive one. One well kwnown package where it's defined is recursion-schemes, as Fix:
newtype Fix f = Fix (f (Fix f))
For example, if we define
data List' a r = Cons' a r | Nil'
then Fix (List' a) is isomorphic to [a]:
nil :: Fix (List' a)
nil = Fix Nil'
cons :: a -> Fix (List' a) -> Fix (List' a)
cons x xs = Fix (Cons' x xs)
Moreover, Fix allows us to define many generic operations on recursive data types such as folding/unfolding (catamorphisms/anamorphisms).
An extension of your FooType could be an abstract syntax tree. Taking a simple example language only having integers, sums and inverses, the type definition would be
data Exp = AnInt Integer
| AnInverse Exp
| ASum Exp Exp
All the following would be Exp instances:
AnInt 2 -- 2
AnInverse ( AnInt 2 ) -- 1 / 2
AnInverse ( ASum ( AnInt 2 ) ( AnInt 3 ) ) -- 1 / ( 2 + 3 )
AnInverse ( ASum 1 ( AnInverse 2 ) ) -- 1 / ( 1 + 1 / 2 )
If we removed AnInt and ASum from the Exp definition, the type would be isomorphic to your FooType (with AnInverse replacing Foo).
data FooType = Foo FooType
allTheFoos = Foo allTheFoos
I think there are two useful ways to look at this type.
First is the "moral" way—the common approach where we pretend that Haskell types don't have "bottom" (non-terminating) values. From this perspective, FooType is a unit type—a type that has only one value, just like (). This is because if you forbid bottoms, then the only value of type Foo is your allTheFoos.
From the "immoral" perspective (where bottoms are allowed), FooType is either an infinite tower of Foo constructors, or a finite tower of Foo constructors with a bottom at the bottom. This is similar to the "moral" interpretation of this type:
data Nat = Zero | Succ Nat
...but with bottom instead of zero, which means that you can't write functions like this one:
plus :: Nat -> Nat -> Nat
plus Zero y = y
plus (Succ x) y = Succ (x `plus` y)
Where does that leave us? I think the conclusion is that FooType isn't really an useful type, because:
If you look at it "morally" it's equivalent to ().
If you look at it "immorally" it's similar to Nat but any functions that tries to match a "zero" is non-terminating.
The following type:
newtype H a b = Fn {invoke :: H b a -> b}
while not exactly the same as yours but is in a similar spirit, have been shown by Launchbury, Krstic, and Sauerwein to have interesting uses regarding corouitining: https://arxiv.org/pdf/1309.5135.pdf
Is there a way in haskell to erase type information/downcast to a polymorphic value ?
In the example I have a boxed type T which can contain either an Int or a Char
And I want to write a function which extract this value without knowing which type it is.
{#- LANGUAGE RankNTypes -#}
data T = I Int | C Char
-- This is not working because GHC cannot bind "a"
-- with specific type Int and Char at the same time.
-- I just want a polymorphic value back ;(
getValue :: T -> (forall a. a)
getValue (I val) = val
getValue (C val) = val
-- This on the other hand works, because the function
-- is local to the pattern matching expression
onValue :: T -> (forall a. a -> a) -> T
onValue (I val) f = I $ f val
onValue (C val) f = C $ f val
Is there a way to write a function that can extract this value without forcing a type at the end ?
a getValue function like the first one ?
Let me know if it is not clear enough.
Answer
So the question was stupid as AndrewC (in the comment) and YellPika pointed out. An infinite type has no meaning.
J. Abrahamson provides an explanation for what I am looking for, so I put his answer as the solution.
P.S: I do not want to use GADT as I do not want a new type each time.
What you probably want is not to return a value (forall a . a) as it is wrong on several fronts. For one, you do not have any value but instead just one of two. For two, such a type cannot exist in a well-behaved program: it corresponds to the type of infinite loops and exceptions, e.g. bottom.
Finally, such a type allows the person who owns it to make the choice to instantiate it more concretely. Since you're giving it to the caller of your function that means that they would get to choose which of an Int or Char you had. Clearly that doesn't make sense.
Instead, what you most likely want is to make a demand of the user of your function: "you have to work regardless of what this type is".
foo :: (forall a . a -> r) -> (T -> r)
foo f (I i) = f i
foo f (C c) = f c
You'll find this function to be really similar to the following
bar :: r -> T -> r
bar x (I _) = x
bar x (C _) = x
In other words, if you force the consumer of your function to disregard all type information then, well, actually nothing at all remains: e.g. a constant function.
You can use GADTs:
{-# LANGUAGE GADTs #-}
data T a where
I :: Int -> T Int
C :: Char -> T Char
getValue :: T a -> a
getValue (I i) = i
getValue (C c) = c
If you turn on ExistentialTypes, you can write:
data Anything = forall a. Anything a
getValue :: T -> Anything
getValue (I val) = Anything val
getValue (C val) = Anything val
However, this is pretty useless. Say we pattern match on an Anything:
doSomethingWith (Anything x) = ?
We don't know anything about x other than that it exists... (well, not even - it might be undefined). There's no type information, so we can't do anything with it.
Suppose I have
data Foo = A String Int | B Int
I want to take an xs :: [Foo] and sort it such that all the As are at the beginning, sorted by their strings, but with the ints in the order they appeared in the list, and then have all the Bs at the end, in the same order they appeared.
In particular, I want to create a new list containg the first A of each string and the first B.
I did this by defining a function taking Foos to (Int, String)s and using sortBy and groupBy.
Is there a cleaner way to do this? Preferably one that generalizes to at least 10 constructors.
Typeable, maybe? Something else that's nicer?
EDIT: This is used for processing a list of Foos that is used elsewhere. There is already an Ord instance which is the normal ordering.
You can use
sortBy (comparing foo)
where foo is a function that extracts the interesting parts into something comparable (e.g. Ints).
In the example, since you want the As sorted by their Strings, a mapping to Int with the desired properties would be too complicated, so we use a compound target type.
foo (A s _) = (0,s)
foo (B _) = (1,"")
would be a possible helper. This is more or less equivalent to Tikhon Jelvis' suggestion, but it leaves space for the natural Ord instance.
To make it easier to build comparison function for ADTs with large number of constructors, you can map values to their constructor index with SYB:
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Generics
data Foo = A String Int | B Int deriving (Show, Eq, Typeable, Data)
cIndex :: Data a => a -> Int
cIndex = constrIndex . toConstr
Example:
*Main Data.Generics> cIndex $ A "foo" 42
1
*Main Data.Generics> cIndex $ B 0
2
Edit:After re-reading your question, I think the best option is to make Foo an instance of Ord. I do not think there is any way to do this automatically that will act the way you want (just using deriving will create different behavior).
Once Foo is an instance of Ord, you can just use sort from Data.List.
In your exact example, you can do something like this:
data Foo = A String Int | B Int deriving (Eq)
instance Ord Foo where
(A _ _) <= (B _) = True
(A s _) <= (A s' _) = s <= s'
(B _) <= (B _) = True
When something is an instance of Ord, it means the data type has some ordering. Once we know how to order something, we can use a bunch of existing functions (like sort) on it and it will behave how you want. Anything in Ord has to be part of Eq, which is what the deriving (Eq) bit does automatically.
You can also derive Ord. However, the behavior will not be exactly what you want--it will order by all of the fields if it has to (e.g. it will put As with the same string in order by their integers).
Further edit: I was thinking about it some more and realized my solution is probably semantically wrong.
An Ord instance is a statement about your whole data type. For example, I'm saying that Bs are always equal with each other when the derived Eq instance says otherwise.
If the data your representing always behaves like this (that is, Bs are all equal and As with the same string are all equal) then an Ord instance makes sense. Otherwise, you should not actually do this.
However, you can do something almost exactly like this: write your own special compare function (Foo -> Foo -> Ordering) that encapsulates exactly what you want to do then use sortBy. This properly codifies that your particular sorting is special rather than the natural ordering of the data type.
You could use some template haskell to fill in the missing transitive cases. The mkTransitiveLt creates the transitive closure of the given cases (if you order them least to greatest). This gives you a working less-than, which can be turned into a function that returns an Ordering.
{-# LANGUAGE TemplateHaskell #-}
import MkTransitiveLt
import Data.List (sortBy)
data Foo = A String Int | B Int | C | D | E deriving(Show)
cmp a b = $(mkTransitiveLt [|
case (a, b) of
(A _ _, B _) -> True
(B _, C) -> True
(C, D) -> True
(D, E) -> True
(A s _, A s' _) -> s < s'
otherwise -> False|])
lt2Ord f a b =
case (f a b, f b a) of
(True, _) -> LT
(_, True) -> GT
otherwise -> EQ
main = print $ sortBy (lt2Ord cmp) [A "Z" 1, A "A" 1, B 1, A "A" 0, C]
Generates:
[A "A" 1,A "A" 0,A "Z" 1,B 1,C]
mkTransitiveLt must be defined in a separate module:
module MkTransitiveLt (mkTransitiveLt)
where
import Language.Haskell.TH
mkTransitiveLt :: ExpQ -> ExpQ
mkTransitiveLt eq = do
CaseE e ms <- eq
return . CaseE e . reverse . foldl go [] $ ms
where
go ms m#(Match (TupP [a, b]) body decls) = (m:ms) ++
[Match (TupP [x, b]) body decls | Match (TupP [x, y]) _ _ <- ms, y == a]
go ms m = m:ms