How to invoke newly added system call by the function id without using syscall(__NR_mysyscall) - linux

I am working with Linux-3.9.3 kernel in Ubuntu 10.04. I have added a basic system call in the kernel directory of the linux-3.9.3 source tree. I am able to use it with syscall() by passing my newly system call number in it as an argument. But I want to invoke it directly by using its method name as in the case of getpid() or open() system calls. Can any one help me to add it in GNU C library. I went through few documents but did not get any clear idea of how to accomplish it.
Thanks!!!

Assuming you are on a 64 bits Linux x86-64, the relevant ABI is the x86-64 ABI. Read also the x86 calling conventions wikipage and the linux assembly howto and syscalls(2)
So syscalls are using a different convention than ordinary function calls (e.g. all arguments are passed by registers, error condition could use the carry bit). Hence, you need a C wrapper to make your syscall available to C applications.
You could look into the source code of existing C libraries, like GNU libc or musl libc (so you'll need to make your own library for that syscall).
The MUSL libc source code is very readable, see e.g. its src/unistd/fsync.c as an example.
I would suggest wrapping your new syscall in your own library without patching libc. Notice that some uncommon syscalls are sitting in a different library, e.g. request_key(2) has its C wrapper in libkeyutils

Related

Does executable file of C++ program contain object code of system calls also

We use Linux system calls like fork(), pthread(), signal() and so on in C or C++ programs and compile the program to generate executable file (a.out). Now my doubt is whether the file a.out contain the object code of all linux system calls used, or whether the executable contain only the calls to system functions and the system call functions are linked during runtime? Suppose if I move my a.out file to some other Linux operating system which implements system calls in different syntax and try to compile it there will it work?
My doubt is whether system call function definitions part of a.out file?
User space binaries don't contain implementations of system calls. That would mean that any user could inject any code into kernel and take over system.
Instead they need to switch to kernel mode, by using processor interrupt or special instruction. Then processor can execute system call implementation from the kernel.
User space library, such as libc, is usually used, which provides stubs, which convert arguments of a syscall to a proper protocol and trigger jump to kernel mode. It is usually linked dynamically, so these stubs also don't appear in executable file.

Golang, calling a new system call in Linux

I have a Linux kernel with a custom system call. In C, I can use the standard C library syscall() to call a system call by its number. How can I call this new system call in Go?
In C, on Linux, there are also macros that can emit the needed inline assembly to make a system call directly.
I would hate to have to hack syscall_linux.go.
I see that in Go, syscall_linux.go is processed by a perl script (mysyscall.pl) to generate assembly. That is also pretty complicated and hacking it to generate a new stub also seems needlessly messy.
The syscall package has syscall.Syscall and syscall.Syscall6 to make syscalls directly.

System calls : difference between sys_exit(), SYS_exit and exit()

What is the difference between SYS_exit, sys_exit() and exit()?
What I understand :
The linux kernel provides system calls, which are listed in man 2 syscalls.
There are wrapper functions of those syscalls provided by glibc which have mostly similar names as the syscalls.
My question : In man 2 syscalls, there is no mention of SYS_exit and sys_exit(), for example. What are they?
Note : The syscall exit here is only an example. My question really is : What are SYS_xxx and sys_xxx()?
I'll use exit() as in your example although this applies to all system calls.
The functions of the form sys_exit() are the actual entry points to the kernel routine that implements the function you think of as exit(). These symbols are not even available to user-mode programmers. That is, unless you are hacking the kernel, you cannot link to these functions because their symbols are not available outside the kernel. If I wrote libmsw.a which had a file scope function like
static int msw_func() {}
defined in it, you would have no success trying to link to it because it is not exported in the libmsw symbol table; that is:
cc your_program.c libmsw.a
would yield an error like:
ld: cannot resolve symbol msw_func
because it isn't exported; the same applies for sys_exit() as contained in the kernel.
In order for a user program to get to kernel routines, the syscall(2) interface needs to be used to effect a switch from user-mode to kernel mode. When that mode-switch (somtimes called a trap) occurs a small integer is used to look up the proper kernel routine in a kernel table that maps integers to kernel functions. An entry in the table has the form
{SYS_exit, sys_exit},
Where SYS_exit is an preprocessor macro which is
#define SYS_exit (1)
and has been 1 since before you were born because there hasn't been reason to change it. It also happens to be the first entry in the table of system calls which makes look up a simple array index.
As you note in your question, the proper way for a regular user-mode program to access sys_exit is through the thin wrapper in glibc (or similar core library). The only reason you'd ever need to mess with SYS_exit or sys_exit is if you were writing kernel code.
This is now addressed in man syscall itself,
Roughly speaking, the code belonging to the system call with number __NR_xxx defined in /usr/include/asm/unistd.h can be found in the Linux kernel source in the routine sys_xxx(). (The dispatch table for i386 can be found in /usr/src/linux/arch/i386/kernel/entry.S.) There are many exceptions, however, mostly because older system calls were superseded by newer ones, and this has been treated somewhat unsystematically. On platforms with proprietary operating-system emulation, such as parisc, sparc, sparc64, and alpha, there are many additional system calls; mips64 also contains a full set of 32-bit system calls.
At least now /usr/include/asm/unistd.h is a preprocessor hack that links to either,
/usr/include/asm/unistd_32.h
/usr/include/asm/unistd_x32.h
/usr/include/asm/unistd_64.h
The C function exit() is defined in stdlib.h. Think of this as a high level event driven interface that allows you to register a callback with atexit()
/* Call all functions registered with `atexit' and `on_exit',
in the reverse of the order in which they were registered,
perform stdio cleanup, and terminate program execution with STATUS. */
extern void exit (int __status) __THROW __attribute__ ((__noreturn__));
So essentially the kernel provides an interface (C symbols) called __NR_xxx. Traditionally people want sys_exit() which is defined with a preprocessor macro SYS_exit. This macro creates the sys_exit() function. The exit() function is part of the standard C library stdlib.h and ported to other operating systems that lack the Linux Kernel ABI entirely (there may not be __NR_xxx functions) and potentially don't even have sys_* functions available either (you could write exit() to send the interrupt or use VDSO in Assembly).

What are the differences between LD_PRELOAD and strace?

Both methods are used to gather system calls also parameters and return values of them. When we prefer LD_PRELOAD and why? Maybe we can say that we can only gather syscalls via strace but we can gather library calls with LD_PRELOAD trick. However, there is another tracer for libraries whose name is ltrace.
strace is using the ptrace(2) syscall (with PTRACE_SYSCALL probably), so will catch every system call (thru kernel hooks installed by ptrace). It will work on any executable, even on statically linked ones, or those using something else than your distribution's GNU Glibc (like e.g. musl-libc, or some assembly written utility like old versions of busybox).
LD_PRELOAD tricks use the dynamic loader e.g. /lib64/ld-linux-x86-64.so.2 or /lib/ld.so (see ld.so(8) man page) etc... so won't work with statically linked executables (or those using something else than your dynamic loader and your GNU libc).
ltrace is probably also ptrace based.
And all these are being free software, you could study their source code (and improve it).

Learning x86 assembly on Mac/BSD: Kernel built-in functions? How to know arguments / order?

I have been playing around with yasm in an attempt to grasp a basic understanding of x86 assembly. From my tests, it seems you call functions from the kernel by setting the EAX register with the number of the function you want. Then, you push the function arguments onto the stack and issue a syscall (0x80) to execute the instruction. This is Mac OS X / BSD style, I know Linux uses registers to hold arguments instead of using the stack. Does this sound right? Is this the basic idea?
I am a little confused because where are the functions documented? How would I know what arguments, and in what order, to push them onto the stack? Should I look in syscall.h for the answers? It seems there would be a specific reference for supported kernel calls other than C headers.
Also, do standard C functions like printf() rely on the kernel's built-in functions for say, writing to stdout? In other words, does the C compiler know what the kernel functions are and is it trying to "figure out" how to take C code and translate it to kernel functions (which the assembler then translates to machine code)?
C code -> C compiler -> kernel calls / asm -> assembler -> machine binary
I'm sure these are really basic questions, but my understanding of everything that happens after the C compiler is rather muddy.
System Call Documentation
Make sure you have the XCode Developer Tools installed for the UNIX manpages for Mac OS X and then run man 2 intro on the commandline. For a list of system calls, you can use syscall.h (which is useful for the system call numbers) or you can run man 2 syscalls. Then to look up each specific system call, you can run man 2 syscall_name i.e. for read, you can run man 2 read.
UNIX manpages are a historically significant documentation reference for UNIX systems. Pretty much any low-level POSIX function or system call will be documented using them, as well as most commands. Section 2 covers just system calls, and so when you run man 2 pagename, you're asking for the manpage in the system calls section. Section 3 also deals with library functions, so you can run man 3 sprintf the next time you want to read about sprintf.
How C Libraries relate to System Calls
As for how C libraries implement their functionality, usually they build everything on top of system calls, especially in UNIX-like operating systems. malloc internally uses mmap() or brk() on a lot of platforms to get a hold of the actual memory for your process and I/O functions will often use buffers with read, write calls. If there's some other mechanism or library providing the needed functionality, they may also choose to use those instead (i.e. some C libraries for DOS may make use of direct BIOS interrupts instead of calling only DOS interrupts, whereas C libraries for Windows might use Win32 API calls).
Often only a subset of the library functions will need system calls or underlying mechanisms to be implemented though, since the remainder can be written in terms of that subset.
To actually know what's going on with your specific implementation, you should investigate what's happening in a debugger (just keep stepping into all the function calls) or browse the source code of the C library you're using.
How your C code using C libraries relates to machine code
In your question you also suggested:
C code -> C compiler -> kernel calls / asm -> assembler -> machine binary
This is combining two very different concepts. Functions and function calls are supported at the machine code and assembly level, so your C code has a very direct mapping to machine code:
C code -> C compiler -> Assembler -> Linker -> Machine Binary
That is, the compiler translates your function calls in C to function calls in Assembly and system calls in C to system calls in Assembly.
However on most platforms, that machine code contains references to shared libraries and functions in those libraries, so your machine code might have a function that calls other functions from a shared library. The OS then loads that shared library's machine code (if it hasn't been loaded yet for something else) and then runs the machine code for the library function. Then if that library function calls system calls via interrupts, the kernel receives the system call request and does low-level operations directly with the hardware or the BIOS.
So in a protected mode OS, your machine code can be seen as doing the following:
<----------+
|
Function call to -> Other function calls --+
or -> System calls to -> Direct hardware access (inside kernel)
or -> BIOS calls (inside kernel)
You can, of course, call system calls directly in your program as well, skipping the need for any libraries, but unless you're writing your own library, there's usually very little need to do this. If you want even lower-level access, you have to write kernel-level code such as drivers or kernel subsystems.
The recommended way is not doing INT 0x80 by yourself, but to use the wrapper functions from the stdlib. These are, of course, available for assembly as well.
Concerning printf, this works this way:
printf internally calls fprintf(stdout, ...), which in turn uses the FILE * stdout to write to the file descriptor 1 and does write(1, ...). This calls a small wrapper function to set the proper registers to the arguments and perform the kernel call.

Resources