In Delphi are reads on TList<x> thread safe? - multithreading

I've built a simple logging class and want to confirm that it is thread safe. Basically the Log, RegisterLogger and UnRegisterLogger will be called from different threads. Log will be called alot (from many different threads) and RegisterLogger and UnRegisterLogger infrequently.
Basically my question can be boiled down to is: "Are reads on TList<x> thread safe?", that is to say can I have multiple threads accessing a TList at the same time.
IExecutionCounterLogger is an interface with a Log method (with the same signature as TExecutionCounterServer.Log)
Type
TExecutionCounterServer = class
private
Loggers : TList<IExecutionCounterLogger>;
Synchronizer : TMultiReadExclusiveWriteSynchronizer;
public
procedure RegisterLogger(Logger : IExecutionCounterLogger);
procedure UnRegisterLogger(Logger : IExecutionCounterLogger);
procedure Log(const ClassName, MethodName : string; ExecutionTime_ms : integer);
constructor Create;
destructor Destroy; override;
end;
constructor TExecutionCounterServer.Create;
begin
Loggers := TList<IExecutionCounterLogger>.Create;
Synchronizer := TMultiReadExclusiveWriteSynchronizer.Create;
end;
destructor TExecutionCounterServer.Destroy;
begin
Loggers.Free;
Synchronizer.Free;
inherited;
end;
procedure TExecutionCounterServer.Log(const ClassName, MethodName: string; ExecutionTime_ms: integer);
var
Logger: IExecutionCounterLogger;
begin
Synchronizer.BeginRead;
try
for Logger in Loggers do
Logger.Log(ClassName, MethodName, ExecutionTime_ms);
finally
Synchronizer.EndRead;
end;
end;
procedure TExecutionCounterServer.RegisterLogger(Logger: IExecutionCounterLogger);
begin
Synchronizer.BeginWrite;
try
Loggers.Add(Logger);
finally
Synchronizer.EndWrite;
end;
end;
procedure TExecutionCounterServer.UnRegisterLogger(Logger: IExecutionCounterLogger);
var
i : integer;
begin
Synchronizer.BeginWrite;
try
i := Loggers.IndexOf(Logger);
if i = -1 then
raise Exception.Create('Logger not present');
Loggers.Delete(i);
finally
Synchronizer.EndWrite;
end;
end;
As a bit more background, this is a follow on from this question. Basically I've added some instrumentation to every method of a (DCOM) DataSnap server, also I've hooked into every TDataSnapProvider OnGetData and OnUpdateData event.

Are reads on TList<T> thread safe? That is to say can I have multiple threads accessing a TList<T> at the same time?
That is thread safe and needs no synchronisation. Multiple threads can safely read concurrently. That is equivalent to (and in fact implemented as) reading from an array. It is only if one of your threads modifies the list that synchronisation is needed.
Your code is a little more complex than this scenario. You do appear to need to cater for threads modifying the list. But you've done so with TMultiReadExclusiveWriteSynchronizer which is a perfectly good solution. It allows multiple reads threads to operate concurrently, but any write threads are serialized with respect to all other threads.

Emphasizing the first part of your question, you state that calls to RegisterLogger and UnregisterLogger are infrequently. While the Log call is only reading the list, these other two are changing the list. In this case you have to make sure that none of these is executed while a Log call is executing or may occur.
Imagine a Delete in UnregisterLogger is executed during the for loop in Log. The results are unpredictable at least.
It will be not sufficient to use the Synchronizer only in those two writing calls.
So the answer to your question
Are reads on TList thread safe?
can only be: it depends!
If you can make sure that no RegisterLogger and UnregisterLogger happen (i.e. only read calls can happen), you can safely omit the Synchronizer. Otherwise - better not.

Related

Some threads does not execute after creating on Multi-threaded app

I've currently developing a program which executes some AT commands periodically.
I tried to make it multi-threaded because this program should work with 8 GSM modems concurrently.
here is my extended TThread class as TWorkerThread:
TWorkerThread = class(TThread)
private
FThreadJob : TThreadJobs;
FSimNum : Word;
FZylGSM : TZylGSM;
SL_AT : TStringList;
FSignalGauge : TsGauge;
procedure SyncProc;
public
TerminateThread : Boolean;
constructor Create;
property ThreadJob : TThreadJobs read FThreadJob write FThreadJob;
property ZylGSM : TZylGSM read FZylGSM write FZylGSM;
property SimNum : Word read FSimNum write FSimNum;
property SignalGauge: TsGauge read FSignalGauge write FSignalGauge;
protected
procedure Execute; override;
end;
And body of my thread's methods :
constructor TWorkerThread.Create;
begin
inherited Create(True);
if Not Assigned(SL_AT) then SL_AT := TStringList.Create;
SL_AT.Clear;
FThreadJob := tjNone;
TerminateThread := False;
FreeOnTerminate := True;
end;
procedure TWorkerThread.Execute;
begin
inherited;
if FThreadJob = tjNone then Exit;
while TerminateThread=False do Synchronize(SyncProc);
end;
procedure TWorkerThread.SyncProc;
var
ts : String;
SignalStrength : Byte;
begin
if bTerminateFlag then TerminateThread := True;
if TerminateThread then Exit;
case FThreadJob of
tjOperatorName : ;
tjSignalQuality :
begin
FZylGSM.ExecuteATCommand('AT+CSQ', SL_AT);
if (SL_AT.Count>2) And (Pos('OK', SL_AT[2])>0) then begin
ts := Copy(SL_AT[1], Pos(':', SL_AT[1])+1, Length(SL_AT[1]));
ts := Trim(ts);
if ts = '99' then ts:='0';
SignalStrength := StrToIntDef(ts, 0);
SignalGauge.Progress := SignalStrength;
end;
if bTerminateFlag then TerminateThread := True;
// Application.ProcessMessages;
end;
end;
end;
I've used a for loop to create 8 threads like this:
DevPorts.GSM_Ports[i].WorkerThread := TWorkerThread.Create;
DevPorts.GSM_Ports[i].WorkerThread.ThreadJob := tjSignalQuality;
DevPorts.GSM_Ports[i].WorkerThread.SimNum := i+1;
DevPorts.GSM_Ports[i].WorkerThread.SignalGauge := FindComponent('Sig_'+IntToStr(i)) as TsGauge;
DevPorts.GSM_Ports[i].WorkerThread.ZylGSM := DevPorts.GSM_Ports[i].Comm;
DevPorts.GSM_Ports[i].WorkerThread.Start;
The program worked as expected when I commented "Application.ProcessMessages", the problem is when I use "Application.ProcessMessages" in "TWorkerThread.SyncProc", some of my threads don't executes. I know it could be wrong to use ProcessMessage in the thread function but I did it because the Main GUI thread hangs up during send/recv of threads.
Any help will be appreciated.
Do not call Application.ProcessMessages from your threads. This is a terrible thing to do. The best you can hope for is spectacular failures. It calls code that should be run on the main thread on the wrong threads.
The reason your main GUI thread hangs is because you're not running anything multi-threaded. The line while TerminateThread=False do Synchronize(SyncProc); is synchronising everything to run back on the main thread. So currently your threads are pointless.
The purpose of Synchronize() is to allow threads to coordinate access to shared data so you don't have to deal with race conditions. However, the ideal is to share as little data as possible so that your threads can work independently of each other (and the main thread), without having to worry values under its control being changed at inappropriate times.
So alarm bells are screaming when you make most of your worker thread's members public:
public
TerminateThread : Boolean;
constructor Create;
property ThreadJob : TThreadJobs read FThreadJob write FThreadJob;
property ZylGSM : TZylGSM read FZylGSM write FZylGSM;
property SimNum : Word read FSimNum write FSimNum;
property SignalGauge: TsGauge read FSignalGauge write FSignalGauge;
You need to reevaluate what the responsibilities of your worker threads are and encapsulate that work appropriately. (Only call Synchronize() for code that should be synchronised!) However, I'm not familiar with the components you're using, and you may find that they're poorly written and not suitable for multi-threading as a result.
Other problems
Apart from the glaring immediate problems you have. There are also a number of mistakes demonstrating gaps in your understanding of multi-threaded development.
Do not call inherited from TWorkerThread.Execute. The ancestor method is abstract - has no implementation an cannot be called. And even though the Delphi compiler generously protects you from your mistake, it's a mistake nonetheless.
Your implementation of TerminateThread : Boolean; replicates existing functionality built into TThread. Instead of reinventing the wheel, use what Delphi has already provided.
I cannot see where you declared or are setting bTerminateFlag. My hunch is it's global. Using globals with multiple threads is like juggling flaming torches while standing in a room filled with open barrels of gunpowder.
Some guesses
I can hazard some guesses based on what you are trying to do in the code you have shown.
It looks like you're updating TsGuage instances to visually indicate the signal strength for each device. This is a GUI update that must be synchronised.
The line FZylGSM.ExecuteATCommand('AT+CSQ', SL_AT); seems to be the place where you interact with the device. It's probably also the slowest and what you want to processes off the main thread. This should not be synchronised if possible. However, it as indicated earlier, the feasibility of doing so depends on the implementation of that component.
That said, it seems the only line you should be synchronising is: SignalGauge.Progress := SignalStrength;.

What is the difference between using TTimer and using TThread

I have developed an application that connects to SQL Server database and reads some data from tables every 1 second.
For this purpose I use TTimer but the delay of the database response affects my application performance.
I know a little about TThread in Delphi, what I want to know now is the difference between using TTimer and TThread? And using TThread instead of TTimer is useful for my application performance in this case?
The main difference between the two can be found in their class definition:
TTimer = class(TComponent)
TThread = class
While the TTimer class extends TComponent and is a component itself, TThread is an abstract class which extends TObject.
TThread exposes static methods like TThread.Sleep and a peculiar protected method called Execute which must be implemented in the derived class in order to perform the desired job.
TThread directly uses the Processes and Threads functions of the guest OS.
... for this purpose I use TTimer but the delay of Database response affect on my application performance
The reason why this happens is because the OnTimer event of the TTimer object is executed in the calling thread: when a TTimer component is put into a form and its OnTimer event is implemented, the code is executed in the main thread.
The TThread approach is more flexible: if for some reason the code must be performed in the main thread, this can be achieved nesting a sinchronized block inside the thread's Execute method.
If you want to execute database requests in a repeated manner after some time interval, you better consider using a TThread in combination with a TEvent object.
An example of class definition using TEvent:
TMyThread = class(TThread)
private
FInterval: Integer;
FWaitEvent: TEvent;
protected
procedure Execute; override;
procedure TerminatedSet; override;
public
constructor Create(Interval: Cardinal; CreateSuspended: Boolean);
destructor Destroy; override;
end;
The implemented class:
constructor TMyThread.Create(Interval: Cardinal; CreateSuspended: Boolean);
begin
inherited Create(CreateSuspended);
FInterval := Interval;
FWaitEvent := TEvent.Create(nil, False, False, '');
end;
destructor TMyThread.Destroy;
begin
FWaitEvent.Free;
inherited;
end;
procedure TMyThread.TerminatedSet;
begin
inherited;
FWaitEvent.SetEvent;
end;
procedure TMyThread.Execute;
begin
inherited;
while not Terminated do begin
//do your stuff
//wait fo some amount of time before continue the execution
if wrSignaled = FWaitEvent.WaitFor(FInterval) then
Break;
end;
end;
The WaitFor method called on the FWaitEvent object allows to wait for the desired amount of time.
The implementation of the thread's TerminatedSet method allows to put the FWaitEvent object in a signaled state and then exit from the thread before the interval has elapsed.
TTimer is a message-based timer. It posts WM_TIMER messages to the message queue of the thread that creates it. Your database operations are blocking that thread from processing new messages in a timely manner. Assuming your TTimer is in the main UI thread, that is why your app performance suffers. Moving the database operations into a worker thread prevents the main thread's message loop from being blocked.
This doesn't specifically address your q, but as noted in a comment to one of
the other answers, polling a database at the frequency you're doing isn't a good idea, especially if other users are trying to access it.
There are various ways to get notifications from database servers when data changes, without needing to continually poll them. This Embarcadero paper has a very useful review of what's available for various DBMSs:
http://docwiki.embarcadero.com/RADStudio/XE8/en/Database_Alerts_%28FireDAC%29
If your Delphi version includes FireDAC, as you'll see from the link that you could use TFDEventAlerter to receive notifications of data changes on the server if your DBMS supports
it.
If you're using Interbase or Firebird (and maybe some others), there are alternate Delphi components available that don't require FireDAC, e.g. TIBEventAlerter in the IBExpress ibrary for Interbase.
I would suggest keeping your TTimer if you want to on your main form
Then inside your TTimer create a TTask
http://docwiki.embarcadero.com/RADStudio/XE8/en/Tutorial:_Using_Tasks_from_the_Parallel_Programming_Library
https://delphiaball.co.uk/2014/09/08/using-ttask-from-the-parallel-programming-library/
And doing all your DB work in there, but as others have suggested checking every 1 second is not very good practice.
Something like this :
Global var downloaddata : ITask
TimerTimer.Timer(Sender: TObject);
begin
if downloaddata.Status = TTaskStatus.Running then
begin
//If it is already running don't start it again
Exit;
end;
downloaddata := TTask.Create (procedure ()
var //Create Thread var here
MyConnection : TFDConnection;
MyQuery : TFDQuery;
begin
//Do all your Query logic in here
//If you need to do any UI related modifications
TThread.Synchronize(TThread.CurrentThread,procedure()
begin
//Remeber to wrap them inside a Syncronize
end);
//If you have Query variables and this is running on mobile with ARC
//remember to set their connection : properties to nil to avoid memory leaks
//http:stackoverflow.com/questions/32010583/what-happens-to-database-connection-objectsmydac-tmyconnection-under-arc
MyQuery.connection := nil
end);
downloaddata.start
There are much better solutions available this is just a quick basic answer but it should guide you into something better.
Doing logic in your thread would keep your UI repsonsive, but beware that TThread.Syncronize will wait for the main form and depending on the situation TThread.queue would be a better call.
Whether TTimer or TThread is used, it is recommended to run a query only to get data that has been changed. To do that you need to:
Add a 'modified' (TIMESTAMP) column to each table
Add a 'deleted' (TIMESTAMP) column to each table
Add a trigger for INSERT OR UPDATE to update 'modified' field with CURRENT_TIMESTAMP
Add a DESC index on the 'modified' field to speed up queries
Never delete a row, only update 'deleted' field with CURRENT_TIMESTAMP
After first read, it is enough to ask for new data:
select c.* from 'customers' as c where c.modified > '2019...'
You read all data at once and store the result in a temporary memory-array.
After closed the dataset >> you compare (syncronized) with the main-array.
To update data >> run a separate SQL.

Threads and Critical Section correct approach

Right now have a multi-thread scheme like this:
//global variables
var
Form1: TForm1;
ControlFile: TextFile;
MaxThreads, iThreads: integer;
MyCritical: TCriticalSection;
The ControlFile is accessed by the threads, that do a ReadLn, and perform actions with the line obtained:
procedure TForm1.Button2Click(Sender: TObject);
var
HostLine: AnsiString;
FileHandle: integer;
begin
MyCritical:= TCriticalSection.Create;
MaxThreads:= 100;
iThreads:= 0;
while not(eof(ControlFile)) and (iThreads < MaxThreads) do
begin
inc(iThreads);
ReadLn(ControlFile, HostLine);
MyThread.Create(HostLine);
end;
end;
this block is the first doubt. I'm creating 100 threads, each one created received the current line of the textfile. But the problem is that on threads.onterminate, I execute this:
procedure MyThread.MainControl(Sender: TObject);
var
HostLine: string;
begin
try
MyCritical.Acquire;
dec(iThreads);
while not(eof(ControlFile)) and (iThreads < MaxThreads) do
begin
inc(iThreads);
ReadLn(ControlFile, HostLine);
MyThread.Create(HostLine);
end;
finally
MyCritical.Release;
end;
end;
The idea is to keep creating new threads, until the textfile finishes. But if one thread terminate, and execute this procedure, before the first while finished, what happens? The main thread, from button2click will be accessing the file, and the thread's procedure too. This looks strange to me. And the Critical Section, should be global or thread local? And this procedure, MainControl, that opens new threads until the end of the file, should be global or thread local?
First of all, I am not sure it's such a stellar idea to have different threads read from the same text file. It's not that it can't work, but I think it would be much cleaner to simply read the whole thing into a TStringList variable up front, which can then be shared among threads, if needed.
If you do go with what you already have, your critical section must be acquired in the main loop also - the threads that you spawn will start executing immediately by default, so it looks like there could be a race between your main thread and the threads that run MainControl, though you don't show exactly how that call is going to be made.
The critical section needs to be a global variable, as you have it, or a field/property of a global class in order to be shared among threads.
My final point is that it's probably not the greatest idea to create 100 threads either. Unless your threads are mostly waiting on I/O or events, you should generally not have more threads than you have CPU cores. It's better to use a pool of worker threads and a queue of work items that can then be doled out to the running threads. There's supposedly built-in support for some of this in more recent Delphi RTLs. I personally use my own tried and true custom thread pool implementation, so I can't give you any specific help with that part.
The call to OnTerminate is already synchronised.
procedure TThread.DoTerminate;
begin
if Assigned(FOnTerminate) then Synchronize(CallOnTerminate);
end;
So the critical section is not actually needed at all because all the code you've shown runs in the context of the main thread.

Synchronizing/sending data between threads

The app is written in Delphi XE.
I have two classes, a TBoss and TWorker, which are both based of of TThread.
The TBoss is a single instance thread, which starts up and then will create about 20 TWorker threads.
When the boss creates a instance of TWorker it assigns it a method to call synchronize on, when the Worker has finished with what it's doing it calls this method which allows the Boss to access a record on the Worker.
However I feel this is a problem, calling synchronize appears to be locking up the whole application - blocking the main (ui) thread. Really it should just be synchronizing that worker to the boss thread....
Previously I used messages/packed records to send content between threads which worked well. However doing it this way is much cleaner and nicer.... just very blocking.
Is there a way to call Syncronize in the worker to only wait for the Boss thread?
My code:
type
TWorker = class(TThread)
private
fResult : TResultRecord;
procedure SetOnSendResult(const Value: TNotifyEvent);
....
....
public
property OnSendResult: TNotifyEvent write SetOnSendResult;
property Result : TResultRecord read fResult;
....
end;
...
...
procedure TWorker.SendBossResults;
begin
if (Terminated = False) then
begin
Synchronize(SendResult);
end;
end;
procedure TWorker.SendResult;
begin
if (Terminated = false) and Assigned(FOnSendResult) then
begin
FOnSendResult(Self);
end;
end;
Then in my Boss thread I will do something like this
var
Worker : TWorker;
begin
Worker := TWorker.Create;
Worker.OnTerminate := OnWorkerThreadTerminate;
Worker.OnSendResult := ProcessWorkerResults;
So my boss then has a method called ProcessWorkerResults - this is what gets run on the Synchronize(SendResult); of the worker.
procedure TBoss.ProcessWorkerResults(Sender: TObject);
begin
if terminated = false then
begin
If TWorker(Sender).Result.HasRecord then
begin
fResults.Add(TWorker(Sender).Result.Items);
end;
end;
end;
Synchronize is specifically designed to execute code in the main thread; that's why it seems to lock everything up.
You can use several ways to communicate from the worker threads to the boss thread:
Add a callback to each worker thread,
and assign it from the boss thread
when it's created. It can pass back
whatever as parameters, along with a
thread ID or some other identifier.
Post a message from the worker thread
to the boss thread using
PostThreadMessage. The
disadvantage here is that the boss
thread has to have a window handle
(see Classes.AllocateHWnd in the
Delphi help and David Heffernan's comment below).
Use a good quality third-party
threading library. See
OmniThreadLibrary - it's free,
OS, and extremely well written.
My choice would be the third. Primoz has done all the hard work for you. :)
After your comment, here's something along the lines of my first suggestion. Note that this is untested, since writing the code for a TBoss and TWorker thread + a test app is a little long for the time I have right this minute... It should be enough to give you the gist, I hope.
type
TWorker = class(TThread)
private
fResult : TResultRecord;
fListIndex: Integer;
procedure SetOnSendResult(const Value: TNotifyEvent);
....
....
public
property OnSendResult: TNotifyEvent write SetOnSendResult;
property Result : TResultRecord read fResult;
property ListIndex: Integer read FListIndex write FListIndex;
....
end;
type
TBoss=class(TThread)
private
FWorkerList: TThreadList; // Create in TBoss.Create, free in TBoss.Free
...
end;
procedure TWorker.SendBossResults;
begin
if not Terminated then
SendResult;
end;
procedure TBoss.ProcessWorkerResults(Sender: TObject);
var
i: Integer;
begin
if not terminated then
begin
If TWorker(Sender).Result.HasRecord then
begin
FWorkerList.LockList;
try
i := TWorker(Sender).ListIndex;
// Update the appropriate record in the WorkerList
TResultRecord(FWorkerList[i]).Whatever...
finally
FWorkerList.UnlockList;
end;
end;
end;
end;
You could use a thread safe queue. In DelphiXE there is the TThreadedQueue. If you don't have DXE, try OmniThreadLibray - this library is very good for all threading issues.
As I mentioned new options in Delphi 2009 and higher, here is a link to an example for Producer / Consumer communication between threads, based on the new objct locks, in my blog:
Thread Synchronization with Guarded Blocks in Delphi
In a note regarding the deprecated methods TThread.Suspend and
TThread.Resume, The Embarcadero DocWiki for Delphi
recommends that “thread
synchronization techniques should be
based on SyncObjs.TEvent and
SyncObjs.TMutex.“ There is, however,
another synchronization class
available since Delphi 2009: TMonitor.
It uses the object lock which has been
introduced in this version ...
public properties of the TWorker class MUST have get and set methods, so you can use a Tcriticalsection to give the values of the properties. Otherwise, you´d be having thread-safe issues. Your example seems ok, but in the real world, with thousands of threads accessing to the same value would result in an read error. Use critical sections.. and you wouldn´t have to use any Synchronize. This way you avoid going to the message queues of windows and improve performance. Besides, if you use this code in a windows service app, (where windows messages aren´t allowed), this example wouldn´t work. The synchronize method doesn´t work unless there´s access to the windows message queue.
Solved!! (answer taken from the question)
The fixes made for this problem where two fold.
First remove the syncronization call in the TWorker SendBossResult method.
Second add a fProcessWorkerResult CritialSection to TBoss class. Create and Free this in create/destroy of the TBoss. In the ProcessWorkerResults method call fProcessWorkerResult.Enter and fProcessWorkerResult.leave around the code which needs to be safe from multiple worker results streaming in.
The above was the conclusion after Kens code and follow up comment. Many thanks kind sir, hats off to you!.

Best approach for thread synchronized queue

I have a queue in which I can enqueue different threads, so I can assure two things:
Request are processed one by one.
Request are processed in the arriving order
Second point is important. Otherwise a simple critical section would be enough.
I have different groups of requests and only inside a single group these points must be fulfilled. Requests from different groups can run concurrent.
It looks like this:
FTaskQueue.Enqueu('MyGroup');
try
Do Something (running in context of some thread)
finally
FTaskQueue.Dequeu('MyGroup');
end;
EDIT: I have removed the actual implementation because it hides the problem I want to solve
I need this because I have an Indy based web server that accepts http requests. First I find a coresponding session for the request. Then the request (code) is executed for that session. I can get multiple requests for the same session (read I can get new requests while the first is still processing) and they must execute one by one in correct order of arrival. So I seek a generic synchronization queue that can be use in such situations so requests can be queued. I have no control over the threads and each request may be executed in a different thread.
What is best (ususal) approach to this sort of problem? The problem is that Enqueue and Dequeue must be atomic opeations so that correct order is preserverd. My current implementation has a substantial bottleneck, but it works.
EDIT: Bellow is the problem of atomic Enqueue / Dequeue operations
You wold normaly do something like this:
procedure Enqueue;
begin
EnterCriticalSection(FCritSec);
try
DoEnqueue;
finally
LeaveCriticalSection(FCritSec);
end;
BlockTheCurrentThread; // here the thread blocks itself
end;
procedure Dequeue;
begin
EnterCriticalSection(FCritSec);
try
DoDequeue;
UnblockTheNextThread; // here the thread unblocks another thread
finally
LeaveCriticalSection(FCritSec);
end;
end;
Now the problem here is that this is not atomic. If you have one thread already in the queue and another one comes and calls Enqueue, it can happen, that the second thread will just leave the critical section and try to block itself. Now the thread scheduler will resume the first thread, which will try to unblock the next (second) thread. But second thread is not blocked yet, so nothing happens. Now the second thread continues and blocks itself, but that is not correct because it will not be unblocked. If blocking is inside critical section, that the critical section is never leaved and we have a deadlock.
Another approach:
Let each request thread have a manual reset event that is initially unset. The queue manager is a simple object which maintains a thread-safe list of such events. The Enqueue() and Dequeue() methods both take the event of the request thread as a parameter.
type
TRequestManager = class(TObject)
strict private
fCritSect: TCriticalSection;
fEvents: TList<TEvent>;
public
constructor Create;
destructor Destroy; override;
procedure Enqueue(ARequestEvent: TEvent);
procedure Dequeue(ARequestEvent: TEvent);
end;
{ TRequestManager }
constructor TRequestManager.Create;
begin
inherited Create;
fCritSect := TCriticalSection.Create;
fEvents := TList<TEvent>.Create;
end;
destructor TRequestManager.Destroy;
begin
Assert((fEvents = nil) or (fEvents.Count = 0));
FreeAndNil(fEvents);
FreeAndNil(fCritSect);
inherited;
end;
procedure TRequestManager.Dequeue(ARequestEvent: TEvent);
begin
fCritSect.Enter;
try
Assert(fEvents.Count > 0);
Assert(fEvents[0] = ARequestEvent);
fEvents.Delete(0);
if fEvents.Count > 0 then
fEvents[0].SetEvent;
finally
fCritSect.Release;
end;
end;
procedure TRequestManager.Enqueue(ARequestEvent: TEvent);
begin
fCritSect.Enter;
try
Assert(ARequestEvent <> nil);
if fEvents.Count = 0 then
ARequestEvent.SetEvent
else
ARequestEvent.ResetEvent;
fEvents.Add(ARequestEvent);
finally
fCritSect.Release;
end;
end;
Each request thread calls Enqueue() on the queue manager and afterwards waits for its own event to become signalled. Then it processes the request and calls Dequeue():
{ TRequestThread }
type
TRequestThread = class(TThread)
strict private
fEvent: TEvent;
fManager: TRequestManager;
protected
procedure Execute; override;
public
constructor Create(AManager: TRequestManager);
end;
constructor TRequestThread.Create(AManager: TRequestManager);
begin
Assert(AManager <> nil);
inherited Create(TRUE);
fEvent := TEvent.Create(nil, TRUE, FALSE, '');
fManager := AManager;
Resume;
end;
procedure TRequestThread.Execute;
begin
fManager.Enqueue(fEvent);
try
fEvent.WaitFor(INFINITE);
OutputDebugString('Processing request');
Sleep(1000);
OutputDebugString('Request processed');
finally
fManager.Dequeue(fEvent);
end;
end;
{ TForm1 }
procedure TForm1.Button1Click(Sender: TObject);
var
i: integer;
begin
for i := 1 to 10 do
TRequestThread.Create(fRequestManager);
end;
The queue manager locks the list of events both in Enqueue() and in Dequeue(). If the list is empty in Enqueue() it sets the event in the parameter, otherwise it resets the event. Then it appends the event to the list. Thus the first thread can continue with the request, all others will block. In Dequeue() the event is removed from the top of the list, and the next event is set (if there is any).
That way the last request thread will cause the next request thread to unblock, completely without suspending or resuming threads. This solution does also not need any additional threads or windows, a single event object per request thread is all that is needed.
I'll answer with the additional information from your comment taken into consideration.
If you have a number of threads that need to be serialized then you could make use of the serialization mechanism Windows provides for free. Let each queue be a thread with its own window and a standard message loop. Use SendMessage() instead of PostThreadMessage(), and Windows will take care of blocking the sending threads until the message has been processed, and of making sure that the correct execution order is maintained. By using a thread with its own window for each request group you make sure that multiple groups are still processed concurrently.
This is a simple solution that will work only if the request itself can be handled in a different thread context than it originated in, which shouldn't be a problem in many cases.
Did you try the TThreadList object provided by Delphi ?
It is thread safe and it manage the locks for you. You manage the list "outside" the thread, within your main thread.
As requests ask for a new task, you add it to the list. When a thread finishes, with the OnTerminate event you can call the next thread in the list.

Resources