Simplifying atan(tan(a+b)) - trigonometry

I wonder why this doesn't work as expected:
assume(x+y < %pi/2);
assume(x+y > -%pi/2);
atan(tan(x+y));
It reduces to:
atan(tan(x+y))
i.e. not at all. I would have expected it to reduce to:
x+y

Try triginverses.
(%i9) atan (tan (x + y));
(%o9) atan(tan(y + x))
(%i10) %, triginverses=all;
(%o10) y + x

Related

Convert DFA to RE

I constructed a finite automata for the language L of all strings made of the symbols 0, 1 and 2 (Σ = {0, 1, 2}) where the last symbol is not smaller than the first symbol. E.g., the strings 0, 2012, 01231 and 102 are in the language, but 10, 2021 and 201 are not in the language.
Then from that an GNFA so I can convert to RE.
My RE looks like this:
(0(0+1+2)* )(1(0(1+2)+1+2)* )(2((0+1)2+2))*)
I have no idea if this is correct, as I think I understand RE but not entirely sure.
Could someone please tell me if it’s correct and if not why?
There is a general method to convert any DFA into a regular expression, and is probably what you should be using to solve this homework problem.
For your attempt specifically, you can tell whether an RE is incorrect by finding a word that should be in the language, but that your RE doesn't accept, or a word that shouldn't be in the language that the RE does accept. In this case, the string 1002 should be in the language, but the RE doesn't match it.
There are two primary reasons why this string isn't matched. The first is that there should be a union rather than a concatenation between the three major parts of the language (words starting with 0, 1 and 2, respectively:
(0(0+1+2)*) (1(0(1+2)+1+2)*) (2((0+1)2+2))*) // wrong
(0(0+1+2)*) + (1(0(1+2)+1+2)*) + (2((0+1)2+2))*) // better
The second problem is that in the 1 and 2 cases, the digits smaller than the starting digit need to be repeatable:
(1(0 (1+2)+1+2)*) // wrong
(1(0*(1+2)+1+2)*) // better
If you do both of those things, the RE will be correct. I'll leave it as an exercise for you to follow that step for the 2 case.
The next thing you can try is find a way to make the RE more compact:
(1(0*(1+2)+1+2)*) // verbose
(1(0*(1+2))*) // equivalent, but more compact
This last step is just a matter of preference. You don't need the trailing +1+2 because 0* can be of zero length, so 0*(1+2) covers the +1+2 case.
You can use an algorithm but this DFA might be easy enough to convert as a one-off.
First, note that if the first symbol seen in the initial state is 0, you transition to state A and remain there. A is accepting. This means any string beginning with 0 is accepted. Thus, our regular expression might as well have a term like 0(0+1+2)* in it.
Second, note that if the first symbol seen in the initial state is 1, you transition to state B and remain in states B and D from that point on. You only leave B if you see 0 and you stay out of B as long as you keep seeing 0. The only way to end on D is if the last symbol you saw was 0. Therefore, strings beginning with 1 are accepted if and only if the strings don't end in 0. We can have a term like 1(0+1+2)*(1+2) in our regular expression as well to cover these cases.
Third, note that if the first symbol seen in the initial state is 2, you transition to state C and remain in states C and E from that point on. You leave state C if you see anything but 2 and stay out of B until you see a 2 again. The only way to end up on C is if the last symbol you saw was 2. Therefore, strings beginning with 2 are accepted if and only if the strings end in 2. We can have a term like 2(0+1+2)*(2) in our regular expression as well to cover these cases.
Finally, we see that there are no other cases to consider; our three terms cover all cases and the union of them fully describes our language:
0(0+1+2)* + 1(0+1+2)*(1+2) + 2(0+1+2)*2
It was easy to just write out the answer here because this DFA is sort of like three simple DFAs put together with a start state. More complicated DFAs might be easier to convert to REs using algorithms that don't require you understand or follow what the DFA is doing.
Note that if the start state is accepting (mentioned in a comment on another answer) the RE changes as follows:
e + 0(0+1+2)* + 1(0+1+2)*(1+2) + 2(0+1+2)*2
Basically, we just tack the empty string onto it since it is not already generated by any of the other parts of the aggregate expression.
You have the equivalent of what is known as a right-linear system. It's right-linear because the variables occur on the right hand sides only to the first degree and only on the right-hand sides of each term. The system that you have may be written - with a change in labels from 0,1,2 to u,v,w - as
S ≥ u A + v B + w C
A ≥ 1 + (u + v + w) A
B ≥ 1 + u D + (v + w) B
C ≥ 1 + (u + v) E + w C
D ≥ u D + (v + w) B
E ≥ (u + v) E + w C
The underlying algebra is known as a Kleene algebra. It is defined by the following identities that serve as its fundamental properties
(xy)z = x(yz), x1 = x = 1x,
(x + y) + z = x + (y + z), x + 0 = x = 0 + x,
y0z = 0, w(x + y)z = wxz + wyz,
x + y = y + x, x + x = x,
with a partial ordering relation defined by
x ≤ y ⇔ y ≥ x ⇔ ∃z(x + z = y) ⇔ x + y = y
With respect to this ordering relation, all finite subsets have least upper bounds, including the following
0 = ⋁ ∅, x + y = ⋁ {x, y}
The sum operator "+" is the least upper bound operator.
The system you have is a right-linear fixed point system, since it expresses the variables on the left as a (right-linear) function, as given on the right, of the variables. The object being specified by the system is the least solution with respect to the ordering; i.e. the least fixed point solution; and the regular expression sought out is the value that the main variable has in the least fixed point solution.
The last axiom(s) for Kleene algebras can be stated in any of a number of equivalent ways, including the following:
0* = 1
the least fixed point solution to x ≥ a + bx + xc is x = b* a c*.
There are other ways to express it. A consequence is that one has identities such as the following:
1 + a a* = a* = 1 + a* a
(a + b)* = a* (b a*)*
(a b)* a = a (b a)*
In general, right linear systems, such as the one corresponding to your problem may be written in vector-matrix form as 𝐪 ≥ 𝐚 + A 𝐪, with the least fixed point solution given in matrix form as 𝐪 = A* 𝐚. The central theorem of Kleene algebras is that all finite right-linear systems have least fixed point solutions; so that one can actually define matrix algebras over Kleene algebras with product and sum given respectively as matrix product and matrix sum, and that this algebra can be made into a Kleene algebra with a suitably-defined matrix star operation through which the least fixed point solution is expressed. If the matrix A decomposes into block form as
B C
D E
then the star A* of the matrix has the block form
(B + C E* D)* (B + C E* D)* C E*
(E + D B* C)* D B* (E + D B* C)*
So, what this is actually saying is that for a vector-matrix system of the form
x ≥ a + B x + C y
y ≥ b + D x + E y
the least fixed point solution is given by
x = (B + C E* D)* (a + C E* b)
y = (E + D B* C)* (D B* a + b)
The star of a matrix, if expressed directly in terms of its components, will generally be huge and highly redundant. For an n×n matrix, it has size O(n³) - cubic in n - if you allow for redundant sub-expressions to be defined by macros. Otherwise, if you in-line insert all the redundancy then I think it blows up to a highly-redundant mess that is exponential in n in size.
So, there's intelligence required and involved (literally meaning: AI) in finding or pruning optimal forms that avoid the blow-up as much as possible. That's a non-trivial job for any purported matrix solver and regular expression synthesis compiler.
An heuristic, for your system, is to solve for the variables that don't have a "1" on the right-hand side and in-line substitute the solutions - and to work from bottom-up in terms of the dependency chain of the variables. That would mean starting with D and E first
D ≥ u* (v + w) B
E ≥ (u + v)* w C
In-line substitute into the other inequations
S ≥ u A + v B + w C
A ≥ 1 + (u + v + w) A
B ≥ 1 + u u* (v + w) B + (v + w) B
C ≥ 1 + (u + v) (u + v)* w C + w C
Apply Kleene algebra identities (e.g. x x* y + y = x* y)
S ≥ u A + v B + w C
A ≥ 1 + (u + v + w) A
B ≥ 1 + u* (v + w) B
C ≥ 1 + (u + v)* w C
Solve for the next layer of dependency up: A, B and C:
A ≥ (u + v + w)*
B ≥ (u* (v + w))*
C ≥ ((u + v)* w)*
Apply some more Kleene algebra (e.g. (x* y)* = 1 + (x + y)* y) to get
B ≥ 1 + N (v + w)
C ≥ 1 + N w
where, for convenience we set N = (u + v + w)*. In-line substitute at the top-level:
S ≥ u N + v (1 + N (v + w)) + w (1 + N w).
The least fixed point solution, in the main variable S, is thus:
S = u N + v + v N (v + w) + w + w N w.
where
N = (u + v + w)*.
As you can already see, even with this simple example, there's a lot of chess-playing to navigate through the system to find an optimally-pruned solution. So, it's certainly not a trivial problem. What you're essentially doing is synthesizing a control-flow structure for a program in a structured programming language from a set of goto's ... essentially the core process of reverse-compiling from assembly language to a high level language.
One measure of optimization is that of minimizing the loop-depth - which here means minimizing the depth of the stars or the star height. For example, the expression x* (y x*)* has star-height 2 but reduces to (x + y)*, which has star height 1. Methods for reducing star-height come out of the research by Hashiguchi and his resolution of the minimal star-height problem. His proof and solution (dating, I believe, from the 1980's or 1990's) is complex and to this day the process still goes on of making something more practical of it and rendering it in more accessible form.
Hashiguchi's formulation was cast in the older 1950's and 1960's formulation, predating the axiomatization of Kleene algebras (which was in the 1990's), so to date, nobody has rewritten his solution in entirely algebraic form within the framework of Kleene algebras anywhere in the literature ... as far as I'm aware. Whoever accomplishes this will have, as a result, a core element of an intelligent regular expression synthesis compiler, but also of a reverse-compiler and programming language synthesis de-compiler. Essentially, with something like that on hand, you'd be able to read code straight from binary and the lid will be blown off the world of proprietary systems. [Bite tongue, bite tongue, mustn't reveal secret yet, must keep the ring hidden.]

Solve for x using python

I came across a problem. One string is taken as input say
input_string = "12345 + x = x * 5 + (1+x)* x + (1+18/100)"
And get output of x using python. I am not able to figure out logic for this.
Here is a complete SymPy example for your input:
from sympy import Symbol, solve, Eq
from sympy.parsing.sympy_parser import parse_expr
input_string = "12345 + x = x * 5 + (1+x)* x + (1+18/100)"
x = Symbol('x', real=True)
lhs = parse_expr(input_string.split('=')[0], local_dict={'x':x})
rhs = parse_expr(input_string.split('=')[1], local_dict={'x':x})
print(lhs, "=", rhs)
sol = solve(Eq(lhs, rhs), x)
print(sol)
print([s.evalf() for s in sol])
This outputs:
x + 12345 = x*(x + 1) + 5*x + 59/50
[-5/2 + 9*sqrt(15247)/10, -9*sqrt(15247)/10 - 5/2]
[108.630868798908, -113.630868798908]
Note that solve() gives a list of solutions. And that SymPy normally does not evaluate fractions and square roots, as it prefers solutions without loss of precision. evalf() evaluates a float value for these expressions.
Well, that example shows a quadratic equation which may have no solutions, one solution, or two solutions. You would have to rearrange the terms symbolically to come to
input_string = "x**2 + 5*x - 12345 + (118/100)"
But that means you need to implement rules for multiplication, addition, subtraction and potentially division. At least for Python there is a library called SymPy which can parse such strings and provide an expression that you can evaluate and even solve.

How did they come up with the equation for calculating module of 2 numbers "a%b = a-b*(a//b)"

if we try different example you can see it satisfy the equation
print(13 % -4)
print(-10 % 9)
the question is where did they get the equation
a%b = b*(a//b)-a from
It is the intuitive way to define a "remainder" operation, and also it's actually in the python documentation, you just have to tweak the equation a littlebit.
The floor division and modulo operators are connected by the following
identity: x == (x//y)*y + (x%y). Floor division and modulo are also
connected with the built-in function divmod(): divmod(x, y) == (x//y,
x%y).
So subtracting (x//y)*y from x == (x//y)*y + (x%y) gives you x%y == x - (x//y)*y.

Intersection between two (perpendicular) lines

Let's assume I have a (infinite) line defined as y = z * x how can I find the closest point in this line to any given coordinate? Technically I seek the intersection between the initial line and its perpendicular passing on the given coordinate.
Let (x, zx) be a point on the given line, and (u, v) the outside point.
The squared distance is
(x - u)² + (zx - v)² = (z² + 1) x² - 2 (u + zv) x + u² + v²
and the minimum of this quadratic expression is achieved by
x = (u + zv) / (z² + 1)
giving you the orthogonal projection of the point onto the line.
I did a line intersection sample a few weeks a go. You could try that:
https://github.com/feldhaus/math-geometry-playground/blob/master/line-intersection/index.html

How can I implement the sum of squares of two largest numbers out of three for floating-point numbers?

Exercise 1.3 of the book Structure and Interpretation of Computer Programs asks the following:
Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers.
I've managed to answer this question, but only for integers:
use std::cmp;
fn sum_square_largest(x:isize, y:isize, z:isize) -> isize {
x * x + y * y + z * z - min_three(x, y, z) * min_three(x, y, z)
}
fn min_three<T>(v1: T, v2: T, v3: T) -> T where T: Ord {
cmp::min(v1, cmp::min(v2, v3))
}
But when I change the sum_square_largest function to:
fn sum_square_largest(x:f64, y:f64, z:f64) -> f64 {
x * x + y * y + z * z - min_three(x, y, z) * min_three(x, y, z)
}
It gives the following error: the trait 'core::cmp::Ord' is not implemented for the type 'f64' [E0277].
What is this? And how can I define this function to work with floating-point numbers?
Floats do not implement Ord because they do not have a total ordering. NaN is false to compare against any value, including another NaN.
If you're on nightly Rust, you can use partial_min, which makes these kinds of cases explicit.
You can also decide what to do in the case of things like NaN, and then implement a wrapper type over f64, and implement Ord for it, such that it handles that case.
If you want to avoid fatal rounding errors, you need to write your code as required: By adding the squares of two of the three numbers. Otherwise, if you have for example x = y = 1, and z = -1e100, then you get catastrophic rounding errors. The sum of the three squares gets rounded to 1e200, the same is subtracted, the result is 0 instead of 2.
It can be worse: If z = -1e200, then z*z overflows, three squares add up to +inf, you subtract +inf and get NaN.
let x1 = if x > y { x } else { y };
let mut x2 = if x > y { y } else { x };
if z > x2 { x2 = z; }
x1 * x1 + x2 * x2;
If you consider NaNs the situation gets slightly more complicated. Obviously if you have two or three NaNs the result will be NaN. If you have one NaN, you need to decide whether (a) you don't care, (b) the result should be NaN or (c) the result should be the sum of the squares of the two numbers that are not NaN. In case (b) or (c), the result should only depend on the three values, and not on the order in which they are used.
The code above covers (a). If you want (b), then you need to make sure that z will be stored into x2 if it is NaN and x2 stays unchanged if it is NaN. You achieve this by changing the last line to
if z > x2 || z != z { x2 = z };
If you want (c) it is a bit more complicated.
let x1 = if x > y || y != y { x } else { y };
let mut x2 = if x > y || y != y { y } else { x };
if z > x2 || x2 != x2 { x2 = z; }

Resources