I'm working on a conversion problem for homework, and am a complete Haskell newbie, so bear with me. On one of them, it asks us to attempt to get the type of a function to be:
fc :: (Bool, [Char]) -> Int -> Integer -> [Bool]
Without worrying about what the actual function does or anything. These functions will not be run, it is just a test to see if we can convert types correctly. So far the furthest I can get is this:
fc :: (Bool, [Char]) -> Int
fc (x, y) = ord (head y)
Where I am turning it into an Int. When I try to turn it into an Integer using the toInteger function, it gives me:
Couldn't match expected type `Int -> Integer'
with actual type `Integer'
In the return type of a call of `toInteger'
Probable cause: `toInteger' is applied to too many arguments
In the expression: toInteger (ord (head y))
Any tips for the new guy?
Edit:
What I have been trying, for reference, is:
fc :: (Bool, [Char]) -> Int -> Integer
fc (x, y) = toInteger (ord (head y))
And I am getting the error above.
Your type signature is wrong. If you convert something you can't write it into the type signature. Only the last one is the return type. The others are parameter types.
Follow these:
fc::(Bool,[Char])->Integer
fc (x,y) = toInteger . ord . head $ y
fc::(Bool,[Char])->Int->Integer--
fc (x,y) n = if n == w then n else w
where w = toInteger . ord . head $ y
Edit:
The others mentioned currying what is absolutely correct if your teacher expect it. But the conversions doesn't take place in the type sign.
As n.m. says, the idea this is getting at is called currying. Basically, in Haskell, any function takes a single value and returns a single value: a -> b.
So, given this restriction, how can we implement functions like addition, which need two parameters? The answer is that we implement a function which takes a number, and returns another function which takes a number and returns a number. Laying it out this way might clarify things:
add :: Int -> Int -> Int
add x = f where f y = x + y
(which is equivalent to add x y = x + y, as well as add = (+)).
In your case, you should read the error carefully: Couldn't match expected type Int -> Integer with actual type Integer In the return type of a call of toInteger means that Haskell is expecting fc to return a value of type Int -> Integer, because that's what your type signature says, but the definition you've provided will always produce a value of type Integer.
Related
In Haskell, when we talk type declaration.
I've seen both -> and =>.
As an example: I can make my own type declaration.
addMe :: Int -> Int -> Int
addMe x y = x + y
And it works just fine.
But if we take a look at :t sqrt we get:
sqrt :: Floating a => a -> a
At what point do we use => and when do we use ->?
When do we use "fat arrow" and when do we use "thin arrow"?
-> is for explicit functions. I.e. when f is something that can be written in an expression of the form f x, the signature must have one of these arrows in it†. Specifically, the type of x (the argument) must appear to the left of a -> arrow.
It's best to not think of => as a function arrow at all, at least at first‡. It's an implication arrow in the logical sense: if a is a type with the property Floating a, then it follows that the signature of sqrt is a -> a.
For your addMe example, which is a function with two arguments, the signature must always have the form x -> y -> z. Possibly there can also be a q => in front of that; that doesn't influence the function-ishness, but may have some saying in what particular types are allowed. Generally, such constraints are not needed if the types are already fixed and concrete. Like, you could in principle impose a constraint on Int:
addMe :: Num Int => Int -> Int -> Int
addMe x y = x + y
...but that doesn't really accomplish anything, because everybody knows that the particular type Int is an instance of the Num class. Where you need such constraints is when the type is not fixed but a type variable (i.e. lowercase), i.e. if the function is polymorphic. You can't just write
addMe' :: a -> a -> a
addMe' x y = x + y
because that signature would suggest the function works for any type a whatsoever, but it can't work for all types (how would you add, for example, two strings? ok perhaps not the best example, but how would you multiply two strings?)
Hence you need the constraint
addMe' :: Num a => a -> a -> a
addMe' x y = x + y
This means, you don't care what exact type a is, but you do require it to be a numerical type. Anybody can use the function with their own type MyNumType, but they need to ensure that Num MyNumType is fulfilled: then it follows that addMe' can have signature MyNumType -> MyNumType -> MyNumType.
The way to ensure this is to either use a standard type which you know to be numerical, for instance addMe' 5.9 3.7 :: Double would work, or give an instance declaration for your custom type and the Num class. Only do the latter if you're sure it's a good idea; usually the standard num types are all you'll need.
†Note that the arrow may not be visible in the signature: it's possible to have a type synonym for a function type, for example when type IntEndofunc = Int -> Int, then f :: IntEndofunc; f x = x+x is ok. But you can think of the typedef as essentially just a syntactic wrapper; it's still the same type and does have the arrow in it.
‡It so happens that logical implication and function application can be seen as two aspects of the same mathematical concept. Furthermore, GHC actually implements class constraints as function arguments, so-called dictionaries. But all this happens behind the scenes, so if anything they're implicit functions. In standard Haskell, you will never see the LHS of a => type as the type of some actual argument the function is applied to.
The "thin arrow" is used for function types (t1 -> t2 being the type of a function that takes a value of type t1 and produces a value of type t2).
The "fat arrow" is used for type constraints. It separates the list of type constraints on a polymorphic function from the rest of the type. So given Floating a => a -> a, we have the function type a -> a, the type of a function that can take arguments of any type a and produces a result of that same type, with the added constraint Floating a, meaning that the function can in fact only be used with types that implement the Floating type class.
the -> is the constructor of functions and the => is used to constraints, a sort of "interface" in Haskell called typeclass.
A little example:
sum :: Int -> Int -> Int
sum x y = x + y
that function only allows Int types, but if you want a huge int or a small int, you probably want Integer, and how to tell it to use both?
sum2 :: Integral a => a -> a -> a
sum2 x y = x + y
now if you try to do:
sum2 3 1.5
it will give you an error
also, you may want to know if two data are equals, you want:
equals :: Eq a => a -> a -> Bool
equals x y = x == y
now if you do:
3 == 4
that's ok
but if you create:
data T = A | B
equals A B
it will give to you:
error:
• No instance for (Eq T) arising from a use of ‘equals’
• In the expression: equals A B
In an equation for ‘it’: it = equals A B
if you want for that to work, you must just do:
data T = A | B deriving Eq
equals A B
False
Is there a way in haskell to get all function arguments as a list.
Let's supose we have the following program, where we want to add the two smaller numbers and then subtract the largest. Suppose, we can't change the function definition of foo :: Int -> Int -> Int -> Int. Is there a way to get all function arguments as a list, other than constructing a new list and add all arguments as an element of said list? More importantly, is there a general way of doing this independent of the number of arguments?
Example:
module Foo where
import Data.List
foo :: Int -> Int -> Int -> Int
foo a b c = result!!0 + result!!1 - result!!2 where result = sort ([a, b, c])
is there a general way of doing this independent of the number of arguments?
Not really; at least it's not worth it. First off, this entire idea isn't very useful because lists are homogeneous: all elements must have the same type, so it only works for the rather unusual special case of functions which only take arguments of a single type.
Even then, the problem is that “number of arguments” isn't really a sensible concept in Haskell, because as Willem Van Onsem commented, all functions really only have one argument (further arguments are actually only given to the result of the first application, which has again function type).
That said, at least for a single argument- and final-result type, it is quite easy to pack any number of arguments into a list:
{-# LANGUAGE FlexibleInstances #-}
class UsingList f where
usingList :: ([Int] -> Int) -> f
instance UsingList Int where
usingList f = f []
instance UsingList r => UsingList (Int -> r) where
usingList f a = usingList (f . (a:))
foo :: Int -> Int -> Int -> Int
foo = usingList $ (\[α,β,γ] -> α + β - γ) . sort
It's also possible to make this work for any type of the arguments, using type families or a multi-param type class. What's not so simple though is to write it once and for all with variable type of the final result. The reason being, that would also have to handle a function as the type of final result. But then, that could also be intepreted as “we still need to add one more argument to the list”!
With all respect, I would disagree with #leftaroundabout's answer above. Something being
unusual is not a reason to shun it as unworthy.
It is correct that you would not be able to define a polymorphic variadic list constructor
without type annotations. However, we're not usually dealing with Haskell 98, where type
annotations were never required. With Dependent Haskell just around the corner, some
familiarity with non-trivial type annotations is becoming vital.
So, let's take a shot at this, disregarding worthiness considerations.
One way to define a function that does not seem to admit a single type is to make it a method of a
suitably constructed class. Many a trick involving type classes were devised by cunning
Haskellers, starting at least as early as 15 years ago. Even if we don't understand their
type wizardry in all its depth, we may still try our hand with a similar approach.
Let us first try to obtain a method for summing any number of Integers. That means repeatedly
applying a function like (+), with a uniform type such as a -> a -> a. Here's one way to do
it:
class Eval a where
eval :: Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval i = \y -> eval (i + y)
instance Eval Integer where
eval i = i
And this is the extract from repl:
λ eval 1 2 3 :: Integer
6
Notice that we can't do without explicit type annotation, because the very idea of our approach is
that an expression eval x1 ... xn may either be a function that waits for yet another argument,
or a final value.
One generalization now is to actually make a list of values. The science tells us that
we may derive any monoid from a list. Indeed, insofar as sum is a monoid, we may turn arguments to
a list, then sum it and obtain the same result as above.
Here's how we can go about turning arguments of our method to a list:
class Eval a where
eval2 :: [Integer] -> Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [Integer] where
eval2 is i = i:is
This is how it would work:
λ eval2 [] 1 2 3 4 5 :: [Integer]
[5,4,3,2,1]
Unfortunately, we have to make eval binary, rather than unary, because it now has to compose two
different things: a (possibly empty) list of values and the next value to put in. Notice how it's
similar to the usual foldr:
λ foldr (:) [] [1,2,3,4,5]
[1,2,3,4,5]
The next generalization we'd like to have is allowing arbitrary types inside the list. It's a bit
tricky, as we have to make Eval a 2-parameter type class:
class Eval a i where
eval2 :: [i] -> i -> a
instance (Eval a i) => Eval (i -> a) i where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [i] i where
eval2 is i = i:is
It works as the previous with Integers, but it can also carry any other type, even a function:
(I'm sorry for the messy example. I had to show a function somehow.)
λ ($ 10) <$> (eval2 [] (+1) (subtract 2) (*3) (^4) :: [Integer -> Integer])
[10000,30,8,11]
So far so good: we can convert any number of arguments into a list. However, it will be hard to
compose this function with the one that would do useful work with the resulting list, because
composition only admits unary functions − with some trickery, binary ones, but in no way the
variadic. Seems like we'll have to define our own way to compose functions. That's how I see it:
class Ap a i r where
apply :: ([i] -> r) -> [i] -> i -> a
apply', ($...) :: ([i] -> r) -> i -> a
($...) = apply'
instance Ap a i r => Ap (i -> a) i r where
apply f xs x = \y -> apply f (x:xs) y
apply' f x = \y -> apply f [x] y
instance Ap r i r where
apply f xs x = f $ x:xs
apply' f x = f [x]
Now we can write our desired function as an application of a list-admitting function to any number
of arguments:
foo' :: (Num r, Ord r, Ap a r r) => r -> a
foo' = (g $...)
where f = (\result -> (result !! 0) + (result !! 1) - (result !! 2))
g = f . sort
You'll still have to type annotate it at every call site, like this:
λ foo' 4 5 10 :: Integer
-1
− But so far, that's the best I can do.
The more I study Haskell, the more I am certain that nothing is impossible.
I'm learning how to use typeclasses in Haskell.
Consider the following implementation of a typeclass T with a type constrained class function f.
class T t where
f :: (Eq u) => t -> u
data T_Impl = T_Impl_Bool Bool | T_Impl_Int Int | T_Impl_Float Float
instance T T_Impl where
f (T_Impl_Bool x) = x
f (T_Impl_Int x) = x
f (T_Impl_Float x) = x
When I load this into GHCI 7.10.2, I get the following error:
Couldn't match expected type ‘u’ with actual type ‘Float’
‘u’ is a rigid type variable bound by
the type signature for f :: Eq u => T_Impl -> u
at generics.hs:6:5
Relevant bindings include
f :: T_Impl -> u (bound at generics.hs:6:5)
In the expression: x
In an equation for ‘f’: f (T_Impl_Float x) = x
What am I doing/understanding wrong? It seems reasonable to me that one would want to specialize a typeclass in an instance by providing an accompaning data constructor and function implementation. The part
Couldn't match expected type 'u' with actual type 'Float'
is especially confusing. Why does u not match Float if u only has the constraint that it must qualify as an Eq type (Floats do that afaik)?
The signature
f :: (Eq u) => t -> u
means that the caller can pick t and u as wanted, with the only burden of ensuring that u is of class Eq (and t of class T -- in class methods there's an implicit T t constraint).
It does not mean that the implementation can choose any u.
So, the caller can use f in any of these ways: (with t in class T)
f :: t -> Bool
f :: t -> Char
f :: t -> Int
...
The compiler is complaining that your implementation is not general enough to cover all these cases.
Couldn't match expected type ‘u’ with actual type ‘Float’
means "You gave me a Float, but you must provide a value of the general type u (where u will be chosen by the caller)"
Chi has already pointed out why your code doesn't compile. But it's not even that typeclasses are the problem; indeed, your example has only one instance, so it might just as well be a normal function rather than a class.
Fundamentally, the problem is that you're trying to do something like
foobar :: Show x => Either Int Bool -> x
foobar (Left x) = x
foobar (Right x) = x
This won't work. It tries to make foobar return a different type depending on the value you feed it at run-time. But in Haskell, all types must be 100% determined at compile-time. So this cannot work.
There are several things you can do, however.
First of all, you can do this:
foo :: Either Int Bool -> String
foo (Left x) = show x
foo (Right x) = show x
In other words, rather than return something showable, actually show it. That means the result type is always String. It means that which version of show gets called will vary at run-time, but that's fine. Code paths can vary at run-time, it's types which cannot.
Another thing you can do is this:
toInt :: Either Int Bool -> Maybe Int
toInt (Left x) = Just x
toInt (Right x) = Nothing
toBool :: Either Int Bool -> Maybe Bool
toBool (Left x) = Nothing
toBool (Right x) = Just x
Again, that works perfectly fine.
There are other things you can do; without knowing why you want this, it's difficult to suggest others.
As a side note, you want to stop thinking about this like it's object oriented programming. It isn't. It requires a new way of thinking. In particular, don't reach for a typeclass unless you really need one. (I realise this particular example may just be a learning exercise to learn about typeclasses of course...)
It's possible to do this:
class Eq u => T t u | t -> u where
f :: t -> u
You need FlexibleContextx+FunctionalDepencencies and MultiParamTypeClasses+FlexibleInstances on call-site. Or to eliminate class and to use data types instead like Gabriel shows here
Is there any kind of function in Haskell that has type a -> b? That means, is it possible to write a function such that f :: a -> b? I don't think a function like that exists for the following reason: suppose that we found f where f :: a -> b, what would f 2 produce? a value of type b, but what is b since Haskell cannot infere (I think) it from the arguments I gave? Is this correct? Otherwise, can you give me an example of such a function?
Barring ⊥ (bottom value – undefined etc.), which is always possible but never useful, there can indeed be no such function. This is one of the simplest instances of the so-called free theorems that we get from polymorphic type signatures.
You're on the right track with your intuitive explanation of why this is not possible, though it went off in the end. Yes, you can consider f (5 :: Int). The problem is not that the compiler “can't infer” what b would be – that would be the case for many realistic functions, e.g.
fromIntegral :: (Num b, Integral a) => a -> b
makes perfect sense; b will be inferred from the environment in which fromIntegral x is used. For instance, I might write†
average :: [Double] -> Double
average l = sum l / fromIntegral (length l)
In this case, length l :: a has the fixed type Int and fromIntegral (length l) :: b must have the fixed type Double to fit in the environment, and unlike in most other languages with type inference, information from the environment is available hereto in a Hindley-Milner based language.
No, the problem with f :: a -> b is that you could instantiate a and b to any ridiculous combination of types, not just different number types. Because f is unconstrainedly polymorphic, it would have to be able to convert any type into any other type.
In particular, it would be able to convert into the vacuous type Void.
evil :: Int -> Void
evil = f
And then I could have
muahar :: Void
muahar = f 0
But, by construction of Void, there cannot be a value of this type (save for ⊥ which you can't evaluate without either crashing or looping infinitely).
†It should be noted that this is by some standards not a very good way of computing the average.
In order to implement f :: a -> b, it means that f has to be able to return any possible type. Even types that don't exist today, but somebody could define in ten years' time. Without some kind of reflection feature, that's obviously impossible.
Well... "impossible" is a big word... As the other answers point out, it's impossible excluding bottom. In other words, f can never return a value of type b. It can throw an exception, or loop forever. But (arguably) neither of those things is really "returning a value".
f1 :: a -> b
f1 = error "f1"
f2 :: a -> b
f2 s = error "f2"
f3 :: a -> b
f3 x = f3 x
These functions are all subtly different, and they all compile just fine. And, of course, they're all useless! So yes, there is no useful function with type a -> b.
If you want to split hairs:
f1 throws an exception.
f1 'x' throws an exception.
f2 is a normal-looking function.
f2 'x' throws an exception.
f3 is a normal-looking function.
f3 'x' doesn't throw an exception, but it loops forever, so it never actually returns anything.
Basically any function you see that returns "any type" is a function that never actually returns. We can see this in unusual monads. For example:
f4 :: a -> Maybe b
It is perfectly possible to implement this function without throwing an exception or looping forever.
f4 x = Nothing
Again, we're not actually returning a b. We could similarly do
f5 :: a -> [b]
f5 x = []
f6 :: a -> Either String b
f6 x = Left "Not here"
f7 :: a -> Parser b
f7 x = fail "Not here"
There is, I think, exactly one, but it is cheating a little bit:
> let f _ = undefined
> :t f
f:: t -> t1
This only exists because bottom is considered a value of every type.
... but what is b since Haskell cannot infer it from the arguments I gave?
Depending on the context, Haskell can infer the return type; say:
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
class Cast a b where
cast :: a -> b
instance Cast a a where
cast = id
instance Cast Int String where
cast = show
instance Cast Int Double where
cast = fromIntegral
then,
cast :: Cast a b => a -> b
and if given enough context, Haskell knows which function to use:
\> let a = 42 :: Int
\> let b = 100.0 :: Double
\> "string: " ++ cast a -- Int -> String
"string: 42"
\> b * cast a -- Int -> Double
4200.0
I need a function which works like:
some :: (Int, Maybe Int) -> Int
some a b
| b == Nothing = 0
| otherwise = a + b
Use cases:
some (2,Just 1)
some (3,Nothing)
map some [(2, Just 1), (3,Nothing)]
But my code raise the error:
The equation(s) for `some' have two arguments,
but its type `(Int, Maybe Int) -> Int' has only one
I don't understand it.
Thanks in advance.
When you write
foo x y = ...
That is notation for a curried function, with a type like:
foo :: a -> b -> c
You have declared your function to expect a tuple, so you must write it:
some :: (Int, Maybe Int) -> Int
some (x, y) = ...
But Haskell convention is usually to take arguments in the former curried form. Seeing funcitons take tuples as arguments is very rare.
For the other part of your question, you probably want to express it with pattern matching. You could say:
foo :: Maybe Int -> Int
foo Nothing = 0
foo (Just x) = x + 1
Generalizing that to the OP's question is left as an exercise for the reader.
Your error doesn't come from a misunderstanding of Maybe: The type signature of some indicates that it takes a pair (Int, Maybe Int), while in your definition you provide it two arguments. The definition should thus begin with some (a,b) to match the type signature.
One way to fix the problem (which is also a bit more idiomatic and uses pattern matching) is:
some :: (Int, Maybe Int) -> Int
some (a, Nothing) = a
some (a, Just b) = a + b
It's also worth noting that unless you have a really good reason for using a tuple as input, you should probably not do so. If your signature were instead some :: Int -> Maybe Int -> Int, you'd have a function of two arguments, which can be curried. Then you'd write something like
some :: Int -> Maybe Int -> Int
some a Nothing = a
some a (Just b) = a + b
Also, you might want to add the following immediate generalization: All Num types are additive, so you might aswell do
some :: (Num n) => n -> Maybe n -> n
some a Nothing = a
some a (Just b) = a + b
(I've violated the common practice of using a, b, c... for type variables so as not to confuse the OP since he binds a and b to the arguments of some).