How to suppress Error printed by shell commands. [duplicate] - linux

How would I validate that a program exists, in a way that will either return an error and exit, or continue with the script?
It seems like it should be easy, but it's been stumping me.

Answer
POSIX compatible:
command -v <the_command>
Example use:
if ! command -v <the_command> &> /dev/null
then
echo "<the_command> could not be found"
exit
fi
For Bash specific environments:
hash <the_command> # For regular commands. Or...
type <the_command> # To check built-ins and keywords
Explanation
Avoid which. Not only is it an external process you're launching for doing very little (meaning builtins like hash, type or command are way cheaper), you can also rely on the builtins to actually do what you want, while the effects of external commands can easily vary from system to system.
Why care?
Many operating systems have a which that doesn't even set an exit status, meaning the if which foo won't even work there and will always report that foo exists, even if it doesn't (note that some POSIX shells appear to do this for hash too).
Many operating systems make which do custom and evil stuff like change the output or even hook into the package manager.
So, don't use which. Instead use one of these:
command -v foo >/dev/null 2>&1 || { echo >&2 "I require foo but it's not installed. Aborting."; exit 1; }
type foo >/dev/null 2>&1 || { echo >&2 "I require foo but it's not installed. Aborting."; exit 1; }
hash foo 2>/dev/null || { echo >&2 "I require foo but it's not installed. Aborting."; exit 1; }
(Minor side-note: some will suggest 2>&- is the same 2>/dev/null but shorter – this is untrue. 2>&- closes FD 2 which causes an error in the program when it tries to write to stderr, which is very different from successfully writing to it and discarding the output (and dangerous!))
If your hash bang is /bin/sh then you should care about what POSIX says. type and hash's exit codes aren't terribly well defined by POSIX, and hash is seen to exit successfully when the command doesn't exist (haven't seen this with type yet). command's exit status is well defined by POSIX, so that one is probably the safest to use.
If your script uses bash though, POSIX rules don't really matter anymore and both type and hash become perfectly safe to use. type now has a -P to search just the PATH and hash has the side-effect that the command's location will be hashed (for faster lookup next time you use it), which is usually a good thing since you probably check for its existence in order to actually use it.
As a simple example, here's a function that runs gdate if it exists, otherwise date:
gnudate() {
if hash gdate 2>/dev/null; then
gdate "$#"
else
date "$#"
fi
}
Alternative with a complete feature set
You can use scripts-common to reach your need.
To check if something is installed, you can do:
checkBin <the_command> || errorMessage "This tool requires <the_command>. Install it please, and then run this tool again."

The following is a portable way to check whether a command exists in $PATH and is executable:
[ -x "$(command -v foo)" ]
Example:
if ! [ -x "$(command -v git)" ]; then
echo 'Error: git is not installed.' >&2
exit 1
fi
The executable check is needed because bash returns a non-executable file if no executable file with that name is found in $PATH.
Also note that if a non-executable file with the same name as the executable exists earlier in $PATH, dash returns the former, even though the latter would be executed. This is a bug and is in violation of the POSIX standard. [Bug report] [Standard]
Edit: This seems to be fixed as of dash 0.5.11 (Debian 11).
In addition, this will fail if the command you are looking for has been defined as an alias.

I agree with lhunath to discourage use of which, and his solution is perfectly valid for Bash users. However, to be more portable, command -v shall be used instead:
$ command -v foo >/dev/null 2>&1 || { echo "I require foo but it's not installed. Aborting." >&2; exit 1; }
Command command is POSIX compliant. See here for its specification: command - execute a simple command
Note: type is POSIX compliant, but type -P is not.

It depends on whether you want to know whether it exists in one of the directories in the $PATH variable or whether you know the absolute location of it. If you want to know if it is in the $PATH variable, use
if which programname >/dev/null; then
echo exists
else
echo does not exist
fi
otherwise use
if [ -x /path/to/programname ]; then
echo exists
else
echo does not exist
fi
The redirection to /dev/null/ in the first example suppresses the output of the which program.

I have a function defined in my .bashrc that makes this easier.
command_exists () {
type "$1" &> /dev/null ;
}
Here's an example of how it's used (from my .bash_profile.)
if command_exists mvim ; then
export VISUAL="mvim --nofork"
fi

Expanding on #lhunath's and #GregV's answers, here's the code for the people who want to easily put that check inside an if statement:
exists()
{
command -v "$1" >/dev/null 2>&1
}
Here's how to use it:
if exists bash; then
echo 'Bash exists!'
else
echo 'Your system does not have Bash'
fi

Try using:
test -x filename
or
[ -x filename ]
From the Bash manpage under Conditional Expressions:
-x file
True if file exists and is executable.

To use hash, as #lhunath suggests, in a Bash script:
hash foo &> /dev/null
if [ $? -eq 1 ]; then
echo >&2 "foo not found."
fi
This script runs hash and then checks if the exit code of the most recent command, the value stored in $?, is equal to 1. If hash doesn't find foo, the exit code will be 1. If foo is present, the exit code will be 0.
&> /dev/null redirects standard error and standard output from hash so that it doesn't appear onscreen and echo >&2 writes the message to standard error.

Command -v works fine if the POSIX_BUILTINS option is set for the <command> to test for, but it can fail if not. (It has worked for me for years, but I recently ran into one where it didn't work.)
I find the following to be more failproof:
test -x "$(which <command>)"
Since it tests for three things: path, existence and execution permission.

There are a ton of options here, but I was surprised no quick one-liners. This is what I used at the beginning of my scripts:
[[ "$(command -v mvn)" ]] || { echo "mvn is not installed" 1>&2 ; exit 1; }
[[ "$(command -v java)" ]] || { echo "java is not installed" 1>&2 ; exit 1; }
This is based on the selected answer here and another source.

If you check for program existence, you are probably going to run it later anyway. Why not try to run it in the first place?
if foo --version >/dev/null 2>&1; then
echo Found
else
echo Not found
fi
It's a more trustworthy check that the program runs than merely looking at PATH directories and file permissions.
Plus you can get some useful result from your program, such as its version.
Of course the drawbacks are that some programs can be heavy to start and some don't have a --version option to immediately (and successfully) exit.

Check for multiple dependencies and inform status to end users
for cmd in latex pandoc; do
printf '%-10s' "$cmd"
if hash "$cmd" 2>/dev/null; then
echo OK
else
echo missing
fi
done
Sample output:
latex OK
pandoc missing
Adjust the 10 to the maximum command length. It is not automatic, because I don't see a non-verbose POSIX way to do it:
How can I align the columns of a space separated table in Bash?
Check if some apt packages are installed with dpkg -s and install them otherwise.
See: Check if an apt-get package is installed and then install it if it's not on Linux
It was previously mentioned at: How can I check if a program exists from a Bash script?

I never did get the previous answers to work on the box I have access to. For one, type has been installed (doing what more does). So the builtin directive is needed. This command works for me:
if [ `builtin type -p vim` ]; then echo "TRUE"; else echo "FALSE"; fi

I wanted the same question answered but to run within a Makefile.
install:
#if [[ ! -x "$(shell command -v ghead)" ]]; then \
echo 'ghead does not exist. Please install it.'; \
exit -1; \
fi

It could be simpler, just:
#!/usr/bin/env bash
set -x
# if local program 'foo' returns 1 (doesn't exist) then...
if ! type -P foo; then
echo 'crap, no foo'
else
echo 'sweet, we have foo!'
fi
Change foo to vi to get the other condition to fire.

hash foo 2>/dev/null: works with Z shell (Zsh), Bash, Dash and ash.
type -p foo: it appears to work with Z shell, Bash and ash (BusyBox), but not Dash (it interprets -p as an argument).
command -v foo: works with Z shell, Bash, Dash, but not ash (BusyBox) (-ash: command: not found).
Also note that builtin is not available with ash and Dash.

zsh only, but very useful for zsh scripting (e.g. when writing completion scripts):
The zsh/parameter module gives access to, among other things, the internal commands hash table. From man zshmodules:
THE ZSH/PARAMETER MODULE
The zsh/parameter module gives access to some of the internal hash ta‐
bles used by the shell by defining some special parameters.
[...]
commands
This array gives access to the command hash table. The keys are
the names of external commands, the values are the pathnames of
the files that would be executed when the command would be in‐
voked. Setting a key in this array defines a new entry in this
table in the same way as with the hash builtin. Unsetting a key
as in `unset "commands[foo]"' removes the entry for the given
key from the command hash table.
Although it is a loadable module, it seems to be loaded by default, as long as zsh is not used with --emulate.
example:
martin#martin ~ % echo $commands[zsh]
/usr/bin/zsh
To quickly check whether a certain command is available, just check if the key exists in the hash:
if (( ${+commands[zsh]} ))
then
echo "zsh is available"
fi
Note though that the hash will contain any files in $PATH folders, regardless of whether they are executable or not. To be absolutely sure, you have to spend a stat call on that:
if (( ${+commands[zsh]} )) && [[ -x $commands[zsh] ]]
then
echo "zsh is available"
fi

The which command might be useful. man which
It returns 0 if the executable is found and returns 1 if it's not found or not executable:
NAME
which - locate a command
SYNOPSIS
which [-a] filename ...
DESCRIPTION
which returns the pathnames of the files which would
be executed in the current environment, had its
arguments been given as commands in a strictly
POSIX-conformant shell. It does this by searching
the PATH for executable files matching the names
of the arguments.
OPTIONS
-a print all matching pathnames of each argument
EXIT STATUS
0 if all specified commands are
found and executable
1 if one or more specified commands is nonexistent
or not executable
2 if an invalid option is specified
The nice thing about which is that it figures out if the executable is available in the environment that which is run in - it saves a few problems...

Use Bash builtins if you can:
which programname
...
type -P programname

For those interested, none of the methodologies in previous answers work if you wish to detect an installed library. I imagine you are left either with physically checking the path (potentially for header files and such), or something like this (if you are on a Debian-based distribution):
dpkg --status libdb-dev | grep -q not-installed
if [ $? -eq 0 ]; then
apt-get install libdb-dev
fi
As you can see from the above, a "0" answer from the query means the package is not installed. This is a function of "grep" - a "0" means a match was found, a "1" means no match was found.

This will tell according to the location if the program exist or not:
if [ -x /usr/bin/yum ]; then
echo "This is Centos"
fi

I'd say there isn't any portable and 100% reliable way due to dangling aliases. For example:
alias john='ls --color'
alias paul='george -F'
alias george='ls -h'
alias ringo=/
Of course, only the last one is problematic (no offence to Ringo!). But all of them are valid aliases from the point of view of command -v.
In order to reject dangling ones like ringo, we have to parse the output of the shell built-in alias command and recurse into them (command -v isn't a superior to alias here.) There isn't any portable solution for it, and even a Bash-specific solution is rather tedious.
Note that a solution like this will unconditionally reject alias ls='ls -F':
test() { command -v $1 | grep -qv alias }

If you guys/gals can't get the things in answers here to work and are pulling hair out of your back, try to run the same command using bash -c. Just look at this somnambular delirium. This is what really happening when you run $(sub-command):
First. It can give you completely different output.
$ command -v ls
alias ls='ls --color=auto'
$ bash -c "command -v ls"
/bin/ls
Second. It can give you no output at all.
$ command -v nvm
nvm
$ bash -c "command -v nvm"
$ bash -c "nvm --help"
bash: nvm: command not found

#!/bin/bash
a=${apt-cache show program}
if [[ $a == 0 ]]
then
echo "the program doesn't exist"
else
echo "the program exists"
fi
#program is not literal, you can change it to the program's name you want to check

The hash-variant has one pitfall: On the command line you can for example type in
one_folder/process
to have process executed. For this the parent folder of one_folder must be in $PATH. But when you try to hash this command, it will always succeed:
hash one_folder/process; echo $? # will always output '0'

I second the use of "command -v". E.g. like this:
md=$(command -v mkdirhier) ; alias md=${md:=mkdir} # bash
emacs="$(command -v emacs) -nw" || emacs=nano
alias e=$emacs
[[ -z $(command -v jed) ]] && alias jed=$emacs

I had to check if Git was installed as part of deploying our CI server. My final Bash script was as follows (Ubuntu server):
if ! builtin type -p git &>/dev/null; then
sudo apt-get -y install git-core
fi

To mimic Bash's type -P cmd, we can use the POSIX compliant env -i type cmd 1>/dev/null 2>&1.
man env
# "The option '-i' causes env to completely ignore the environment it inherits."
# In other words, there are no aliases or functions to be looked up by the type command.
ls() { echo 'Hello, world!'; }
ls
type ls
env -i type ls
cmd=ls
cmd=lsx
env -i type $cmd 1>/dev/null 2>&1 || { echo "$cmd not found"; exit 1; }

If there isn't any external type command available (as taken for granted here), we can use POSIX compliant env -i sh -c 'type cmd 1>/dev/null 2>&1':
# Portable version of Bash's type -P cmd (without output on stdout)
typep() {
command -p env -i PATH="$PATH" sh -c '
export LC_ALL=C LANG=C
cmd="$1"
cmd="`type "$cmd" 2>/dev/null || { echo "error: command $cmd not found; exiting ..." 1>&2; exit 1; }`"
[ $? != 0 ] && exit 1
case "$cmd" in
*\ /*) exit 0;;
*) printf "%s\n" "error: $cmd" 1>&2; exit 1;;
esac
' _ "$1" || exit 1
}
# Get your standard $PATH value
#PATH="$(command -p getconf PATH)"
typep ls
typep builtin
typep ls-temp
At least on Mac OS X v10.6.8 (Snow Leopard) using Bash 4.2.24(2) command -v ls does not match a moved /bin/ls-temp.

My setup for a Debian server:
I had the problem when multiple packages contained the same name.
For example apache2. So this was my solution:
function _apt_install() {
apt-get install -y $1 > /dev/null
}
function _apt_install_norecommends() {
apt-get install -y --no-install-recommends $1 > /dev/null
}
function _apt_available() {
if [ `apt-cache search $1 | grep -o "$1" | uniq | wc -l` = "1" ]; then
echo "Package is available : $1"
PACKAGE_INSTALL="1"
else
echo "Package $1 is NOT available for install"
echo "We can not continue without this package..."
echo "Exitting now.."
exit 0
fi
}
function _package_install {
_apt_available $1
if [ "${PACKAGE_INSTALL}" = "1" ]; then
if [ "$(dpkg-query -l $1 | tail -n1 | cut -c1-2)" = "ii" ]; then
echo "package is already_installed: $1"
else
echo "installing package : $1, please wait.."
_apt_install $1
sleep 0.5
fi
fi
}
function _package_install_no_recommends {
_apt_available $1
if [ "${PACKAGE_INSTALL}" = "1" ]; then
if [ "$(dpkg-query -l $1 | tail -n1 | cut -c1-2)" = "ii" ]; then
echo "package is already_installed: $1"
else
echo "installing package : $1, please wait.."
_apt_install_norecommends $1
sleep 0.5
fi
fi
}

Related

Checking if package is installed [duplicate]

How would I validate that a program exists, in a way that will either return an error and exit, or continue with the script?
It seems like it should be easy, but it's been stumping me.
Answer
POSIX compatible:
command -v <the_command>
Example use:
if ! command -v <the_command> &> /dev/null
then
echo "<the_command> could not be found"
exit
fi
For Bash specific environments:
hash <the_command> # For regular commands. Or...
type <the_command> # To check built-ins and keywords
Explanation
Avoid which. Not only is it an external process you're launching for doing very little (meaning builtins like hash, type or command are way cheaper), you can also rely on the builtins to actually do what you want, while the effects of external commands can easily vary from system to system.
Why care?
Many operating systems have a which that doesn't even set an exit status, meaning the if which foo won't even work there and will always report that foo exists, even if it doesn't (note that some POSIX shells appear to do this for hash too).
Many operating systems make which do custom and evil stuff like change the output or even hook into the package manager.
So, don't use which. Instead use one of these:
command -v foo >/dev/null 2>&1 || { echo >&2 "I require foo but it's not installed. Aborting."; exit 1; }
type foo >/dev/null 2>&1 || { echo >&2 "I require foo but it's not installed. Aborting."; exit 1; }
hash foo 2>/dev/null || { echo >&2 "I require foo but it's not installed. Aborting."; exit 1; }
(Minor side-note: some will suggest 2>&- is the same 2>/dev/null but shorter – this is untrue. 2>&- closes FD 2 which causes an error in the program when it tries to write to stderr, which is very different from successfully writing to it and discarding the output (and dangerous!))
If your hash bang is /bin/sh then you should care about what POSIX says. type and hash's exit codes aren't terribly well defined by POSIX, and hash is seen to exit successfully when the command doesn't exist (haven't seen this with type yet). command's exit status is well defined by POSIX, so that one is probably the safest to use.
If your script uses bash though, POSIX rules don't really matter anymore and both type and hash become perfectly safe to use. type now has a -P to search just the PATH and hash has the side-effect that the command's location will be hashed (for faster lookup next time you use it), which is usually a good thing since you probably check for its existence in order to actually use it.
As a simple example, here's a function that runs gdate if it exists, otherwise date:
gnudate() {
if hash gdate 2>/dev/null; then
gdate "$#"
else
date "$#"
fi
}
Alternative with a complete feature set
You can use scripts-common to reach your need.
To check if something is installed, you can do:
checkBin <the_command> || errorMessage "This tool requires <the_command>. Install it please, and then run this tool again."
The following is a portable way to check whether a command exists in $PATH and is executable:
[ -x "$(command -v foo)" ]
Example:
if ! [ -x "$(command -v git)" ]; then
echo 'Error: git is not installed.' >&2
exit 1
fi
The executable check is needed because bash returns a non-executable file if no executable file with that name is found in $PATH.
Also note that if a non-executable file with the same name as the executable exists earlier in $PATH, dash returns the former, even though the latter would be executed. This is a bug and is in violation of the POSIX standard. [Bug report] [Standard]
Edit: This seems to be fixed as of dash 0.5.11 (Debian 11).
In addition, this will fail if the command you are looking for has been defined as an alias.
I agree with lhunath to discourage use of which, and his solution is perfectly valid for Bash users. However, to be more portable, command -v shall be used instead:
$ command -v foo >/dev/null 2>&1 || { echo "I require foo but it's not installed. Aborting." >&2; exit 1; }
Command command is POSIX compliant. See here for its specification: command - execute a simple command
Note: type is POSIX compliant, but type -P is not.
It depends on whether you want to know whether it exists in one of the directories in the $PATH variable or whether you know the absolute location of it. If you want to know if it is in the $PATH variable, use
if which programname >/dev/null; then
echo exists
else
echo does not exist
fi
otherwise use
if [ -x /path/to/programname ]; then
echo exists
else
echo does not exist
fi
The redirection to /dev/null/ in the first example suppresses the output of the which program.
I have a function defined in my .bashrc that makes this easier.
command_exists () {
type "$1" &> /dev/null ;
}
Here's an example of how it's used (from my .bash_profile.)
if command_exists mvim ; then
export VISUAL="mvim --nofork"
fi
Expanding on #lhunath's and #GregV's answers, here's the code for the people who want to easily put that check inside an if statement:
exists()
{
command -v "$1" >/dev/null 2>&1
}
Here's how to use it:
if exists bash; then
echo 'Bash exists!'
else
echo 'Your system does not have Bash'
fi
Try using:
test -x filename
or
[ -x filename ]
From the Bash manpage under Conditional Expressions:
-x file
True if file exists and is executable.
To use hash, as #lhunath suggests, in a Bash script:
hash foo &> /dev/null
if [ $? -eq 1 ]; then
echo >&2 "foo not found."
fi
This script runs hash and then checks if the exit code of the most recent command, the value stored in $?, is equal to 1. If hash doesn't find foo, the exit code will be 1. If foo is present, the exit code will be 0.
&> /dev/null redirects standard error and standard output from hash so that it doesn't appear onscreen and echo >&2 writes the message to standard error.
Command -v works fine if the POSIX_BUILTINS option is set for the <command> to test for, but it can fail if not. (It has worked for me for years, but I recently ran into one where it didn't work.)
I find the following to be more failproof:
test -x "$(which <command>)"
Since it tests for three things: path, existence and execution permission.
There are a ton of options here, but I was surprised no quick one-liners. This is what I used at the beginning of my scripts:
[[ "$(command -v mvn)" ]] || { echo "mvn is not installed" 1>&2 ; exit 1; }
[[ "$(command -v java)" ]] || { echo "java is not installed" 1>&2 ; exit 1; }
This is based on the selected answer here and another source.
If you check for program existence, you are probably going to run it later anyway. Why not try to run it in the first place?
if foo --version >/dev/null 2>&1; then
echo Found
else
echo Not found
fi
It's a more trustworthy check that the program runs than merely looking at PATH directories and file permissions.
Plus you can get some useful result from your program, such as its version.
Of course the drawbacks are that some programs can be heavy to start and some don't have a --version option to immediately (and successfully) exit.
Check for multiple dependencies and inform status to end users
for cmd in latex pandoc; do
printf '%-10s' "$cmd"
if hash "$cmd" 2>/dev/null; then
echo OK
else
echo missing
fi
done
Sample output:
latex OK
pandoc missing
Adjust the 10 to the maximum command length. It is not automatic, because I don't see a non-verbose POSIX way to do it:
How can I align the columns of a space separated table in Bash?
Check if some apt packages are installed with dpkg -s and install them otherwise.
See: Check if an apt-get package is installed and then install it if it's not on Linux
It was previously mentioned at: How can I check if a program exists from a Bash script?
I never did get the previous answers to work on the box I have access to. For one, type has been installed (doing what more does). So the builtin directive is needed. This command works for me:
if [ `builtin type -p vim` ]; then echo "TRUE"; else echo "FALSE"; fi
I wanted the same question answered but to run within a Makefile.
install:
#if [[ ! -x "$(shell command -v ghead)" ]]; then \
echo 'ghead does not exist. Please install it.'; \
exit -1; \
fi
It could be simpler, just:
#!/usr/bin/env bash
set -x
# if local program 'foo' returns 1 (doesn't exist) then...
if ! type -P foo; then
echo 'crap, no foo'
else
echo 'sweet, we have foo!'
fi
Change foo to vi to get the other condition to fire.
hash foo 2>/dev/null: works with Z shell (Zsh), Bash, Dash and ash.
type -p foo: it appears to work with Z shell, Bash and ash (BusyBox), but not Dash (it interprets -p as an argument).
command -v foo: works with Z shell, Bash, Dash, but not ash (BusyBox) (-ash: command: not found).
Also note that builtin is not available with ash and Dash.
zsh only, but very useful for zsh scripting (e.g. when writing completion scripts):
The zsh/parameter module gives access to, among other things, the internal commands hash table. From man zshmodules:
THE ZSH/PARAMETER MODULE
The zsh/parameter module gives access to some of the internal hash ta‐
bles used by the shell by defining some special parameters.
[...]
commands
This array gives access to the command hash table. The keys are
the names of external commands, the values are the pathnames of
the files that would be executed when the command would be in‐
voked. Setting a key in this array defines a new entry in this
table in the same way as with the hash builtin. Unsetting a key
as in `unset "commands[foo]"' removes the entry for the given
key from the command hash table.
Although it is a loadable module, it seems to be loaded by default, as long as zsh is not used with --emulate.
example:
martin#martin ~ % echo $commands[zsh]
/usr/bin/zsh
To quickly check whether a certain command is available, just check if the key exists in the hash:
if (( ${+commands[zsh]} ))
then
echo "zsh is available"
fi
Note though that the hash will contain any files in $PATH folders, regardless of whether they are executable or not. To be absolutely sure, you have to spend a stat call on that:
if (( ${+commands[zsh]} )) && [[ -x $commands[zsh] ]]
then
echo "zsh is available"
fi
The which command might be useful. man which
It returns 0 if the executable is found and returns 1 if it's not found or not executable:
NAME
which - locate a command
SYNOPSIS
which [-a] filename ...
DESCRIPTION
which returns the pathnames of the files which would
be executed in the current environment, had its
arguments been given as commands in a strictly
POSIX-conformant shell. It does this by searching
the PATH for executable files matching the names
of the arguments.
OPTIONS
-a print all matching pathnames of each argument
EXIT STATUS
0 if all specified commands are
found and executable
1 if one or more specified commands is nonexistent
or not executable
2 if an invalid option is specified
The nice thing about which is that it figures out if the executable is available in the environment that which is run in - it saves a few problems...
Use Bash builtins if you can:
which programname
...
type -P programname
For those interested, none of the methodologies in previous answers work if you wish to detect an installed library. I imagine you are left either with physically checking the path (potentially for header files and such), or something like this (if you are on a Debian-based distribution):
dpkg --status libdb-dev | grep -q not-installed
if [ $? -eq 0 ]; then
apt-get install libdb-dev
fi
As you can see from the above, a "0" answer from the query means the package is not installed. This is a function of "grep" - a "0" means a match was found, a "1" means no match was found.
This will tell according to the location if the program exist or not:
if [ -x /usr/bin/yum ]; then
echo "This is Centos"
fi
I'd say there isn't any portable and 100% reliable way due to dangling aliases. For example:
alias john='ls --color'
alias paul='george -F'
alias george='ls -h'
alias ringo=/
Of course, only the last one is problematic (no offence to Ringo!). But all of them are valid aliases from the point of view of command -v.
In order to reject dangling ones like ringo, we have to parse the output of the shell built-in alias command and recurse into them (command -v isn't a superior to alias here.) There isn't any portable solution for it, and even a Bash-specific solution is rather tedious.
Note that a solution like this will unconditionally reject alias ls='ls -F':
test() { command -v $1 | grep -qv alias }
If you guys/gals can't get the things in answers here to work and are pulling hair out of your back, try to run the same command using bash -c. Just look at this somnambular delirium. This is what really happening when you run $(sub-command):
First. It can give you completely different output.
$ command -v ls
alias ls='ls --color=auto'
$ bash -c "command -v ls"
/bin/ls
Second. It can give you no output at all.
$ command -v nvm
nvm
$ bash -c "command -v nvm"
$ bash -c "nvm --help"
bash: nvm: command not found
#!/bin/bash
a=${apt-cache show program}
if [[ $a == 0 ]]
then
echo "the program doesn't exist"
else
echo "the program exists"
fi
#program is not literal, you can change it to the program's name you want to check
The hash-variant has one pitfall: On the command line you can for example type in
one_folder/process
to have process executed. For this the parent folder of one_folder must be in $PATH. But when you try to hash this command, it will always succeed:
hash one_folder/process; echo $? # will always output '0'
I second the use of "command -v". E.g. like this:
md=$(command -v mkdirhier) ; alias md=${md:=mkdir} # bash
emacs="$(command -v emacs) -nw" || emacs=nano
alias e=$emacs
[[ -z $(command -v jed) ]] && alias jed=$emacs
I had to check if Git was installed as part of deploying our CI server. My final Bash script was as follows (Ubuntu server):
if ! builtin type -p git &>/dev/null; then
sudo apt-get -y install git-core
fi
To mimic Bash's type -P cmd, we can use the POSIX compliant env -i type cmd 1>/dev/null 2>&1.
man env
# "The option '-i' causes env to completely ignore the environment it inherits."
# In other words, there are no aliases or functions to be looked up by the type command.
ls() { echo 'Hello, world!'; }
ls
type ls
env -i type ls
cmd=ls
cmd=lsx
env -i type $cmd 1>/dev/null 2>&1 || { echo "$cmd not found"; exit 1; }
If there isn't any external type command available (as taken for granted here), we can use POSIX compliant env -i sh -c 'type cmd 1>/dev/null 2>&1':
# Portable version of Bash's type -P cmd (without output on stdout)
typep() {
command -p env -i PATH="$PATH" sh -c '
export LC_ALL=C LANG=C
cmd="$1"
cmd="`type "$cmd" 2>/dev/null || { echo "error: command $cmd not found; exiting ..." 1>&2; exit 1; }`"
[ $? != 0 ] && exit 1
case "$cmd" in
*\ /*) exit 0;;
*) printf "%s\n" "error: $cmd" 1>&2; exit 1;;
esac
' _ "$1" || exit 1
}
# Get your standard $PATH value
#PATH="$(command -p getconf PATH)"
typep ls
typep builtin
typep ls-temp
At least on Mac OS X v10.6.8 (Snow Leopard) using Bash 4.2.24(2) command -v ls does not match a moved /bin/ls-temp.
My setup for a Debian server:
I had the problem when multiple packages contained the same name.
For example apache2. So this was my solution:
function _apt_install() {
apt-get install -y $1 > /dev/null
}
function _apt_install_norecommends() {
apt-get install -y --no-install-recommends $1 > /dev/null
}
function _apt_available() {
if [ `apt-cache search $1 | grep -o "$1" | uniq | wc -l` = "1" ]; then
echo "Package is available : $1"
PACKAGE_INSTALL="1"
else
echo "Package $1 is NOT available for install"
echo "We can not continue without this package..."
echo "Exitting now.."
exit 0
fi
}
function _package_install {
_apt_available $1
if [ "${PACKAGE_INSTALL}" = "1" ]; then
if [ "$(dpkg-query -l $1 | tail -n1 | cut -c1-2)" = "ii" ]; then
echo "package is already_installed: $1"
else
echo "installing package : $1, please wait.."
_apt_install $1
sleep 0.5
fi
fi
}
function _package_install_no_recommends {
_apt_available $1
if [ "${PACKAGE_INSTALL}" = "1" ]; then
if [ "$(dpkg-query -l $1 | tail -n1 | cut -c1-2)" = "ii" ]; then
echo "package is already_installed: $1"
else
echo "installing package : $1, please wait.."
_apt_install_norecommends $1
sleep 0.5
fi
fi
}

How can I test if a file could be marked as executable and run? [duplicate]

I am wondering what's the easiest way to check if a program is executable with bash, without executing it ? It should at least check whether the file has execute rights, and is of the same architecture (for example, not a windows executable or another unsupported architecture, not 64 bits if the system is 32 bits, ...) as the current system.
Take a look at the various test operators (this is for the test command itself, but the built-in BASH and TCSH tests are more or less the same).
You'll notice that -x FILE says FILE exists and execute (or search) permission is granted.
BASH, Bourne, Ksh, Zsh Script
if [[ -x "$file" ]]
then
echo "File '$file' is executable"
else
echo "File '$file' is not executable or found"
fi
TCSH or CSH Script:
if ( -x "$file" ) then
echo "File '$file' is executable"
else
echo "File '$file' is not executable or found"
endif
To determine the type of file it is, try the file command. You can parse the output to see exactly what type of file it is. Word 'o Warning: Sometimes file will return more than one line. Here's what happens on my Mac:
$ file /bin/ls
/bin/ls: Mach-O universal binary with 2 architectures
/bin/ls (for architecture x86_64): Mach-O 64-bit executable x86_64
/bin/ls (for architecture i386): Mach-O executable i386
The file command returns different output depending upon the OS. However, the word executable will be in executable programs, and usually the architecture will appear too.
Compare the above to what I get on my Linux box:
$ file /bin/ls
/bin/ls: ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV), for GNU/Linux 2.6.9, dynamically linked (uses shared libs), stripped
And a Solaris box:
$ file /bin/ls
/bin/ls: ELF 32-bit MSB executable SPARC Version 1, dynamically linked, stripped
In all three, you'll see the word executable and the architecture (x86-64, i386, or SPARC with 32-bit).
Addendum
Thank you very much, that seems the way to go. Before I mark this as my answer, can you please guide me as to what kind of script shell check I would have to perform (ie, what kind of parsing) on 'file' in order to check whether I can execute a program ? If such a test is too difficult to make on a general basis, I would at least like to check whether it's a linux executable or osX (Mach-O)
Off the top of my head, you could do something like this in BASH:
if [ -x "$file" ] && file "$file" | grep -q "Mach-O"
then
echo "This is an executable Mac file"
elif [ -x "$file" ] && file "$file" | grep -q "GNU/Linux"
then
echo "This is an executable Linux File"
elif [ -x "$file" ] && file "$file" | grep q "shell script"
then
echo "This is an executable Shell Script"
elif [ -x "$file" ]
then
echo "This file is merely marked executable, but what type is a mystery"
else
echo "This file isn't even marked as being executable"
fi
Basically, I'm running the test, then if that is successful, I do a grep on the output of the file command. The grep -q means don't print any output, but use the exit code of grep to see if I found the string. If your system doesn't take grep -q, you can try grep "regex" > /dev/null 2>&1.
Again, the output of the file command may vary from system to system, so you'll have to verify that these will work on your system. Also, I'm checking the executable bit. If a file is a binary executable, but the executable bit isn't on, I'll say it's not executable. This may not be what you want.
Seems nobody noticed that -x operator does not differ file with directory.
So to precisely check an executable file, you may use
[[ -f SomeFile && -x SomeFile ]]
Testing files, directories and symlinks
The solutions given here fail on either directories or symlinks (or both). On Linux, you can test files, directories and symlinks with:
if [[ -f "$file" && -x $(realpath "$file") ]]; then .... fi
On OS X, you should be able to install coreutils with homebrew and use grealpath.
Defining an isexec function
You can define a function for convenience:
isexec() {
if [[ -f "$1" && -x $(realpath "$1") ]]; then
true;
else
false;
fi;
}
Or simply
isexec() { [[ -f "$1" && -x $(realpath "$1") ]]; }
Then you can test using:
if `isexec "$file"`; then ... fi
Also seems nobody noticed -x operator on symlinks. A symlink (chain) to a regular file (not classified as executable) fails the test.
First you need to remember that in Unix and Linux, everything is a file, even directories. For a file to have the rights to be executed as a command, it needs to satisfy 3 conditions:
It needs to be a regular file
It needs to have read-permissions
It needs to have execute-permissions
So this can be done simply with:
[ -f "${file}" ] && [ -r "${file}" ] && [ -x "${file}" ]
If your file is a symbolic link to a regular file, the test command will operate on the target and not the link-name. So the above command distinguishes if a file can be used as a command or not. So there is no need to pass the file first to realpath or readlink or any of those variants.
If the file can be executed on the current OS, that is a different question. Some answers above already pointed to some possibilities for that, so there is no need to repeat it here.
To test whether a file itself has ACL_EXECUTE bit set in any of permission sets (user, group, others) regardless of where it resides, i. e. even on a tmpfs with noexec option, use stat -c '%A' to get the permission string and then check if it contains at least a single “x” letter:
if [[ "$(stat -c '%A' 'my_exec_file')" == *'x'* ]] ; then
echo 'Has executable permission for someone'
fi
The right-hand part of comparison may be modified to fit more specific cases, such as *x*x*x* to check whether all kinds of users should be able to execute the file when it is placed on a volume mounted with exec option.
This might be not so obvious, but sometime is required to test the executable to appropriately call it without an external shell process:
function tkl_is_file_os_exec()
{
[[ ! -x "$1" ]] && return 255
local exec_header_bytes
case "$OSTYPE" in
cygwin* | msys* | mingw*)
# CAUTION:
# The bash version 3.2+ might require a file path together with the extension,
# otherwise will throw the error: `bash: ...: No such file or directory`.
# So we make a guess to avoid the error.
#
{
read -r -n 4 exec_header_bytes 2> /dev/null < "$1" ||
{
[[ -x "${1%.exe}.exe" ]] && read -r -n 4 exec_header_bytes 2> /dev/null < "${1%.exe}.exe"
} ||
{
[[ -x "${1%.com}.com" ]] && read -r -n 4 exec_header_bytes 2> /dev/null < "${1%.com}.com"
}
} &&
if [[ "${exec_header_bytes:0:3}" == $'MZ\x90' ]]; then
# $'MZ\x90\00' for bash version 3.2.42+
# $'MZ\x90\03' for bash version 4.0+
[[ "${exec_header_bytes:3:1}" == $'\x00' || "${exec_header_bytes:3:1}" == $'\x03' ]] && return 0
fi
;;
*)
read -r -n 4 exec_header_bytes < "$1"
[[ "$exec_header_bytes" == $'\x7fELF' ]] && return 0
;;
esac
return 1
}
# executes script in the shell process in case of a shell script, otherwise executes as usual
function tkl_exec_inproc()
{
if tkl_is_file_os_exec "$1"; then
"$#"
else
. "$#"
fi
return $?
}
myscript.sh:
#!/bin/bash
echo 123
return 123
In Cygwin:
> tkl_exec_inproc /cygdrive/c/Windows/system32/cmd.exe /c 'echo 123'
123
> tkl_exec_inproc /cygdrive/c/Windows/system32/chcp.com 65001
Active code page: 65001
> tkl_exec_inproc ./myscript.sh
123
> echo $?
123
In Linux:
> tkl_exec_inproc /bin/bash -c 'echo 123'
123
> tkl_exec_inproc ./myscript.sh
123
> echo $?
123

How do I check if a file is executable on Linux [duplicate]

I am wondering what's the easiest way to check if a program is executable with bash, without executing it ? It should at least check whether the file has execute rights, and is of the same architecture (for example, not a windows executable or another unsupported architecture, not 64 bits if the system is 32 bits, ...) as the current system.
Take a look at the various test operators (this is for the test command itself, but the built-in BASH and TCSH tests are more or less the same).
You'll notice that -x FILE says FILE exists and execute (or search) permission is granted.
BASH, Bourne, Ksh, Zsh Script
if [[ -x "$file" ]]
then
echo "File '$file' is executable"
else
echo "File '$file' is not executable or found"
fi
TCSH or CSH Script:
if ( -x "$file" ) then
echo "File '$file' is executable"
else
echo "File '$file' is not executable or found"
endif
To determine the type of file it is, try the file command. You can parse the output to see exactly what type of file it is. Word 'o Warning: Sometimes file will return more than one line. Here's what happens on my Mac:
$ file /bin/ls
/bin/ls: Mach-O universal binary with 2 architectures
/bin/ls (for architecture x86_64): Mach-O 64-bit executable x86_64
/bin/ls (for architecture i386): Mach-O executable i386
The file command returns different output depending upon the OS. However, the word executable will be in executable programs, and usually the architecture will appear too.
Compare the above to what I get on my Linux box:
$ file /bin/ls
/bin/ls: ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV), for GNU/Linux 2.6.9, dynamically linked (uses shared libs), stripped
And a Solaris box:
$ file /bin/ls
/bin/ls: ELF 32-bit MSB executable SPARC Version 1, dynamically linked, stripped
In all three, you'll see the word executable and the architecture (x86-64, i386, or SPARC with 32-bit).
Addendum
Thank you very much, that seems the way to go. Before I mark this as my answer, can you please guide me as to what kind of script shell check I would have to perform (ie, what kind of parsing) on 'file' in order to check whether I can execute a program ? If such a test is too difficult to make on a general basis, I would at least like to check whether it's a linux executable or osX (Mach-O)
Off the top of my head, you could do something like this in BASH:
if [ -x "$file" ] && file "$file" | grep -q "Mach-O"
then
echo "This is an executable Mac file"
elif [ -x "$file" ] && file "$file" | grep -q "GNU/Linux"
then
echo "This is an executable Linux File"
elif [ -x "$file" ] && file "$file" | grep q "shell script"
then
echo "This is an executable Shell Script"
elif [ -x "$file" ]
then
echo "This file is merely marked executable, but what type is a mystery"
else
echo "This file isn't even marked as being executable"
fi
Basically, I'm running the test, then if that is successful, I do a grep on the output of the file command. The grep -q means don't print any output, but use the exit code of grep to see if I found the string. If your system doesn't take grep -q, you can try grep "regex" > /dev/null 2>&1.
Again, the output of the file command may vary from system to system, so you'll have to verify that these will work on your system. Also, I'm checking the executable bit. If a file is a binary executable, but the executable bit isn't on, I'll say it's not executable. This may not be what you want.
Seems nobody noticed that -x operator does not differ file with directory.
So to precisely check an executable file, you may use
[[ -f SomeFile && -x SomeFile ]]
Testing files, directories and symlinks
The solutions given here fail on either directories or symlinks (or both). On Linux, you can test files, directories and symlinks with:
if [[ -f "$file" && -x $(realpath "$file") ]]; then .... fi
On OS X, you should be able to install coreutils with homebrew and use grealpath.
Defining an isexec function
You can define a function for convenience:
isexec() {
if [[ -f "$1" && -x $(realpath "$1") ]]; then
true;
else
false;
fi;
}
Or simply
isexec() { [[ -f "$1" && -x $(realpath "$1") ]]; }
Then you can test using:
if `isexec "$file"`; then ... fi
Also seems nobody noticed -x operator on symlinks. A symlink (chain) to a regular file (not classified as executable) fails the test.
First you need to remember that in Unix and Linux, everything is a file, even directories. For a file to have the rights to be executed as a command, it needs to satisfy 3 conditions:
It needs to be a regular file
It needs to have read-permissions
It needs to have execute-permissions
So this can be done simply with:
[ -f "${file}" ] && [ -r "${file}" ] && [ -x "${file}" ]
If your file is a symbolic link to a regular file, the test command will operate on the target and not the link-name. So the above command distinguishes if a file can be used as a command or not. So there is no need to pass the file first to realpath or readlink or any of those variants.
If the file can be executed on the current OS, that is a different question. Some answers above already pointed to some possibilities for that, so there is no need to repeat it here.
To test whether a file itself has ACL_EXECUTE bit set in any of permission sets (user, group, others) regardless of where it resides, i. e. even on a tmpfs with noexec option, use stat -c '%A' to get the permission string and then check if it contains at least a single “x” letter:
if [[ "$(stat -c '%A' 'my_exec_file')" == *'x'* ]] ; then
echo 'Has executable permission for someone'
fi
The right-hand part of comparison may be modified to fit more specific cases, such as *x*x*x* to check whether all kinds of users should be able to execute the file when it is placed on a volume mounted with exec option.
This might be not so obvious, but sometime is required to test the executable to appropriately call it without an external shell process:
function tkl_is_file_os_exec()
{
[[ ! -x "$1" ]] && return 255
local exec_header_bytes
case "$OSTYPE" in
cygwin* | msys* | mingw*)
# CAUTION:
# The bash version 3.2+ might require a file path together with the extension,
# otherwise will throw the error: `bash: ...: No such file or directory`.
# So we make a guess to avoid the error.
#
{
read -r -n 4 exec_header_bytes 2> /dev/null < "$1" ||
{
[[ -x "${1%.exe}.exe" ]] && read -r -n 4 exec_header_bytes 2> /dev/null < "${1%.exe}.exe"
} ||
{
[[ -x "${1%.com}.com" ]] && read -r -n 4 exec_header_bytes 2> /dev/null < "${1%.com}.com"
}
} &&
if [[ "${exec_header_bytes:0:3}" == $'MZ\x90' ]]; then
# $'MZ\x90\00' for bash version 3.2.42+
# $'MZ\x90\03' for bash version 4.0+
[[ "${exec_header_bytes:3:1}" == $'\x00' || "${exec_header_bytes:3:1}" == $'\x03' ]] && return 0
fi
;;
*)
read -r -n 4 exec_header_bytes < "$1"
[[ "$exec_header_bytes" == $'\x7fELF' ]] && return 0
;;
esac
return 1
}
# executes script in the shell process in case of a shell script, otherwise executes as usual
function tkl_exec_inproc()
{
if tkl_is_file_os_exec "$1"; then
"$#"
else
. "$#"
fi
return $?
}
myscript.sh:
#!/bin/bash
echo 123
return 123
In Cygwin:
> tkl_exec_inproc /cygdrive/c/Windows/system32/cmd.exe /c 'echo 123'
123
> tkl_exec_inproc /cygdrive/c/Windows/system32/chcp.com 65001
Active code page: 65001
> tkl_exec_inproc ./myscript.sh
123
> echo $?
123
In Linux:
> tkl_exec_inproc /bin/bash -c 'echo 123'
123
> tkl_exec_inproc ./myscript.sh
123
> echo $?
123

zsh script [process complete] not returning back to shell

I wrote a zsh function to help me do some grepping at my job.
function rgrep (){
if [ -n "$1" ] && [ -n "$2" ]
then
exec grep -rnw $1 -r $2
elif [ -n "$1" ]
then
exec grep -rnw $1 -r "./"
else
echo "please enter one or two args"
fi
}
Works great, however, grep finishes executing I don't get thrown back into the shell. it just hangs at [process complete] any ideas?
I have the function in my .zshrc
In addition to getting rid of the unnecessary exec, you can remove the if statement as well.
function rgrep (){
grep -rwn "${1:?please enter one or two args}" -r "${2:-./}"
}
If $1 is not set (or null valued), an error will be raised and the given message displayed. If $2 is not set, a default value of ./ will be used in its place.
Do not use exec as it replace the existing shell.
exec [-cl] [-a name] [command [arguments]]
If command is supplied, it replaces the shell without creating a new process. If the -l option is supplied, the shell places a dash at the beginning of the zeroth argument passed to command. This is what the login program does. The -c option causes command to be executed with an empty environment. If -a is supplied, the shell passes name as the zeroth argument to command. If no command is specified, redirections may be used to affect the current shell environment. If there are no redirection errors, the return status is zero; otherwise the return status is non-zero.
Try this instead:
rgrep ()
{
if [ -n "$1" ] && [ -n "$2" ]
then
grep -rnw "$1" -r "$2"
elif [ -n "$1" ]
then
grep -rnw "$1" -r "./"
else
echo "please enter one or two args"
fi
}
As a completely different approach, I like to build command shortcuts like this as minimal shell scripts, rather than functions (or aliases):
% echo 'grep -rwn "$#"' >rgrep
% chmod +x rgrep
% ./rgrep
Usage: grep [OPTION]... PATTERN [FILE]...
Try `grep --help' for more information.
%
(This relies on a traditional behavior of Unix: executable text files without #! lines are considered shell scripts and are executed by /bin/sh. If that doesn't work on your system, or you need to run specifically under zsh, use an appropriate #! line.)
One of the main benefits of this approach is that shell scripts in a directory in your PATH are full citizens of the environment, not local to the current shell like functions and aliases. This means they can be used in situations where only executable files are viable commands, such as xargs, sudo, or remote invocation via ssh.
This doesn't provide the ability to give default arguments (or not easily, anyway), but IMAO the benefits outweigh the drawbacks. (And in the specific case of defaulting grep to search PWD recursively, the real solution is to install ack.)

Bash - Update terminal title by running a second command

On my terminal in Ubuntu, I often run programs which keep running for a long time. And since there are a lot of these programs, I keep forgetting which terminal is for which program, unless I tab through all of those. So I wanted to find a way to update my terminal title to the program name, whenever I run a command. I don't want to do it manually.
I use gnome-terminal, but answer shouldn't really depend on that. Basically, If I'm able to run a second command, then I can simply use gconftool command to update the title. So I was hoping to find a way to capture the command in bash and update the title after every command. How do I do that?
I have some answers for you :) You're right that it shouldn't matter that you're using gnome-terminal, but it does matter what command shell you're using. This is a lot easier in zsh, but in what follows I'm going to assume you're using bash, and that it's a fairly recent version (> 3.1).
First of all:
Which environment variable would
contain the current 'command'?
There is an environment variable which has more-or-less what you want - $BASH_COMMAND. There's only one small hitch, which is that it will only show you the last command in a pipe. I'm not 100% sure what it will do with combinations of subshells, either :)
So I was hoping to find a way to
capture the command in bash and update
the title after every command.
I've been thinking about this, and now that I understand what you want to do, I realized the real problem is that you need to update the title before every command. This means that the $PROMPT_COMMAND and $PS1 environment variables are out as possible solutions, since they're only executed after the command returns.
In bash, the only way I can think of to achieve what you want is to (ab)use the DEBUG SIGNAL. So here's a solution -- stick this at the end of your .bashrc:
trap 'printf "\033]0;%s\007" "${BASH_COMMAND//[^[:print:]]/}"' DEBUG
To get around the problem with pipes, I've been messing around with this:
function settitle () {
export PREV_COMMAND=${PREV_COMMAND}${#}
printf "\033]0;%s\007" "${BASH_COMMAND//[^[:print:]]/}"
export PREV_COMMAND=${PREV_COMMAND}' | '
}
export PROMPT_COMMAND=${PROMPT_COMMAND}';export PREV_COMMAND=""'
trap 'settitle "$BASH_COMMAND"' DEBUG
but I don't promise it's perfect!
Try this:
trap 'echo -ne "\033]2;$(history 1 | sed "s/^[ ]*[0-9]*[ ]*//g")\007"' DEBUG
Thanks to the history 1 it works even with complicated expressions like:
true && (false); echo $? | cat
For which approaches relying on $BASH_COMMAND or $# fail. For example simon's displays:
true | echo $? | cat
Thanks to Gilles and simon for providing inspiration.
I see what stoutie is trying to do, except it's a lot more work than needed. And doesn't cause all sorts of other potentially bad things that can occur as a result of redefining 'cd' and putting in all of that testing just to change directories. Bash has built in support for most of this.
You can put this in your .bashrc anywhere after you set your current PS1 prompt (this way it just prepends it)
# If this is an xterm set the titlebar to user#host:dir
case "$TERM" in
xterm*|rxvt*)
PS1="\[\e]0;\u#\h: \w\a\]$PS1"
;;
*)
;;
esac
The OP asked for bash, but others might be interested to learn that (as mentioned above) this is indeed a lot easier using the zsh shell. Example:
# Set window title to command just before running it.
preexec() { printf "\x1b]0;%s\x07" "$1"; }
# Set window title to current working directory after returning from a command.
precmd() { printf "\x1b]0;%s\x07" "$PWD" }
In preexec, $1 contains the command as typed (requires shell history to be enabled, which seems to be a fair assumption), $2 the expanded command (shell aliases etc.) and $3 the "very expanded" command (shell function bodies). (more)
I'm doing something like this, to show my pwd in the title, which could be modified to do whatever you want to do with the title:
function title { echo -en "\033]2;$1\007"; }
function cd { dir=$1; if [ -z "$dir" ]; then dir=~; fi; builtin cd "$dir" && title `pwd`; }
I just threw this in my ~/.bash_aliases.
Update
I ran into strange bugs with my original answer. I ended up picking apart the default Ubuntu PS1 and breaking it into parts only to realize one of the parts was the title:
# simple prompt
COLOR_YELLOW_BOLD="\[\033[1;33m\]"
COLOR_DEFAULT="\[\033[0m\]"
TITLE="\[\e]0;\u#\h:\w\a\]"
PROMPT="\w\n$ "
HUH="${debian_chroot:+($debian_chroot)}"
PS1="${COLOR_YELLOW_BOLD}${TITLE}${HUH}${PROMPT}${COLOR_DEFAULT}"
Without breaking into variables, it would look like this:
PS1="\[\033[1;33m\]\[\e]0;\u#\h:\w\a\]${debian_chroot:+($debian_chroot)}\w\n$ \[\033[0m\]"
I have tested three method, all is OK, use any one for your pleasure.
export PROMPT_COMMAND='echo -ne "\033]2;$(history 1 | sed "s/^[ ]*[0-9]*[ ]*//g")\007"'
trap 'echo -ne "\033]2;$(history 1 | sed "s/^[ ]*[0-9]*[ ]*//g")\007"' DEBUG
trap 'echo -ne "\e]0;"; echo -n $BASH_COMMAND; echo -ne "\a"' DEBUG
please note if use $BASH_COMMAND, it don't recognize bash alias, and use PROMPT_COMMAND show finished command, but use trap show running command.
Based on the the need to auto position putty windows I have modified my /etc/bash.bashrc file on a Debian/Ubuntu system. I have posted the full contents for completeness but the relevant bit to starts on the # Display command ... comment line.
# System-wide .bashrc file for interactive bash(1) shells.
# To enable the settings / commands in this file for login shells as well,
# this file has to be sourced in /etc/profile.
# If not running interactively, don't do anything
[ -z "$PS1" ] && return
# check the window size after each command and, if necessary,
# update the values of LINES and COLUMNS.
shopt -s checkwinsize
# set variable identifying the chroot you work in (used in the prompt below)
if [ -z "${debian_chroot:-}" ] && [ -r /etc/debian_chroot ]; then
debian_chroot=$(cat /etc/debian_chroot)
fi
# set a fancy prompt (non-color, overwrite the one in /etc/profile)
PS1='${debian_chroot:+($debian_chroot)}\u#\h:\w\$ '
# Display command run in title which allows us to distinguish Kitty/Putty
# windows and re-position easily using AutoSizer window utility. Based on a
# post here: http://mg.pov.lt/blog/bash-prompt.html
case "$TERM" in
xterm*|rxvt*)
# Show the currently running command in the terminal title:
# http://www.davidpashley.com/articles/xterm-titles-with-bash.html
show_command_in_title_bar()
{
case "$BASH_COMMAND" in
*\033]0*)
# The command is trying to set the title bar as well;
# this is most likely the execution of $PROMPT_COMMAND.
# In any case nested escapes confuse the terminal, so don't
# output them.
;;
*)
echo -ne "\033]0;${USER}#${HOSTNAME}: ${BASH_COMMAND}\007"
;;
esac
}
trap show_command_in_title_bar DEBUG
;;
*)
;;
esac
# Commented out, don't overwrite xterm -T "title" -n "icontitle" by default.
# If this is an xterm set the title to user#host:dir
#case "$TERM" in
#xterm*|rxvt*)
# PROMPT_COMMAND='echo -ne "\033]0;${USER}#${HOSTNAME}: ${PWD}\007"'
# ;;
#*)
# ;;
#esac
# enable bash completion in interactive shells
if ! shopt -oq posix; then
if [ -f /usr/share/bash-completion/bash_completion ]; then
. /usr/share/bash-completion/bash_completion
elif [ -f /etc/bash_completion ]; then
. /etc/bash_completion
fi
fi
# if the command-not-found package is installed, use it
if [ -x /usr/lib/command-not-found -o -x /usr/share/command-not-found/command-not-found ]; then
function command_not_found_handle {
# check because c-n-f could've been removed in the meantime
if [ -x /usr/lib/command-not-found ]; then
/usr/bin/python /usr/lib/command-not-found -- "$1"
return $?
elif [ -x /usr/share/command-not-found/command-not-found ]; then
/usr/bin/python /usr/share/command-not-found/command-not-found -- "$1"
return $?
else
printf "%s: command not found\n" "$1" >&2
return 127
fi
}
fi
You can set up bash such that it sends a certain escape sequence to the terminal every time it starts an external program. If you use the escape sequence that terminals use to update their titles, your problem should be solved.
I have used that before, so I know it is possible. but I cannot remember it off the top of my head and do not have time to research the details right now, though.
Some of the old methods were removed from gnome-terminal 3.14 due to these two bugs (724110 and 740188).
In Ubuntu 20.04
PS1=$PS1"\[\e]0;New_Terminal_Name\a\]"
\[ begin a sequence of non-printing characters
\e]0; is the char sequence for setting the terminal title. Bash identifies this sequence and set the tile with the following characters. Number 0 turns out to be the value to reference the title property.
New_Terminal_Name is the tile we gave
\a is the ASCII bell character, also in this case, it marks the end of the tile to read from Bash.
\] end a sequence of non-printing characters
We can create a function for future use
function set_title(){
if [ -z "$PS1_BACK" ]; # set backup if it is empty
then
PS1_BACK="$PS1"
fi
TITLE="\[\e]0;$*\a\]"
PS1="${PS1_BACK}${TITLE}"
}
Open the ~/.bashrc file in your home directory with a text editor and append the above function at the end of it. Save and close.
To use it immediately source it to the current terminal.
source ~/.bashrc
We can use it then like this
set_title <New terminal tab title>
My terminal window titler script
This dynamic backgrounded script show all running command with pid number and elapsed time in seconds, like if I run du -h | less, this will build title looking like:
204640 6 du -h | 204641 6 less
Then when no command (other than himself) are running, don't change the terminal title, so standard behaviours works normaly.
First run start backgroud task. Second run in same terminal ask for kill previous backgrounded task.
Save this into a file, set execute flag then run it without argument:
cat <<"EOF" >titleWin.sh
#!/bin/bash
## Ask for kill process if already started
mapfile -t pids < <(ps -C ${0##*/} ho pid)
for pid in ${pids[#]} ;do
if [[ $pid != $$ ]] && [ -d /proc/$pid ]; then
echo -n "STARTED: [$pid]: ${0##*/}. Kill them (Y/n)? "
read -rsn 1 act
case $act in
n|N ) echo No;;
* ) echo Yes;kill $pid ;;
esac
exit
fi
done
## Title win for xterm or screen (or tmux).
case $TERM in
xterm*|rxvt* ) titleFmt='\e];%s\a';;
screen* ) titleFmt='\ek%s\e\\';;
* ) echo "Unable to title window.";exit 1;;
esac
tty=$(tty)
## Date to epochseconds converter
exec {dateout}<> <(:)
exec {datein}> >(exec stdbuf -o0 date -f - +%s >&$dateout)
DPID=$!
trap "echo TRAP;kill $DPID" 1 2 3 6 9 15
# Main loop
while :;do
string=""
while read -r pid wday mon day time year cmd; do
if [[ $pid != $$ ]] && [[ $pid != $PPID ]] && [[ $pid != $BASHPID ]] &&
[[ $pid != $DPID ]] && [ "${cmd#*pid,lstart,cmd}" ] &&
[ -d /proc/$pid ] ;then
echo >&${datein} $wday $mon $day $time $year
read -ru $dateout date
string+="$pid $((EPOCHSECONDS-date)) $cmd | "
fi
done < <(exec ps --tty ${tty#*/dev/} ho pid,lstart,cmd)
[[ "$string" ]] && printf "$titleFmt" "${string% | }"
sleep .333
done &
EOF
chmod +x titleWin.sh
./titleWin.sh

Resources