Map with multiple arguments an Trees - haskell

i have a problem with a map function and recursion.
I have a Tree data structure like this:
data Tree a = T a [Tree a] deriving (Eq,Ord,Show)
I already have a working function to count "through" the Tree which works.
count :: Tree a -> Int
count (T _ xs) = 1 + sum(map count xs)
No i want a function to proof every element of the tree with a predicate
filterKnoten :: (a -> Bool) -> Tree a -> [a]
filterKnoten p (T x []) = (if p(x) then [x] else [])
filterKnoten p (T x xs)
| p(x) == True = x:(map multP xs)
| p(x) == False = map multP xs
where multP = filterKnoten p
Some sample date would be
ex1 = T True [T False [T True[]] , T True []]
No when i call the method with for example
filterKnoten (==True) ex1
As a result I want to have list with all elements which fits my predicate, but the compile gives me this when i want to load the module
Couldn't match type `a' with `[a]'
`a' is a rigid type variable bound by
the type signature for filterKnoten :: (a -> Bool) -> Tree a -> [a]
at WS11.hs:138:17
Expected type: Tree a -> a
Actual type: Tree a -> [a]
In the first argument of `map', namely `multP'
In the expression: map multP xs
In an equation for `filterKnoten':
filterKnoten p (T x xs)
| p (x) == True = x : (map multP xs)
| p (x) == False = map multP xs
where
multP = filterKnoten p
Failed, modules loaded: none.
So my question, why does map works with count and not with filterKnoten?
Thanks in advance

I imagine that writing the function using recursion is a useful exercise, but from a practical standpoint, you can just derive all of these functions with GHC extensions:
{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-}
import Data.Foldable
import Data.Traversable
data Tree a = T a [Tree a] deriving (Eq,Ord,Show, Functor, Traversable, Foldable)
filterTree :: (a -> Bool) -> Tree a -> [a]
filterTree f = filter f . toList -- toList is defined in Foldable
You don't need Traversable for this example, it is just one of the other useful things you can derive.

Your major problem is that you're mapping a function of type T a -> [a] which gives you back [[a]] instead of the [a] you want. This can be fixed by changing map to concatMap from Data.List
import Data.List
...
filterKnoten :: (a -> Bool) -> Tree a -> [a]
filterKnoten p (T x []) = if p x then [x] else []
filterKnoten p (T x xs)
| p x = x:(concatMap multP xs)
| otherwise = concatMap multP xs
where multP = filterKnoten p
Notice that I've also gotten rid of the useless ==True and ==False's. x == True is precisely the same as x and when we're talking about to cases there's no point in computing the same thing twice. Especially since it's potentially very expensive. otherwise is just a synonym for True that prelude provides. I've also gotten rid of some of the unnecessary parens.
Finally, you can just dump the entire first case since map and concatMap work on empty lists.

Related

Transform list in type fixed length in haskell

With the answer to this question I was able to define a list in witch the length is part of the type:
{-# LANGUAGE DataKinds, GADTs, KindSignatures #-}
data Nat = Z | S Nat
data ListF (n :: Nat) a where
Nil :: (ListF 'Z a)
Cons :: a -> ListF m a -> ListF ('S m) a
I would like be able to convert a normal list in to these kind of list. If a make these:
toListF :: [a] -> ListF n a
toListF [] = Nil
toListF (x:xs) = Cons x (toListF xs)
It does't type-check, because for [a] -> ListF n a to type-check, the function should return any Nat that the caller needs:
ListF.hs:11:14: error:
• Couldn't match type ‘n’ with ‘'Z’
‘n’ is a rigid type variable bound by
the type signature for:
toListF :: forall a (n :: Nat). [a] -> ListF n a
at ListF.hs:10:1-27
Expected type: ListF n a
Actual type: ListF 'Z a
• In the expression: Nil
In an equation for ‘toListF’: toListF [] = Nil
• Relevant bindings include
toListF :: [a] -> ListF n a (bound at ListF.hs:11:1)
|
11 | toListF [] = Nil
| ^^^
Failed, no modules loaded.
The logical type for toListF I think it wold be something like exists n. [a] -> ListF n a or [a] -> (exists n. ListF n a), but of course those are not valid haskell types.
It is possible to do what I am trying to do in haskell? And how?
There are existential types in Haskell.
{-# LANGUAGE DataKinds, GADTs, KindSignatures, RankNTypes #-}
data Nat = Z | S Nat
data ListF (n :: Nat) a where
Nil :: (ListF 'Z a)
Cons :: a -> ListF m a -> ListF ('S m) a
data SomeListF a = forall n . AList (ListF n a)
You cam convert from a regular list to SomeListF:
fromList :: [a] -> SomeListF a
fromList [] = AList Nil
fromList (x:xs) = someCons x (fromList xs) where
someCons x (AList zs) = AList (Cons x zs)
You can also recover ListF from SomeListF, but only in a restricted scope. The n in forall n cannot escape, so you cannot have something like
toListF :: SomeListF a -> ListF n a
but you can have this:
withSomeList :: (forall n . ListF n a -> b) -> SomeListF a -> b
withSomeList f (AList zs) = f zs
Inside the f argument, n is known and you can for example map your list and the length of the result is statically known to be the same as the length of the argument. Here's a silly example:
zipF :: ListF n a -> ListF n b -> ListF n (a, b)
zipF Nil Nil = Nil
zipF (Cons y ys) (Cons z zs) = Cons (y, z) (zipF ys zs)
mapF :: (a->b) -> ListF n a -> ListF n b
mapF _ Nil = Nil
mapF f (Cons z zs) = Cons (f z) (mapF f zs)
zipMapF :: (a->b) -> ListF n a -> ListF n (a, b)
zipMapF f zs = zipF zs (mapF f zs)
zipMapAny :: (a->b) -> ListF n a -> SomeListF (a, b)
zipMapAny f zs = AList (zipMapF f zs)
nums = fromList [1,2,3,4,5]
numsAndSquares = withSomeList (zipMapAny (\x -> x * x)) nums
zipMapAny "knows" that the length of all the lists inside it is the same, but it cannot leak that length to the result. You cannot have for example withSomeList (zipMapF (\x -> x * x)) nums because n would escape.

Reflexive Closure

I have been working on a question about reflexive closure:
The reflexive closure of a relation R is the smallest relation bigger than R which is reflexive. In other words, it is R with whatever pairs added to make R reflexive. Write a function (reflClosure) which takes a list of pairs (standing for R) and returns a list of pairs which is the reflexive closure of R. You do not need to worry about the order in which pairs appear in your return value.
I came up with this solution but it seems quite sloppy and lack neatness.
-- QUESTION 2: Functions and relations
reflClosure :: (Eq a) => [(a,a)] -> [(a,a)]
reflClosure (x:xs) = nub ( (x:xs) ++ [ (x,x) | x <- (heads (x:xs)) ++ (tails
(x:xs)) ])
nub :: Eq a => [a] -> [a]
nub = nubBy (==)
nubBy :: (a -> a -> Bool) -> [a] -> [a]
nubBy eq [] = []
nubBy eq (x:xs) = x : nubBy eq (filter (\y -> not (eq x y)) xs)
heads :: (Eq a) => [(a,a)] -> [a]
heads list = nub [x | (x, _) <- list]
tails :: (Eq a) => [(a,a)] -> [a]
tails list = nub [x | (_,x) <- list]
exists :: (Eq a) => (a,a) -> [(a,a)] -> Bool
exists x xs = length (filter (==x) xs) > 0
-- TEST SET FOR Q2
{-
Your functions should have the following behaviour:
reflClosure [(1,2),(3,2)] = [(1,2),(3,2),(1,1),(2,2),(3,3)]
reflClosure [(1,1),(3,5)] = [(1,1),(3,5),(3,3),(5,5)]
DO NOT WORRY ABOUT THE ORDER IN WHICH PAIRS APPEAR IN YOUR LIST
-}
Is there an easier way to do this? Explanation would be incredibly useful to learn from as well.
A nicer way to write heads and tails is the following:
heads :: (Eq a) => [(a,a)] -> [a]
heads = nub . map fst
tails :: (Eq a) => [(a,a)] -> [a]
tails = nub . map snd
It's point-free, plus it uses the more "functional" map rather than a list comprehension.
However, the fact that you need both means there's an even nicer way:
(heads (x:xs), tails (x:xs)) = (\(a,b) -> (nub a) (nub b)) $ unzip (x:xs)
Getting the fsts and the snds is equivalent to an unzip.
Also, you can simplify the signature of exists:
exists :: (Eq a) => a -> [a] -> Bool
exists x xs = length (filter (==x) xs) > 0
since nothing depends on the input being a list of pairs.
Data.List already defines nubBy, so I'm not sure why you've defined it there.
It's not clear why you've defined reflClosure to match on (x:xs), because all you care about (apparently) is that the list is non-empty. Perhaps something like this:
reflClosure :: (Eq a) => [(a,a)] -> [(a,a)]
reflClosure [] = []
reflClosure xs =
let (as,bs) = unzip xs
in nub $ xs ++ [ (x,x) | x <- (nub as) ++ (nub bs) ]
Relations are isomorphic to sets of pairs, not lists of pairs, so it makes sense to model them as such. Note that all the Ord constraints below are there because the implementation of Set needs it.
Use the standard library sets because they are fast.
import Data.Set (Set)
import qualified Data.Set as Set
A type synonym to make the code easier to read:
-- A relation with underlying set s
type Relation s = Set (s,s)
Now we can write a function that gets all the members of the underlying set:
underlyingMembers :: Ord a => Relation a -> Set a
underlyingMembers r = (Set.map fst r) `Set.union` (Set.map snd r)
Once we have that, finding the reflexive closure of a relation is easy:
reflexiveClosure :: Ord a => Relation a -> Relation a
reflexiveClosure r = r `Set.union` (Set.map (\x -> (x,x)) (underlyingMembers r)
If you really need to work with lists, (you really shouldn't, though) you can fromList/toList:
listVersion :: Ord a => [(a,a)] -> [(a,a)]
listVersion = Set.toList . reflexiveClosure . Set.fromList
If any of this is unclear, please leave a comment and I will explain more in detail.

Restriction on the data type definition

I have a type synonym type Entity = ([Feature], Body) for whatever Feature and Body mean. Objects of Entity type are to be grouped together:
type Bunch = [Entity]
and the assumption, crucial for the algorithm working with Bunch, is that any two entities in the same bunch have the equal number of features.
If I were to implement this constraint in an OOP language, I would add the corresponding check to the method encapsulating the addition of entities into a bunch.
Is there a better way to do it in Haskell? Preferably, on the definition level. (If the definition of Entity also needs to be changed, no problem.)
Using type-level length annotations
So here's the deal. Haskell does have type-level natural numbers and you can annotate with types using "phantom types". However you do it, the types will look like this:
data Z
data S n
data LAList x len = LAList [x] -- length-annotated list
Then you can add some construction functions for convenience:
lalist1 :: x -> LAList x (S Z)
lalist1 x = LAList [x]
lalist2 :: x -> x -> LAList x (S (S Z))
lalist2 x y = LAList [x, y]
-- ...
And then you've got more generic methods:
(~:) :: x -> LAList x n -> LAList x (S n)
x ~: LAList xs = LAList (x : xs)
infixr 5 ~:
nil :: LAList x Z
nil = LAList []
lahead :: LAList x (S n) -> x
lahead (LAList xs) = head xs
latail :: LAList x (S n) -> LAList x n
latail (LAList xs) = tail xs
but by itself the List definition doesn't have any of this because it's complicated. You may be interested in the Data.FixedList package for a somewhat different approach, too. Basically every approach is going to start off looking a little weird with some data type that has no constructor, but it starts to look normal after a little bit.
You might also be able to get a typeclass so that all of the lalist1, lalist2 operators above can be replaced with
class FixedLength t where
la :: t x -> LAList x n
but you will probably need the -XTypeSynonymInstances flag to do this, as you want to do something like
type Pair x = (x, x)
instance FixedLength Pair where
la :: Pair x -> LAList [x] (S (S Z))
la (a, b) = LAList [a, b]
(it's a kind mismatch when you go from (a, b) to Pair a).
Using runtime checking
You can very easily take a different approach and encapsulate all of this as a runtime error or explicitly model the error in your code:
-- this may change if you change your definition of the Bunch type
features :: Entity -> [Feature]
features = fst
-- we also assume a runBunch :: [Entity] -> Something function
-- that you're trying to run on this Bunch.
allTheSame :: (Eq x) => [x] -> Bool
allTheSame (x : xs) = all (x ==) xs
allTheSame [] = True
permissiveBunch :: [Entity] -> Maybe Something
permissiveBunch es
| allTheSame (map (length . features) es) = Just (runBunch es)
| otherwise = Nothing
strictBunch :: [Entity] -> Something
strictBunch es
| allTheSame (map (length . features) es) = runBunch es
| otherwise = error ("runBunch requires all feature lists to be the same length; saw instead " ++ show (map (length . features) es))
Then your runBunch can just assume that all the lengths are the same and it's explicitly checked for above. You can get around pattern-matching weirdnesses with, say, the zip :: [a] -> [b] -> [(a, b)] function in the Prelude, if you need to pair up the features next to each other. (The goal here would be an error in an algorithm due to pattern-matching for both runBunch' (x:xs) (y:ys) and runBunch' [] [] but then Haskell warns that there are 2 patterns which you've not considered in the match.)
Using tuples and type classes
One final way to do it which is a compromise between the two (but makes for pretty good Haskell code) involves making Entity parametrized over all features:
type Entity x = (x, Body)
and then including a function which can zip different entities of different lengths together:
class ZippableFeatures z where
fzip :: z -> z -> [(Feature, Feature)]
instance ZippableFeatures () where
fzip () () = []
instance ZippableFeatures Feature where
fzip f1 f2 = [(f1, f2)]
instance ZippableFeatures (Feature, Feature) where
fzip (a1, a2) (b1, b2) = [(a1, b1), (a2, b2)]
Then you can use tuples for your feature lists, as long as they don't get any larger than the maximum tuple length (which is 15 on my GHC). If you go larger than that, of course, you can always define your own data types, but it's not going to be as general as type-annotated lists.
If you do this, your type signature for runBunch will simply look like:
runBunch :: (ZippableFeatures z) => [Entity z] -> Something
When you run it on things with the wrong number of features you'll get compiler errors that it can't unify the type (a, b) with (a, b, c).
There are various ways to enforce length constraints like that; here's one:
{-# LANGUAGE DataKinds, KindSignatures, GADTs, TypeFamilies #-}
import Prelude hiding (foldr)
import Data.Foldable
import Data.Monoid
import Data.Traversable
import Control.Applicative
data Feature -- Whatever that really is
data Body -- Whatever that really is
data Nat = Z | S Nat -- Natural numbers
type family Plus (m::Nat) (n::Nat) where -- Type level natural number addition
Plus Z n = n
Plus (S m) n = S (Plus m n)
data LList (n :: Nat) a where -- Lists tagged with their length at the type level
Nil :: LList Z a
Cons :: a -> LList n a -> LList (S n) a
Some functions on these lists:
llHead :: LList (S n) a -> a
llHead (Cons x _) = x
llTail :: LList (S n) a -> LList n a
llTail (Cons _ xs) = xs
llAppend :: LList m a -> LList n a -> LList (Plus m n) a
llAppend Nil ys = ys
llAppend (Cons x xs) ys = Cons x (llAppend xs ys)
data Entity n = Entity (LList n Feature) Body
data Bunch where
Bunch :: [Entity n] -> Bunch
Some instances:
instance Functor (LList n) where
fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)
instance Foldable (LList n) where
foldMap f Nil = mempty
foldMap f (Cons x xs) = f x `mappend` foldMap f xs
instance Traversable (LList n) where
traverse f Nil = pure Nil
traverse f (Cons x xs) = Cons <$> f x <*> traverse f xs
And so on. Note that n in the definition of Bunch is existential. It can be anything, and what it actually is doesn't affect the type—all bunches have the same type. This limits what you can do with bunches to a certain extent. Alternatively, you can tag the bunch with the length of its feature lists. It all depends what you need to do with this stuff in the end.

Filter an infinite list of monadic values

Perhaps this is obvious, but I can't seem to figure out how to best filter an infinite list of IO values. Here is a simplified example:
infinitelist :: [IO Int]
predicate :: (a -> Bool)
-- how to implement this?
mysteryFilter :: (a -> Bool) -> [IO a] -> IO [a]
-- or perhaps even this?
mysteryFilter' :: (a -> Bool) -> [IO a] -> [IO a]
Perhaps I have to use sequence in some way, but I want the evaluation to be lazy. Any suggestions? The essence is that for each IO Int in the output we might have to check several IO Int values in the input.
Thank you!
Not doable without using unsafeInterleaveIO or something like it. You can't write a filter with the second type signature, since if you could you could say
unsafePerformIOBool :: IO Bool -> Bool
unsafePerformIOBool m = case mysteryFilter' id [m] of
[] -> False
(_:_) -> True
Similarly, the first type signature isn't going to work--any recursive call will give you back something of type IO [a], but then to build a list out of this you will need to perform this action before returning a result (since : is not in IO you need to use >>=). By induction you will have to perform all the actions in the list (which takes forever when the list is infinitely long) before you can return a result.
unsafeInterleaveIO resolves this, but is unsafe.
mysteryFilter f [] = return []
mysteryFilter f (x:xs) = do ys <- unsafeInterleaveIO $ mysteryFilter f xs
y <- x
if f y then return (y:ys) else return ys
the problem is that this breaks the sequence that the monad is supposed to provide. You no longer have guarantees about when your monadic actions happen (they might never happen, they might happen multiple times, etc).
Lists just do not play nice with IO. This is why we have the plethora of streaming types (Iteratees, Conduits, Pipes, etc).
The simplest such type is probably
data MList m a = Nil | Cons a (m (MList m a))
note that we observe that
[a] == MList Id a
since
toMList :: [a] -> MList Id a
toMList [] = Nil
toMList (x:xs) = Cons x $ return $ toMList xs
fromMList :: MList Id a -> [a]
fromMList Nil = []
fromMList (Cons x xs) = x:(fromMList . runId $ xs)
also, MList is a functor
instance Functor m => Functor (MList m) where
fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap (fmap f) xs)
and it is a functor in the category of Functor's and Natural transformations.
trans :: Functor m => (forall x. m x -> n x) -> MList m a -> MList n a
trans f Nil = Nil
trans f (Cons x xs) = Cons x (f (fmap trans f xs))
with this it is easy to write what you want
mysteryFilter :: (a -> Bool) -> MList IO (IO a) -> IO (MList IO a)
mysteryFilter f Nil = return Nil
mysteryFilter f (Cons x xs)
= do y <- x
let ys = liftM (mysteryFilter f) xs
if f y then Cons y ys else ys
or various other similar functions.

Why are difference lists not an instance of foldable?

The dlist package contains the DList data type, which has lots of instances, but not Foldable or Traversable. In my mind, these are two of the most "list-like" type classes. Is there a performance reason that DList is not an instance of these classes?
Also, the package does implement foldr and unfoldr, but none of the other folding functions.
One alternative you should consider instead of DList is to use Church-encoded lists. The idea is that you represent a list as an opaque value that knows how to execute a foldr over a list. This requires using the RankNTypes extension:
{-# LANGUAGE RankNTypes #-}
import Prelude
import Control.Applicative
import Data.Foldable (Foldable)
import qualified Data.Foldable as F
import Data.Traversable (Traversable)
import qualified Data.Traversable as T
-- | Laws:
--
-- > runList xs cons nil == xs
-- > runList (fromList xs) f z == foldr f z xs
-- > foldr f z (toList xs) == runList xs f z
newtype ChurchList a =
ChurchList { runList :: forall r. (a -> r -> r) -> r -> r }
-- | Make a 'ChurchList' out of a regular list.
fromList :: [a] -> ChurchList a
fromList xs = ChurchList $ \k z -> foldr k z xs
-- | Turn a 'ChurchList' into a regular list.
toList :: ChurchList a -> [a]
toList xs = runList xs (:) []
-- | We can construct an empty 'ChurchList' without using a #[]#.
nil :: ChurchList a
nil = ChurchList $ \_ z -> z
-- | The 'ChurchList' counterpart to '(:)'. Unlike 'DList', whose
-- implementation uses the regular list type, 'ChurchList' doesn't
-- rely on it at all.
cons :: a -> ChurchList a -> ChurchList a
cons x xs = ChurchList $ \k z -> k x (runList xs k z)
-- | Append two 'ChurchList's. This runs in O(1) time. Note that
-- there is no need to materialize the lists as #[a]#.
append :: ChurchList a -> ChurchList a -> ChurchList a
append xs ys = ChurchList $ \k z -> runList xs k (runList ys k z)
-- | Map over a 'ChurchList'. No need to materialize the list.
instance Functor ChurchList where
fmap f xs = ChurchList $ \k z -> runList xs (\x xs' -> k (f x) xs') z
-- | The 'Foldable' instance is trivial, given the 'ChurchList' law.
instance Foldable ChurchList where
foldr f z xs = runList xs f z
instance Traversable ChurchList where
traverse f xs = runList xs step (pure nil)
where step x rest = cons <$> f x <*> rest
The downside to this is that there is no efficient tail operation for a ChurchList—folding a ChurchList is cheap, but taking repeated tails is costly...
DList a is a newtype wrapper around [a] -> [a], which has an a in a contravariant position, so it cannot implement Foldable or Traversable, or even Functor directly. The only way to implement them is to convert to and from regular lists (see the foldr implementation), which defeats the performance advantage of difference lists.

Resources