Core dump is created, but not written to a file? - linux

I'm trying to get a core dump of a proprietary application running on an embedded linux system, for which I wrote some plugins.
What I did was:
ulimit -c unlimited
echo "/tmp/cores/core.%e.%p.%h.%t" > /proc/sys/kernel/core_pattern
kill -3 <PID>`
However, no core dump is created. '/tmp/cores' exists and is writable for everyone, and the disk has enough space available. When I try the same thing with sleep 100 & as an example process and then kill it, the core dump is created.
I tried the example for the pipe syntax from the core manpage, which writes some parameters and the size of the core dump into a file called core.info. This file IS created, and the size is greater than 0. So if the core dump is created, why isn't it written to /tmp/cores? To be sure, I also searched for core* on the file system - it's not there. dmesg doesn't show any errors (but it does if I pipe the core dump to an invalid program).
Some more info: The system is probably based on Debian, but I'm not quite sure. GDB is not available, as well as many other tools - there is only busybox for basic stuff.
The process I'm trying to debug is automatically restarted soon after being killed.
So, I guess one solution would be to modify the example program in order to write the dump to a file instead of just counting bytes. But why doesn't it work just normally if there obviously is some data?

If your proprietary application calls setrlimit(2) with RLIMIT_CORE set to 0, or if it is setuid, no core dump happens. See core(5). Perhaps use strace(1) to find out. And you could install  gdb (perhaps by [cross-] compiling it). See also gcore(1).
Also, check (and maybe set) the limit in the invoking shell. With bash(1) use ulimit builtin. Otherwise, cat /proc/self/limits should display the limits. If you don't have bash you could code a small wrapper in C calling setrlimit then execve ...

Related

How do you read a certain size of memory from an arbitrary address and write it's content to a file?

OS : linux.
I am looking for tools or tips to write code (if and only if necessary) to write the contents of an address to a file for further investigation.
Thanks for any help.
Core dump is a full snapshot of the process memory.
If you have gcore available it will generate you a core dump of a running process without terminating it. Else you may use kill -ABRT to kill the process and generate core dump.
Make sure ulimit -c is set to unlimited (or set it with ulimit -c unlimited).
If you really want only a small segment dumped have a look at this section of GDB manual.

Generating core dumps

From times to times my Go program crashes.
I tried a few things in order to get core dumps generated for this program:
defining ulimit on the system, I tried both ulimit -c unlimited and ulimit -c 10000 just in case. After launching my panicking program, I get no core dump.
I also added recover() support in my program and added code to log to syslog in case of panic but I get nothing in syslog.
I am running out of ideas right now.
I must have overlooked something but I do not find what, any help would be appreciated.
Thanks ! :)
Note that a core dump is generated by the OS when a condition from a certain set is met. These conditions are pretty low-level — like trying to access unmapped memory or trying to execute an opcode the CPU does not know etc. Under a POSIX operating system such as Linux when a process does one of these things, an appropriate signal is sent to it, and some of them, if not handled by the process, have a default action of generating a core dump, which is done by the OS if not prohibited by setting a certain limit.
Now observe that this machinery treats a process on the lowest possible level (machine code), but the binaries a Go compiler produces are more higher-level that those a C compiler (or assembler) produces, and this means certain errors in a process produced by a Go compiler are handled by the Go runtime rather than the OS. For instance, a typical NULL pointer dereference in a process produced by a C compiler usually results in sending the process the SIGSEGV signal which is then typically results in an attempt to dump the process' core and terminate it. In contrast, when this happens in a process compiled by a Go compiler, the Go runtime kicks in and panics, producing a nice stack trace for debugging purposes.
With these facts in mind, I would try to do this:
Wrap your program in a shell script which first relaxes the limit for core dumps (but see below) and then runs your program with its standard error stream redirected to a file (or piped to the logger binary etc).
The limits a user can tweak have a hierarchy: there are soft and hard limits — see this and this for an explanation. So try checking your system does not have 0 for the core dump size set as a hard limit as this would explain why your attempt to raise this limit has no effect.
At least on my Debian systems, when a program dies due to SIGSEGV, this fact is logged by the kernel and is visible in the syslog log files, so try grepping them for hints.
First, please make sure all errors are handled.
For core dump, you can refer generate a core dump in linux
You can use supervisor to reboot the program when it crashes.

How to set core dump naming scheme without su/sudo?

I am developing a MPI program on a Linux machine where I do not have sudo/su access. As my program currently segfaults, I would like to examine the core dumps via gdb. Unfortunately, as the program is multi-threaded, all the threads write to one core dump. So I would like to be able to append the PID to each separate core dump for every process.
I know there is a way to do it via /proc/sys/kernel/core_pattern, however I do not have access to write to this.
Thanks for any help.
It can be a pain to debug MPI apps on systems that are configured this way when you do not have root access. One option for working around this is to use Valgrind to get stack traces for your segfault(s). This will only be useful provided that your application will fail in a reasonable period of time when slowed down via Valgrind, and that it still segfaults at all in this case.
I usually run MPI apps under Valgrind like this:
% mpiexec -n 5 valgrind -q /path/to/my_app
That will send all of the Valgrind output to standard error. But if I want the output separated into different files, then you can get a bit fancier:
% mpiexec -n 5 valgrind -q --log-file='vg_out.%q{PMI_RANK}' /path/to/my_app
That's the setup for MPICH2. I think that for Open MPI you'll need to replace PMI_RANK with OMPI_MCA_ns_nds_vpid, but if that doesn't work for you then you'll need to check with the Open MPI developers on their discussion list. In either case, this will yield N files, where N is the size of MPI_COMM_WORLD, each named vg_out.0, vg_out.1, ..., to vg_out.$(($N-1)), each corresponding to a rank in MPI_COMM_WORLD.

How do I enable core dumps for daemon processes on montavista linux?

I am not sure if stackoverflow is the correct place for this, but since this is for embedded development, and I need core dumps, which are also for development, I figured that this was the best place to ask.
I am trying to enable global core dumps in such a way that every time a program crashes in a way which produces a core, it gets written to /foo/bar/core. Every time a program crashes, it overwrites the old core file. Currently I have tried the following:
Adding this to limits.conf
#<domain> <type> <item> <value>
* soft core unlimited
root soft core unlimited
# End of file
Adding this to sysctl.conf:
# Core Files
kernel.core_pattern=/mnt/ffs/core
kernel.core_uses_pid=0
This did not work. If I boot the system, do a sysctl -p, ulimit -c unlimited and then restart the processes by hand (without the init script), I get a core file in /foo/bar, but it has the PID appended. Any help would be greatly appreciated.
I set the core pattern to not include any process dependent information, yet the kernel still wanted to append the PID, so I ended up removing that bit of code from the kernel, and everything works fine now.

What is a good way to dump a Linux core file from inside a process?

We have a server (written in C and C++) that currently catches a SEGV and dumps some internal info to a file. I would like to generate a core file and write it to disk at the time we catch the SEGV, so our support reps and customers don't have to fuss with ulimit and then wait for the crash to happen again in order to get a core file. We have used the abort function in the past, but it is subject to the ulimit rules and doesn't help.
We have some legacy code that reads /proc/pid/map and manually generates a core file, but it is out of date, and doesn't seem very portable (for example, I'm guessing it would not work in our 64 bit builds). What is the best way to generate and dump a core file in a Linux process?
Google has a library for generating coredumps from inside a running process called google-coredumper. This should ignore ulimit and other mechanisms.
The documentation for the call that generates the core file is here. According to the documentation, it seems that it is feasible to generate a core file in a signal handler, though it is not guaranteed to always work.
I saw pmbrett's post and thought "hey, thats cool" but couldn't find that utility anywhere on my system ( Gentoo ).
So I did a bit of prodding, and discovered GDB has this option in it.
gdb --pid=4049 --batch -ex gcore
Seemed to work fine for me.
Its not however very useful because it traps the very lowest function that was in use at the time, but it still does a good job outside that ( With no memory limitations, Dumped 350M snapshot of a firefox process with it )
Try using the Linux command gcore
usage: gcore [-o filename] pid
You'll need to use system (or exec) and getpid() to build up the right command line to call it from within your process
Some possible solutions^W ways of dealing with this situation:
Fix the ulimit!!!
Accept that you don't get a core file and run inside gdb, scripted to do a "thread all apply bt" on SIGSEGV
Accept that you don't get a core file and acquired a stack trace from within the application. The Stack Backtracing Inside Your Program article is pretty old but it should be possible these days too.
You can also change the ulimit() from within your program with setrlimit(2). Like the ulimit shell command, this can lower limits, or raise them as hard as the hard limit allows. At startup setrlimit() to allow core dumping, and you're fine.
I assume you have a signal handler that catches SEGV, for example, and does something like print a message and call _exit(). (Otherwise, you'd have a core file in the first place!) You could do something like the following.
void my_handler(int sig)
{
...
if (wantCore_ && !fork()) {
setrlimit(...); // ulimit -Sc unlimited
sigset(sig, SIG_DFL); // reset default handler
raise(sig); // doesn't return, generates a core file
}
_exit(1);
}
use backtrace and backtrace_symbols glibc calls to get the trace, just keep in mind that backtrace_symbols uses malloc internally and in case of heap corruption it might fail.
system ("kill -6 ")
I'd give it a try if you are still looking for something

Resources