Corruption of UBI in UBIFS - linux

We are using Linux-2.6.28 and 2 Gb NAND Flash in our system ; After some amount of power cycle tests we are observing the following errors :
Volume operational found at volume id 3
read 21966848 bytes from volume 3 to 80400000(buf address)
UBI error: ubi_io_read: error -77 while reading 126976 bytes from PEB 1074:4096, read 126976 bytes
UBI: force data checking
UBI error: ubi_io_read: error -77 while reading 126976 bytes from PEB 1074:4096, read 126976 bytes
UBI warning: ubi_eba_read_leb: CRC error: calculated 0xa7cab743, must be 0x15716fce
read err ffffffb3
These errors are not hardware errors as if we remove the offending partition, we are able to boot the hardware fine; Maybe UBIFS is not correcting the bad UBI block.
Any UBI patches have been added in the latest kernels to address this issue ? Thanks.

The error printed is a UBI error. Lets look at the source near line 177,
ubi_err("error %d while reading %d bytes from PEB %d:%d, "
"read %zd bytes", err, len, pnum, offset, read);
So, error '-77' (normally -EBADFD) was returned from the NAND flash driver when trying to read the 'physical erase block' #1074 at offset 4096 (2nd page for 2k pages). UBI include volume management pages which are typically located at the beginning of a physical erase block (PEB for short).
Note that the latest mainline of io.c has the following comment and code,
/*
* Deliberately corrupt the buffer to improve robustness. Indeed, if we
* do not do this, the following may happen:
* 1. The buffer contains data from previous operation, e.g., read from
* another PEB previously. The data looks like expected, e.g., if we
* just do not read anything and return - the caller would not
* notice this. E.g., if we are reading a VID header, the buffer may
* contain a valid VID header from another PEB.
* 2. The driver is buggy and returns us success or -EBADMSG or
* -EUCLEAN, but it does not actually put any data to the buffer.
*
* This may confuse UBI or upper layers - they may think the buffer
* contains valid data while in fact it is just old data. This is
* especially possible because UBI (and UBIFS) relies on CRC, and
* treats data as correct even in case of ECC errors if the CRC is
* correct.
*
* Try to prevent this situation by changing the first byte of the
* buffer.
*/
*((uint8_t *)buf) ^= 0xFF;
The following code can be used to process a UBI/UbiFS dump and look for abnormalities,
/* -*- mode: c; compile-command: "gcc -Wall -g -o parse_ubi parse_ubi.c"; -*- */
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <endian.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#define __packed __attribute__((packed))
#include "ubi-media.h"
#define bswap16 be16toh
#define bswap32 be32toh
#define bswap64 be64toh
static int dump_vid = 0;
#define CRCPOLY_LE 0xedb88320
static unsigned int crc32(unsigned int crc, void const *_p, size_t len)
{
unsigned char const *p = _p;
int i;
while (len--) {
crc ^= *p++;
for (i = 0; i < 8; i++)
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
}
return crc;
}
#define ALEN(a) (sizeof(a)/sizeof(a[0]))
static void print_ec(struct ubi_ec_hdr *ec)
{
if(ec->version != UBI_VERSION || ec->magic != UBI_EC_HDR_MAGIC) {
printf(" Magic: %x\n", ec->magic);
printf(" Version: %d\n", (int)ec->version);
printf(" EC: %llx\n", ec->ec);
printf(" VID offset: %x\n", ec->vid_hdr_offset);
printf(" Data offset: %x\n", ec->data_offset);
printf(" Image seq: %x\n", ec->image_seq);
exit(-1);
}
}
static void read_ec(int fd, struct ubi_ec_hdr *ec)
{
int rval = read(fd, ec,sizeof(*ec));
if(rval == sizeof(*ec)) {
unsigned int crc;
crc = crc32(UBI_CRC32_INIT, ec, UBI_EC_HDR_SIZE_CRC);
ec->magic = bswap32(ec->magic);
ec->vid_hdr_offset = bswap32(ec->vid_hdr_offset);
ec->data_offset = bswap32(ec->data_offset);
ec->image_seq = bswap32(ec->image_seq);
ec->hdr_crc = bswap32(ec->hdr_crc);
ec->ec = bswap64(ec->ec);
if(crc != ec->hdr_crc)
printf("EC CRC: %x/%x\n", crc, ec->hdr_crc);
} else
memset(ec, 0, sizeof(*ec));
}
static void print_vid(int vid_num, struct ubi_vid_hdr *vid)
{
if(vid->magic != UBI_VID_HDR_MAGIC)
printf(" Magic: %x\n", vid->magic);
if(vid->version != UBI_VERSION)
printf(" Version: %d\n", (int)vid->version);
if(!dump_vid) return;
printf("VID %d\n", vid_num);
/* This is usually the same. */
if(vid->vol_id >= UBI_INTERNAL_VOL_START)
printf("Internal vol_id: %d\n", vid->vol_id - UBI_INTERNAL_VOL_START);
if(vid->vol_type != UBI_VID_DYNAMIC)
printf(" vol_type: %s\n",
vid->vol_type == UBI_VID_DYNAMIC ? "dynamic" : "static");
if(vid->used_ebs)
printf(" used_ebs: %d\n", vid->used_ebs);
if(vid->data_pad)
printf(" data_pad: %d\n", vid->data_pad);
if((vid->copy_flag != 1 && vid->data_size) ||
(vid->copy_flag == 0 && vid->data_size))
printf(" copy_flag: %d\n", (int)vid->copy_flag);
printf(" lnum: %d\n", vid->lnum);
if(vid->compat) {
const char *compat[] = {
[UBI_COMPAT_DELETE] = "delete",
[UBI_COMPAT_RO] = "ro",
[UBI_COMPAT_PRESERVE] = "preserve",
[UBI_COMPAT_REJECT] = "reject"
};
printf(" compat: %s\n", compat[vid->compat]);
}
printf(" data_size: %d\n", vid->data_size);
/* printf(" data_crc: %x\n", vid->data_crc); */
printf(" hdr_crc: %x\n", vid->hdr_crc);
printf(" sqnum: %lld\n", vid->sqnum);
}
static int read_vid(int fd, struct ubi_vid_hdr *vid)
{
int rval = read(fd, vid,sizeof(*vid));
if(rval == sizeof(*vid)) {
unsigned int crc;
crc = crc32(UBI_CRC32_INIT, vid, UBI_EC_HDR_SIZE_CRC);
vid->magic = bswap32(vid->magic);
vid->vol_id = bswap32(vid->vol_id);
vid->lnum = bswap32(vid->lnum);
vid->data_size = bswap32(vid->data_size);
vid->used_ebs = bswap32(vid->used_ebs);
vid->data_pad = bswap32(vid->data_pad);
vid->data_crc = bswap32(vid->data_crc);
vid->hdr_crc = bswap32(vid->hdr_crc);
vid->sqnum = bswap64(vid->sqnum);
if(crc != vid->hdr_crc && vid->magic == UBI_VID_HDR_MAGIC)
printf("VID CRC: %x/%x\n", crc, vid->hdr_crc);
} else
memset(vid, 0, sizeof(*vid));
return rval;
}
static void print_vtbl(struct ubi_vtbl_record *vtbl)
{
printf(" Found vtbl [%d] %s\n", vtbl->name_len, vtbl->name);
printf(" Reserved PEBs: %d\n", vtbl->reserved_pebs);
printf(" Align: %d\n", vtbl->alignment);
printf(" Pad: %d\n", vtbl->data_pad);
if(vtbl->vol_type != UBI_VID_DYNAMIC)
printf(" vol_type: %s\n",
vtbl->vol_type == UBI_VID_DYNAMIC ? "dynamic" : "static");
printf(" Update: %d\n", vtbl->upd_marker);
printf(" Flags: %d\n", (int)vtbl->flags);
}
static void read_vtbl(int fd, struct ubi_vtbl_record *vtbl)
{
int rval = read(fd, vtbl, sizeof(*vtbl));
if(rval == sizeof(*vtbl)) {
vtbl->reserved_pebs = bswap32(vtbl->reserved_pebs);
vtbl->alignment = bswap32(vtbl->alignment);
vtbl->data_pad = bswap32(vtbl->data_pad);
vtbl->crc = bswap32(vtbl->crc);
vtbl->name_len = bswap16(vtbl->name_len);
} else
memset(vtbl, 0, sizeof(*vtbl));
}
static void print_fm_sb(struct ubi_fm_sb *fm_sb)
{
int i;
if(fm_sb->magic != UBI_FM_SB_MAGIC)
printf(" Magic: %x\n", fm_sb->magic);
if(fm_sb->version != UBI_VERSION)
printf(" Version: %d\n", (int)fm_sb->version);
printf(" data_crc: %x\n", fm_sb->data_crc);
printf(" used_blocks: %x\n", fm_sb->used_blocks);
for(i = 0; i < fm_sb->used_blocks; i++)
printf(" block_loc[%d]: %d\n", i, fm_sb->block_loc[i]);
for(i=0; i < fm_sb->used_blocks; i++)
printf(" block_ec[%d]: %d\n", i, fm_sb->block_ec[i]);
printf(" sqnum: %lld\n", fm_sb->sqnum);
}
static void read_fm_sb(int fd, struct ubi_fm_sb *fm_sb)
{
int rval = read(fd, fm_sb, sizeof(*fm_sb));
if(rval == sizeof(*fm_sb)) {
int i;
fm_sb->magic = bswap32(fm_sb->magic);
fm_sb->data_crc = bswap32(fm_sb->data_crc);
fm_sb->used_blocks = bswap32(fm_sb->used_blocks);
for(i=0; i < UBI_FM_MAX_BLOCKS; i++)
fm_sb->block_loc[i] = bswap32(fm_sb->block_loc[i]);
for(i=0; i < UBI_FM_MAX_BLOCKS; i++)
fm_sb->block_ec[i] = bswap32(fm_sb->block_ec[i]);
fm_sb->sqnum = bswap64(fm_sb->sqnum);
} else
memset(fm_sb, 0, sizeof(*fm_sb));
}
/* Set logical block at physical. */
static int eba_map[1920];
static int pba_map[1920];
static void usage(char *name)
{
printf("Usage: %s -b [erase block size] -e -v <ubi file> \n", name);
printf("Where,\n -e is dump the logic to physical block map.\n");
printf(" -v is dump the VID headers.\n");
printf(" -b [size] sets the erase block size (flash dependent).\n");
}
typedef struct fastmap {
struct ubi_fm_sb fm_sb;
struct ubi_fm_hdr hdr;
struct ubi_fm_scan_pool pool1;
struct ubi_fm_scan_pool pool2;
/* Free, Used, Scrub and Erase */
struct ubi_fm_ec ec[0];
/* ... */
/* struct ubi_fm_volhdr vol; */
/* struct ubi_fm_eba eba[0]; */
} fastmap;
int main (int argc, char *argv[])
{
int fd, i, erase_block = 0, eba_flag = 0;
int c;
struct ubi_ec_hdr ec;
struct ubi_vid_hdr vid;
int erase_size = 0x20000;
int leb_size;
off_t cur_ec = 0;
int vidless_blocks = 0;
while ((c = getopt (argc, argv, "hveb:")) != -1)
switch (c)
{
case 'h': /* Help */
usage(argv[0]);
goto out;
case 'b':
erase_size = atoi(optarg);
break;
case 'e':
eba_flag = 1;
break;
case 'v':
dump_vid = 1;
break;
case '?':
if (optopt == 'b')
fprintf (stderr, "Option -%c requires an argument.\n", optopt);
else if (isprint (optopt))
fprintf (stderr, "Unknown option `-%c'.\n", optopt);
else
fprintf (stderr,
"Unknown option character `\\x%x'.\n",
optopt);
return 1;
default:
goto out;
}
if(optind >= argc) {
usage(argv[0]);
goto out;
}
fd = open(argv[optind], O_RDONLY);
if(fd < 0) {
printf("Bad file: %s\n", argv[1]);
goto out;
}
memset(eba_map, -1, sizeof(eba_map));
memset(pba_map, -1, sizeof(pba_map));
/* Process each 'erase block'. */
read_ec(fd,&ec);
while(ec.magic == UBI_EC_HDR_MAGIC) {
leb_size = erase_size - ec.data_offset;
print_ec(&ec);
/* VID present? */
if(lseek(fd, ec.vid_hdr_offset-sizeof(ec), SEEK_CUR) == -1) {
printf("Seek error: %s\n", argv[1]);
goto out;
}
if(read_vid(fd,&vid) != sizeof(vid)) {
printf("File too small: %s\n", argv[1]);
goto out;
}
if(vid.magic == UBI_VID_HDR_MAGIC) {
print_vid(erase_block, &vid);
if(vid.vol_id == 3) {
if(eba_map[vid.lnum] != -1)
printf("EBA dup: %d %d\n", eba_map[vid.lnum], erase_block);
eba_map[vid.lnum] = erase_block;
}
pba_map[erase_block] = vid.lnum;
/* Read volume table. */
if(vid.vol_id == UBI_INTERNAL_VOL_START) {
/* Seek to PEB data offset. */
if(lseek(fd,
ec.data_offset - ec.vid_hdr_offset - sizeof(vid),
SEEK_CUR) == -1)
printf("Seek error: %s\n", argv[1]);
else {
int i;
struct ubi_vtbl_record vtbl;
for(i = 0; i < UBI_MAX_VOLUMES; i++) {
read_vtbl(fd, &vtbl);
if(vtbl.reserved_pebs ||
vtbl.name_len ||
strcmp((char*)vtbl.name, "") != 0) {
printf("VTBL %d\n", i);
print_vtbl(&vtbl);
}
}
}
} else if(vid.vol_id == UBI_FM_SB_VOLUME_ID) {
printf("Found Fastmap super block #PEB %d.\n", erase_block);
if(lseek(fd,
ec.data_offset - ec.vid_hdr_offset - sizeof(vid),
SEEK_CUR) == -1)
printf("Seek error: %s\n", argv[1]);
else {
void *data = alloca(leb_size);
struct ubi_fm_sb *fm_sb = data;
read_fm_sb(fd, data);
print_fm_sb(fm_sb);
}
} else if(vid.vol_id == UBI_FM_DATA_VOLUME_ID) {
printf("Found Fastmap data block #PEB %d.\n", erase_block);
printf("UNSUPPORTED!!!\n");
}
} else if(vid.magic != 0xffffffff){
printf("VID %d corrupt! %x\n", erase_block, vid.magic);
} else {
vidless_blocks++;
}
erase_block++;
cur_ec += erase_size;
cur_ec = lseek(fd, cur_ec, SEEK_SET);
/* Process Erase counter. */
read_ec(fd,&ec);
}
printf("Found %d vidless (free) blocks.\n", vidless_blocks);
if(eba_flag) {
printf("Logical to physical.\n");
for(i = 0; i < ALEN(eba_map); i+=8)
printf("%4d: %4d %4d %4d %4d %4d %4d %4d %4d"
" %4d %4d %4d %4d %4d %4d %4d %4d\n", i,
eba_map[i], eba_map[i+1],
eba_map[i+2], eba_map[i+3],
eba_map[i+4], eba_map[i+5],
eba_map[i+6], eba_map[i+7],
eba_map[i+8], eba_map[i+9],
eba_map[i+10], eba_map[i+11],
eba_map[i+12], eba_map[i+13],
eba_map[i+14], eba_map[i+15]);
printf("Physical to logical.\n");
for(i = 0; i < ALEN(pba_map); i+=8)
printf("%4d: %4d %4d %4d %4d %4d %4d %4d %4d"
" %4d %4d %4d %4d %4d %4d %4d %4d\n", i,
pba_map[i], pba_map[i+1],
pba_map[i+2], pba_map[i+3],
pba_map[i+4], pba_map[i+5],
pba_map[i+6], pba_map[i+7],
pba_map[i+8], pba_map[i+9],
pba_map[i+10], pba_map[i+11],
pba_map[i+12], pba_map[i+13],
pba_map[i+14], pba_map[i+15]);
}
out:
return 0;
}
To build copy ubi-media.h from the UBI directory and run gcc -Wall -g -o parse_ubi parse_ubi.c. The code probably has issues on big-endian platforms; it is also not test with 2.6.28 but I believe it should work as the UBI structures shouldn't change. You may have to remove some fastmap code, if it doesn't compile. The code should give some indication on what is wrong with PEB#1074. Make a copy of the partition when failing and use the code above to analyze the UBI layer.
It is quite possible that the MTD driver does something abnormal which prevents UBI from attaching to an MTD partition. This in-turn prevents UbiFS from mounting. If you know what MTD Nand flash controller is being used, it would help others determine where the issue is.
It can be caused by MTD bugs and/or hardware bugs or UBI/UbiFS issues. If it is UBI/UbiFs, there are backport trees and newer 3.0. You can try to steal the patches from 2.6.32; after applying all, add the 3.0.
Again, the issue can be the MTD driver. Grab MTD changes for your particular CPU/SOCs NAND flash controller. I do this from the mainline; some changes are bug fixes and others infra-structure. You have to look at each patch individually

Related

Segmentation Fault Error When Reading Two Serial Port with BeagleBone Black

I am getting Segmentation fault error while reading two diffentent serial communication line with using Debian GNU/Linux 7.4 on Beaglebone Black. One of them is CAN-BUS data. I am using Waveshares RS485/CAN CAPE module for this with using can-utils package. "https://github.com/linux-can/can-utils/blob/master/candump.c"
CAN log file
And the other one is UART data by a GPS module called uBlox GY-NEO6MV2 module. For the GPS I have this code which works perfectly;
#include <stdio.h>
#include <fcntl.h> /* File Control Definitions */
#include <termios.h> /* POSIX Terminal Control Definitions */
#include <unistd.h> /* UNIX Standard Definitions */
#include <errno.h> /* ERROR Number Definitions */
#include <string.h> /* Array to String */
void main(void){
int fd;/*File Descriptor*/
/*------------------------------- Opening the Serial Port -------------------------------*/
/* Change /dev/ttyUSB0 to the one corresponding to your system */
while(1){
fd = open("/dev/ttyO2",O_RDWR | O_NOCTTY); /* ttyUSB0 is the FT232 based USB2SERIAL Converter */
/* O_RDWR - Read/Write access to serial port */
/* O_NOCTTY - No terminal will control the process */
/* Open in blocking mode,read will wait */
if(fd == -1) /* Error Checking */
printf("\n Error! in Opening ttyO2 ");
else
printf("\n ttyO2 Opened Successfully ");
/*---------- Setting the Attributes of the serial port using termios structure --------- */
struct termios SerialPortSettings; /* Create the structure */
tcgetattr(fd, &SerialPortSettings); /* Get the current attributes of the Serial port */
/* Setting the Baud rate */
cfsetispeed(&SerialPortSettings,B9600); /* Set Read Speed as 9600 */
cfsetospeed(&SerialPortSettings,B9600); /* Set Write Speed as 9600 */
/* 8N1 Mode */
SerialPortSettings.c_cflag &= ~PARENB; /* Disables the Parity Enable bit(PARENB),So No Parity */
SerialPortSettings.c_cflag &= ~CSTOPB; /* CSTOPB = 2 Stop bits,here it is cleared so 1 Stop bit */
SerialPortSettings.c_cflag &= ~CSIZE; /* Clears the mask for setting the data size */
SerialPortSettings.c_cflag |= CS8; /* Set the data bits = 8 */
SerialPortSettings.c_cflag &= ~CRTSCTS; /* No Hardware flow Control */
SerialPortSettings.c_cflag |= CREAD | CLOCAL; /* Enable receiver,Ignore Modem Control lines */
SerialPortSettings.c_iflag &= ~(IXON | IXOFF | IXANY); /* Disable XON/XOFF flow control both i/p and o/p */
SerialPortSettings.c_iflag &= ~(ICANON | ECHO | ECHOE | ISIG); /* Non Cannonical mode */
SerialPortSettings.c_oflag &= ~OPOST;/*No Output Processing*/
/* Setting Time outs */
SerialPortSettings.c_cc[VMIN] = 42; /* Read at least 51 characters */
SerialPortSettings.c_cc[VTIME] = 0; /* Wait indefinetly */
if((tcsetattr(fd,TCSANOW,&SerialPortSettings)) != 0) /* Set the attributes to the termios structure*/
printf("\n ERROR ! in Setting attributes");
else
printf("\n BaudRate = 9600 \n StopBits = 1 \n Parity = none \n\n");
/*------------------------------- Read data from serial port -----------------------------*/
tcflush(fd, TCIFLUSH); /* Discards old data in the rx buffer */
char read_buffer[42]; /* Buffer to store the data received */
int bytes_read = 0; /* Number of bytes read by the read() system call */
int ia = 0; int a;
int test = 0;
char new_read[38];
char curr_read[33];
a = 0;
do{
bytes_read = read(fd,&read_buffer,42); /* Read the data */
if(read_buffer[0] == '$')
if(read_buffer[1] == 'G')
if(read_buffer[2] == 'P')
if(read_buffer[3] == 'G')
if(read_buffer[4] == 'G'){
for(ia=7;ia<bytes_read;ia++){ /*printing only the received characters*/
new_read[a] = read_buffer[ia];
printf("%c",read_buffer[ia]);
a = a+1;
test = 1;
}
strcpy(curr_read, new_read);
printf("\n%s \n", curr_read);
}
else
test = 0;
else
test = 0;
else
test = 0;
else
test = 0;
else
test = 0;
}while(test == 0);
close(fd); /* Close the serial port */
}
}
And for the CAN logging I am using the code in the link above. What I try to achive is logging two data in to same log file. I modified the code above a little to get the datas only that I need; which is timestamp and location coordinates.
GPS edited data
GPS module gives data every second so I am triyng to get one data from GPS and attach it to the next 1000 CAN data then write in to a .log file then read a new value from GPS. GPS modules communication bitrate is 9600kbps and CAN bitrate is 125000 kbps. GPS is connected to UART2 pin, CAN to UART1. When I try to combine two code into one I get the Segmentation fault error. I made a little research its UNIX error code while violeting the restiricted memory space. But these two codes works perfectly when working seperatly. This is where I got stucked.
The code I tried to merge is like;
/* for hardware timestamps - since Linux 2.6.30 */
#ifndef SO_TIMESTAMPING
#define SO_TIMESTAMPING 37
#endif
/* from #include <linux/net_tstamp.h> - since Linux 2.6.30 */
#define SOF_TIMESTAMPING_SOFTWARE (1<<4)
#define SOF_TIMESTAMPING_RX_SOFTWARE (1<<3)
#define SOF_TIMESTAMPING_RAW_HARDWARE (1<<6)
#define MAXSOCK 16 /* max. number of CAN interfaces given on the cmdline */
#define MAXIFNAMES 30 /* size of receive name index to omit ioctls */
#define MAXCOL 6 /* number of different colors for colorized output */
#define ANYDEV "any" /* name of interface to receive from any CAN interface */
#define ANL "\r\n" /* newline in ASC mode */
#define SILENT_INI 42 /* detect user setting on commandline */
#define SILENT_OFF 0 /* no silent mode */
#define SILENT_ANI 1 /* silent mode with animation */
#define SILENT_ON 2 /* silent mode (completely silent) */
static char *cmdlinename[MAXSOCK];
static __u32 dropcnt[MAXSOCK];
static __u32 last_dropcnt[MAXSOCK];
static char devname[MAXIFNAMES][IFNAMSIZ+1];
static int dindex[MAXIFNAMES];
static int max_devname_len; /* to prevent frazzled device name output */
const int canfd_on = 1;
#define MAXANI 4
const char anichar[MAXANI] = {'|', '/', '-', '\\'};
const char extra_m_info[4][4] = {"- -", "B -", "- E", "B E"};
extern int optind, opterr, optopt;
static volatile int running = 1;
void sigterm(int signo)
{
running = 0;
}
int idx2dindex(int ifidx, int socket) {
int i;
struct ifreq ifr;
for (i=0; i < MAXIFNAMES; i++) {
if (dindex[i] == ifidx)
return i;
}
/* create new interface index cache entry */
/* remove index cache zombies first */
for (i=0; i < MAXIFNAMES; i++) {
if (dindex[i]) {
ifr.ifr_ifindex = dindex[i];
if (ioctl(socket, SIOCGIFNAME, &ifr) < 0)
dindex[i] = 0;
}
}
for (i=0; i < MAXIFNAMES; i++)
if (!dindex[i]) /* free entry */
break;
if (i == MAXIFNAMES) {
fprintf(stderr, "Interface index cache only supports %d interfaces.\n",
MAXIFNAMES);
exit(1);
}
dindex[i] = ifidx;
ifr.ifr_ifindex = ifidx;
if (ioctl(socket, SIOCGIFNAME, &ifr) < 0)
perror("SIOCGIFNAME");
if (max_devname_len < strlen(ifr.ifr_name))
max_devname_len = strlen(ifr.ifr_name);
strcpy(devname[i], ifr.ifr_name);
#ifdef DEBUG
printf("new index %d (%s)\n", i, devname[i]);
#endif
return i;
}
int main(int argc, char **argv)
{
fd_set rdfs;
int s[MAXSOCK];
int bridge = 0;
useconds_t bridge_delay = 0;
unsigned char timestamp = 0;
unsigned char hwtimestamp = 0;
unsigned char down_causes_exit = 1;
unsigned char dropmonitor = 0;
unsigned char extra_msg_info = 0;
unsigned char silent = SILENT_INI;
unsigned char silentani = 0;
unsigned char color = 0;
unsigned char view = 0;
unsigned char log = 0;
unsigned char logfrmt = 0;
int count = 0;
int rcvbuf_size = 0;
int opt, ret;
int currmax, numfilter;
int join_filter;
char *ptr, *nptr;
struct sockaddr_can addr;
char ctrlmsg[CMSG_SPACE(sizeof(struct timeval) + 3*sizeof(struct timespec) + sizeof(__u32))];
struct iovec iov;
struct msghdr msg;
struct cmsghdr *cmsg;
struct can_filter *rfilter;
can_err_mask_t err_mask;
struct canfd_frame frame;
int nbytes, i, maxdlen;
struct ifreq ifr;
struct timeval tv, last_tv;
struct timeval timeout, timeout_config = { 0, 0 }, *timeout_current = NULL;
FILE *logfile = NULL;
int fd;/*File Descriptor*/
struct termios SerialPortSettings; /* Create the structure */
signal(SIGTERM, sigterm);
signal(SIGHUP, sigterm);
signal(SIGINT, sigterm);
last_tv.tv_sec = 0;
last_tv.tv_usec = 0;
if (optind == argc) {
print_usage(basename(argv[0]));
exit(0);
}
if (logfrmt && view) {
fprintf(stderr, "Log file format selected: Please disable ASCII/BINARY/SWAP options!\n");
exit(0);
}
if (silent == SILENT_INI) {
if (log) {
fprintf(stderr, "Disabled standard output while logging.\n");
silent = SILENT_ON; /* disable output on stdout */
} else
silent = SILENT_OFF; /* default output */
}
currmax = argc - optind; /* find real number of CAN devices */
if (currmax > MAXSOCK) {
fprintf(stderr, "More than %d CAN devices given on commandline!\n", MAXSOCK);
return 1;
}
for (i=0; i < currmax; i++) {
ptr = argv[optind+i];
nptr = strchr(ptr, ',');
#ifdef DEBUG
printf("open %d '%s'.\n", i, ptr);
#endif
s[i] = socket(PF_CAN, SOCK_RAW, CAN_RAW);
if (s[i] < 0) {
perror("socket");
return 1;
}
cmdlinename[i] = ptr; /* save pointer to cmdline name of this socket */
if (nptr)
nbytes = nptr - ptr; /* interface name is up the first ',' */
else
nbytes = strlen(ptr); /* no ',' found => no filter definitions */
if (nbytes >= IFNAMSIZ) {
fprintf(stderr, "name of CAN device '%s' is too long!\n", ptr);
return 1;
}
if (nbytes > max_devname_len)
max_devname_len = nbytes; /* for nice printing */
addr.can_family = AF_CAN;
memset(&ifr.ifr_name, 0, sizeof(ifr.ifr_name));
strncpy(ifr.ifr_name, ptr, nbytes);
#ifdef DEBUG
printf("using interface name '%s'.\n", ifr.ifr_name);
#endif
if (strcmp(ANYDEV, ifr.ifr_name)) {
if (ioctl(s[i], SIOCGIFINDEX, &ifr) < 0) {
perror("SIOCGIFINDEX");
exit(1);
}
addr.can_ifindex = ifr.ifr_ifindex;
} else
addr.can_ifindex = 0; /* any can interface */
if (nptr) {
/* found a ',' after the interface name => check for filters */
/* determine number of filters to alloc the filter space */
numfilter = 0;
ptr = nptr;
while (ptr) {
numfilter++;
ptr++; /* hop behind the ',' */
ptr = strchr(ptr, ','); /* exit condition */
}
rfilter = malloc(sizeof(struct can_filter) * numfilter);
if (!rfilter) {
fprintf(stderr, "Failed to create filter space!\n");
return 1;
}
numfilter = 0;
err_mask = 0;
join_filter = 0;
while (nptr) {
ptr = nptr+1; /* hop behind the ',' */
nptr = strchr(ptr, ','); /* update exit condition */
if (sscanf(ptr, "%x:%x",
&rfilter[numfilter].can_id,
&rfilter[numfilter].can_mask) == 2) {
rfilter[numfilter].can_mask &= ~CAN_ERR_FLAG;
numfilter++;
} else if (sscanf(ptr, "%x~%x",
&rfilter[numfilter].can_id,
&rfilter[numfilter].can_mask) == 2) {
rfilter[numfilter].can_id |= CAN_INV_FILTER;
rfilter[numfilter].can_mask &= ~CAN_ERR_FLAG;
numfilter++;
} else if (*ptr == 'j' || *ptr == 'J') {
join_filter = 1;
} else if (sscanf(ptr, "#%x", &err_mask) != 1) {
fprintf(stderr, "Error in filter option parsing: '%s'\n", ptr);
return 1;
}
}
if (err_mask)
setsockopt(s[i], SOL_CAN_RAW, CAN_RAW_ERR_FILTER,
&err_mask, sizeof(err_mask));
if (join_filter && setsockopt(s[i], SOL_CAN_RAW, CAN_RAW_JOIN_FILTERS,
&join_filter, sizeof(join_filter)) < 0) {
perror("setsockopt CAN_RAW_JOIN_FILTERS not supported by your Linux Kernel");
return 1;
}
if (numfilter)
setsockopt(s[i], SOL_CAN_RAW, CAN_RAW_FILTER,
rfilter, numfilter * sizeof(struct can_filter));
free(rfilter);
} /* if (nptr) */
/* try to switch the socket into CAN FD mode */
setsockopt(s[i], SOL_CAN_RAW, CAN_RAW_FD_FRAMES, &canfd_on, sizeof(canfd_on));
if (rcvbuf_size) {
int curr_rcvbuf_size;
socklen_t curr_rcvbuf_size_len = sizeof(curr_rcvbuf_size);
/* try SO_RCVBUFFORCE first, if we run with CAP_NET_ADMIN */
if (setsockopt(s[i], SOL_SOCKET, SO_RCVBUFFORCE,
&rcvbuf_size, sizeof(rcvbuf_size)) < 0) {
#ifdef DEBUG
printf("SO_RCVBUFFORCE failed so try SO_RCVBUF ...\n");
#endif
if (setsockopt(s[i], SOL_SOCKET, SO_RCVBUF,
&rcvbuf_size, sizeof(rcvbuf_size)) < 0) {
perror("setsockopt SO_RCVBUF");
return 1;
}
if (getsockopt(s[i], SOL_SOCKET, SO_RCVBUF,
&curr_rcvbuf_size, &curr_rcvbuf_size_len) < 0) {
perror("getsockopt SO_RCVBUF");
return 1;
}
/* Only print a warning the first time we detect the adjustment */
/* n.b.: The wanted size is doubled in Linux in net/sore/sock.c */
if (!i && curr_rcvbuf_size < rcvbuf_size*2)
fprintf(stderr, "The socket receive buffer size was "
"adjusted due to /proc/sys/net/core/rmem_max.\n");
}
}
if (timestamp || log || logfrmt) {
if (hwtimestamp) {
const int timestamping_flags = (SOF_TIMESTAMPING_SOFTWARE | \
SOF_TIMESTAMPING_RX_SOFTWARE | \
SOF_TIMESTAMPING_RAW_HARDWARE);
if (setsockopt(s[i], SOL_SOCKET, SO_TIMESTAMPING,
&timestamping_flags, sizeof(timestamping_flags)) < 0) {
perror("setsockopt SO_TIMESTAMPING is not supported by your Linux kernel");
return 1;
}
} else {
const int timestamp_on = 1;
if (setsockopt(s[i], SOL_SOCKET, SO_TIMESTAMP,
&timestamp_on, sizeof(timestamp_on)) < 0) {
perror("setsockopt SO_TIMESTAMP");
return 1;
}
}
}
if (dropmonitor) {
const int dropmonitor_on = 1;
if (setsockopt(s[i], SOL_SOCKET, SO_RXQ_OVFL,
&dropmonitor_on, sizeof(dropmonitor_on)) < 0) {
perror("setsockopt SO_RXQ_OVFL not supported by your Linux Kernel");
return 1;
}
}
if (bind(s[i], (struct sockaddr *)&addr, sizeof(addr)) < 0) {
perror("bind");
return 1;
}
}
if (log) {
time_t currtime;
struct tm now;
char fname[sizeof("candump-2006-11-20_202026.log")+1];
if (time(&currtime) == (time_t)-1) {
perror("time");
return 1;
}
localtime_r(&currtime, &now);
sprintf(fname, "candump-%04d-%02d-%02d_%02d%02d%02d.log",
now.tm_year + 1900,
now.tm_mon + 1,
now.tm_mday,
now.tm_hour,
now.tm_min,
now.tm_sec);
if (silent != SILENT_ON)
printf("\nWarning: console output active while logging!");
fprintf(stderr, "\nEnabling Logfile '%s'\n\n", fname);
logfile = fopen(fname, "w");
if (!logfile) {
perror("logfile");
return 1;
}
}
/* these settings are static and can be held out of the hot path */
iov.iov_base = &frame;
msg.msg_name = &addr;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = &ctrlmsg;
while (running) {
/*------------------------------- Opening the Serial Port -------------------------------*/
/* Change /dev/ttyUSB0 to the one corresponding to your system */
fd = open("/dev/ttyO2",O_RDWR | O_NOCTTY); /* ttyUSB0 is the FT232 based USB2SERIAL Converter */
/* O_RDWR - Read/Write access to serial port */
/* O_NOCTTY - No terminal will control the process */
/* Open in blocking mode,read will wait */
/* Error Checking */
if(fd == -1)
printf("\n Error! in Opening ttyO2 ");
else
printf("\n ttyO2 Opened Successfully ");
/*---------- Setting the Attributes of the serial port using termios structure --------- */
//struct termios SerialPortSettings; /* Create the structure */
tcgetattr(fd, &SerialPortSettings); /* Get the current attributes of the Serial port */
/* Setting the Baud rate */
cfsetispeed(&SerialPortSettings,B9600); /* Set Read Speed as 9600 */
cfsetospeed(&SerialPortSettings,B9600); /* Set Write Speed as 9600 */
/* 8N1 Mode */
SerialPortSettings.c_cflag &= ~PARENB; /* Disables the Parity Enable bit(PARENB),So No Parity */
SerialPortSettings.c_cflag &= ~CSTOPB; /* CSTOPB = 2 Stop bits,here it is cleared so 1 Stop bit */
SerialPortSettings.c_cflag &= ~CSIZE; /* Clears the mask for setting the data size */
SerialPortSettings.c_cflag |= CS8; /* Set the data bits = 8 */
SerialPortSettings.c_cflag &= ~CRTSCTS; /* No Hardware flow Control */
SerialPortSettings.c_cflag |= CREAD | CLOCAL; /* Enable receiver,Ignore Modem Control lines */
SerialPortSettings.c_iflag &= ~(IXON | IXOFF | IXANY); /* Disable XON/XOFF flow control both i/p and o/p */
SerialPortSettings.c_iflag &= ~(ICANON | ECHO | ECHOE | ISIG); /* Non Cannonical mode */
SerialPortSettings.c_oflag &= ~OPOST;/*No Output Processing*/
/* Setting Time outs */
SerialPortSettings.c_cc[VMIN] = 42; /* Read at least 42 characters */
SerialPortSettings.c_cc[VTIME] = 0; /* Wait indefinetly */
if((tcsetattr(fd,TCSANOW,&SerialPortSettings)) != 0) /* Set the attributes to the termios structure*/
printf("\n ERROR ! in Setting attributes");
else
printf("\n BaudRate = 9600 \n StopBits = 1 \n Parity = none \n\n");
/*------------------------------- Read data from serial port -----------------------------*/
tcflush(fd, TCIFLUSH); /* Discards old data in the rx buffer */
char read_buffer[42]; /* Buffer to store the data received */
int bytes_read = 0; /* Number of bytes read by the read() system call */
int ia = 0; int a;
int test = 0;
char new_read[38];
char curr_read[33];
int countc = 0;
a = 0;
do{
bytes_read = read(fd,&read_buffer,42); /* Read the data */
if(read_buffer[0] == '$')
if(read_buffer[1] == 'G')
if(read_buffer[2] == 'P')
if(read_buffer[3] == 'G')
if(read_buffer[4] == 'G'){
for(ia=7;ia<bytes_read;ia++){ /*printing only the received characters*/
new_read[a] = read_buffer[ia];
//printf("%c",read_buffer[ia]);
a = a+1;
test = 1;
}
strcpy(curr_read, new_read);
//printf("\n%s \n", curr_read);
}
else
test = 0;
else
test = 0;
else
test = 0;
else
test = 0;
else
test = 0;
}while(test == 0);
//tcflush(fd, TCIFLUSH); /* Discards old data in the rx buffer */
close(fd); /* Close the serial port */
while(countc < 1000){
FD_ZERO(&rdfs);
for (i=0; i<currmax; i++)
FD_SET(s[i], &rdfs);
if (timeout_current)
*timeout_current = timeout_config;
if ((ret = select(s[currmax-1]+1, &rdfs, NULL, NULL, timeout_current)) <= 0) {
//perror("select");
running = 0;
continue;
}
for (i=0; i<currmax; i++) { /* check all CAN RAW sockets */
if (FD_ISSET(s[i], &rdfs)) {
int idx;
/* these settings may be modified by recvmsg() */
iov.iov_len = sizeof(frame);
msg.msg_namelen = sizeof(addr);
msg.msg_controllen = sizeof(ctrlmsg);
msg.msg_flags = 0;
nbytes = recvmsg(s[i], &msg, 0);
idx = idx2dindex(addr.can_ifindex, s[i]);
if (nbytes < 0) {
if ((errno == ENETDOWN) && !down_causes_exit) {
fprintf(stderr, "%s: interface down\n", devname[idx]);
continue;
}
perror("read");
return 1;
}
if ((size_t)nbytes == CAN_MTU)
maxdlen = CAN_MAX_DLEN;
else if ((size_t)nbytes == CANFD_MTU)
maxdlen = CANFD_MAX_DLEN;
else {
fprintf(stderr, "read: incomplete CAN frame\n");
return 1;
}
if (count && (--count == 0))
running = 0;
if (bridge) {
if (bridge_delay)
usleep(bridge_delay);
nbytes = write(bridge, &frame, nbytes);
if (nbytes < 0) {
perror("bridge write");
return 1;
} else if ((size_t)nbytes != CAN_MTU && (size_t)nbytes != CANFD_MTU) {
fprintf(stderr,"bridge write: incomplete CAN frame\n");
return 1;
}
}
for (cmsg = CMSG_FIRSTHDR(&msg);
cmsg && (cmsg->cmsg_level == SOL_SOCKET);
cmsg = CMSG_NXTHDR(&msg,cmsg)) {
if (cmsg->cmsg_type == SO_TIMESTAMP) {
memcpy(&tv, CMSG_DATA(cmsg), sizeof(tv));
} else if (cmsg->cmsg_type == SO_TIMESTAMPING) {
struct timespec *stamp = (struct timespec *)CMSG_DATA(cmsg);
/*
* stamp[0] is the software timestamp
* stamp[1] is deprecated
* stamp[2] is the raw hardware timestamp
* See chapter 2.1.2 Receive timestamps in
* linux/Documentation/networking/timestamping.txt
*/
tv.tv_sec = stamp[2].tv_sec;
tv.tv_usec = stamp[2].tv_nsec/1000;
} else if (cmsg->cmsg_type == SO_RXQ_OVFL)
memcpy(&dropcnt[i], CMSG_DATA(cmsg), sizeof(__u32));
}
/* check for (unlikely) dropped frames on this specific socket */
if (dropcnt[i] != last_dropcnt[i]) {
__u32 frames = dropcnt[i] - last_dropcnt[i];
if (silent != SILENT_ON)
printf("DROPCOUNT: dropped %d CAN frame%s on '%s' socket (total drops %d)\n",
frames, (frames > 1)?"s":"", devname[idx], dropcnt[i]);
if (log)
fprintf(logfile, "DROPCOUNT: dropped %d CAN frame%s on '%s' socket (total drops %d)\n",
frames, (frames > 1)?"s":"", devname[idx], dropcnt[i]);
last_dropcnt[i] = dropcnt[i];
}
/* once we detected a EFF frame indent SFF frames accordingly */
if (frame.can_id & CAN_EFF_FLAG)
view |= CANLIB_VIEW_INDENT_SFF;
if (log) { /* CODE GETS IN TO THIS PART */
char buf[CL_CFSZ]; /* max length */ /* WHEN PRINTING INTO FILE */
/* */
/* log CAN frame with absolute timestamp & device */ /* */
sprint_canframe(buf, &frame, 0, maxdlen); /* */
fprintf(logfile, "%s %*s %s\n", /* */
curr_read, /* */
max_devname_len, devname[idx], buf); /* */
} /* */
if (logfrmt) {
char buf[CL_CFSZ]; /* max length */
/* print CAN frame in log file style to stdout */
sprint_canframe(buf, &frame, 0, maxdlen);
printf("(%010ld.%06ld) %*s %s\n",
tv.tv_sec, tv.tv_usec,
max_devname_len, devname[idx], buf);
goto out_fflush; /* no other output to stdout */
}
if (silent != SILENT_OFF){
if (silent == SILENT_ANI) {
printf("%c\b", anichar[silentani%=MAXANI]);
silentani++;
}
goto out_fflush; /* no other output to stdout */
}
printf(" %s", (color>2)?col_on[idx%MAXCOL]:"");
switch (timestamp) {
case 'a': /* absolute with timestamp */
printf("(%010ld.%06ld) ", tv.tv_sec, tv.tv_usec);
break;
case 'A': /* absolute with date */
{
struct tm tm;
char timestring[25];
tm = *localtime(&tv.tv_sec);
strftime(timestring, 24, "%Y-%m-%d %H:%M:%S", &tm);
printf("(%s.%06ld) ", timestring, tv.tv_usec);
}
break;
case 'd': /* delta */
case 'z': /* starting with zero */
{
struct timeval diff;
if (last_tv.tv_sec == 0) /* first init */
last_tv = tv;
diff.tv_sec = tv.tv_sec - last_tv.tv_sec;
diff.tv_usec = tv.tv_usec - last_tv.tv_usec;
if (diff.tv_usec < 0)
diff.tv_sec--, diff.tv_usec += 1000000;
if (diff.tv_sec < 0)
diff.tv_sec = diff.tv_usec = 0;
printf("(%03ld.%06ld) ", diff.tv_sec, diff.tv_usec);
if (timestamp == 'd')
last_tv = tv; /* update for delta calculation */
}
break;
default: /* no timestamp output */
break;
}
printf(" %s", (color && (color<3))?col_on[idx%MAXCOL]:"");
printf("%*s", max_devname_len, devname[idx]);
if (extra_msg_info) {
if (msg.msg_flags & MSG_DONTROUTE)
printf (" TX %s", extra_m_info[frame.flags & 3]);
else
printf (" RX %s", extra_m_info[frame.flags & 3]);
}
printf("%s ", (color==1)?col_off:"");
fprint_long_canframe(stdout, &frame, NULL, view, maxdlen);
printf("%s", (color>1)?col_off:"");
printf("\n");
}
out_fflush:
fflush(stdout);
}
countc = countc +1;
}
}
for (i=0; i<currmax; i++)
close(s[i]);
if (bridge)
close(bridge);
if (log)
fclose(logfile);
return 0;
}
Actually everything matters works in while(running) block. Inside this block when I make the bytes_read = read(fd,&read_buffer,42); as comment, it didn't write anything but also doesn't give the Segmentation fault error. Same also happens when I connect the GPS' TX pin in to BBB. So the problem starts to occur when the data is coming from the GPS and read by the BBB.
Segmentation Fault Err
What should I do about it?
Thanks.
Your GPS reading code
char new_read[38];
char curr_read[33];
strcpy(curr_read, new_read);
is copying a 38 char buffer into a 33 char buffer, which can result in bad things.
Strcpy will copy the contents of the source buffer into the destination buffer until it reads NULL from the source buffer. If the NULL char is at the 36th position in new_read, strcpy will be writing in random memory which can cause the segmentation fault.
I am guessing that when you run your GPS reading code as stand-alone, the writing into random memory goes un-noticed, but when you combine it with the CAN bus reading, it writes into allocated space and the error happens.

How to catch stdout stream in ffmpeg then pipe it to v4l2loopback

I'm trying to pipe my h264 stream to ffmpeg and then to my v4l2loopback device. Problem is that I'm fairly new to linux, so just can't get it working.
The stream can be outputted to stdout, but I do not know how to catch it again with ffmpeg and then again pipe it to my v4l2loopback device.
Does anybody know how this could be done or maybe a pointer on how to solve it?
This is the capture program:
PS! You can find the options for the capture program almost in the bottom of the code.
/*
* V4L2 video capture example, modified by Derek Molloy for the Logitech C920 camera
* Modifications, added the -F mode for H264 capture and associated help detail
* www.derekmolloy.ie
*
* V4L2 video capture example
*
* This program can be used and distributed without restrictions.
*
* This program is provided with the V4L2 API
* see http://linuxtv.org/docs.php for more information
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <getopt.h> /* getopt_long() */
#include <fcntl.h> /* low-level i/o */
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <linux/videodev2.h>
#define CLEAR(x) memset(&(x), 0, sizeof(x))
enum io_method {
IO_METHOD_READ,
IO_METHOD_MMAP,
IO_METHOD_USERPTR,
};
struct buffer {
void *start;
size_t length;
};
static char *dev_name;
static enum io_method io = IO_METHOD_MMAP;
static int fd = -1;
struct buffer *buffers;
static unsigned int n_buffers;
static int out_buf;
static int force_format = 0;
static int frame_count = 100;
static void errno_exit(const char *s)
{
fprintf(stderr, "%s error %d, %s\n", s, errno, strerror(errno));
exit(EXIT_FAILURE);
}
static int xioctl(int fh, int request, void *arg)
{
int r;
do {
r = ioctl(fh, request, arg);
} while (-1 == r && EINTR == errno);
return r;
}
static void process_image(const void *p, int size)
{
if (out_buf)
fwrite(p, size, 1, stdout);
fflush(stderr);
fprintf(stderr, ".");
fflush(stdout);
}
static int read_frame(void)
{
struct v4l2_buffer buf;
unsigned int i;
switch (io) {
case IO_METHOD_READ:
if (-1 == read(fd, buffers[0].start, buffers[0].length)) {
switch (errno) {
case EAGAIN:
return 0;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
errno_exit("read");
}
}
process_image(buffers[0].start, buffers[0].length);
break;
case IO_METHOD_MMAP:
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:
return 0;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
errno_exit("VIDIOC_DQBUF");
}
}
assert(buf.index < n_buffers);
process_image(buffers[buf.index].start, buf.bytesused);
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
break;
case IO_METHOD_USERPTR:
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:
return 0;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
errno_exit("VIDIOC_DQBUF");
}
}
for (i = 0; i < n_buffers; ++i)
if (buf.m.userptr == (unsigned long)buffers[i].start
&& buf.length == buffers[i].length)
break;
assert(i < n_buffers);
process_image((void *)buf.m.userptr, buf.bytesused);
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
break;
}
return 1;
}
static void mainloop(void)
{
unsigned int count;
unsigned int loopIsInfinite = 0;
if (frame_count == 0) loopIsInfinite = 1; //infinite loop
count = frame_count;
while ((count-- > 0) || loopIsInfinite) {
for (;;) {
fd_set fds;
struct timeval tv;
int r;
FD_ZERO(&fds);
FD_SET(fd, &fds);
/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;
r = select(fd + 1, &fds, NULL, NULL, &tv);
if (-1 == r) {
if (EINTR == errno)
continue;
errno_exit("select");
}
if (0 == r) {
fprintf(stderr, "select timeout\n");
exit(EXIT_FAILURE);
}
if (read_frame())
break;
/* EAGAIN - continue select loop. */
}
}
}
static void stop_capturing(void)
{
enum v4l2_buf_type type;
switch (io) {
case IO_METHOD_READ:
/* Nothing to do. */
break;
case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))
errno_exit("VIDIOC_STREAMOFF");
break;
}
}
static void start_capturing(void)
{
unsigned int i;
enum v4l2_buf_type type;
switch (io) {
case IO_METHOD_READ:
/* Nothing to do. */
break;
case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))
errno_exit("VIDIOC_STREAMON");
break;
case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.index = i;
buf.m.userptr = (unsigned long)buffers[i].start;
buf.length = buffers[i].length;
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))
errno_exit("VIDIOC_STREAMON");
break;
}
}
static void uninit_device(void)
{
unsigned int i;
switch (io) {
case IO_METHOD_READ:
free(buffers[0].start);
break;
case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i)
if (-1 == munmap(buffers[i].start, buffers[i].length))
errno_exit("munmap");
break;
case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i)
free(buffers[i].start);
break;
}
free(buffers);
}
static void init_read(unsigned int buffer_size)
{
buffers = calloc(1, sizeof(*buffers));
if (!buffers) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);
}
buffers[0].length = buffer_size;
buffers[0].start = malloc(buffer_size);
if (!buffers[0].start) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);
}
}
static void init_mmap(void)
{
struct v4l2_requestbuffers req;
CLEAR(req);
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {
fprintf(stderr, "%s does not support "
"memory mapping\n", dev_name);
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_REQBUFS");
}
}
if (req.count < 2) {
fprintf(stderr, "Insufficient buffer memory on %s\n",
dev_name);
exit(EXIT_FAILURE);
}
buffers = calloc(req.count, sizeof(*buffers));
if (!buffers) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);
}
for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;
if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))
errno_exit("VIDIOC_QUERYBUF");
buffers[n_buffers].length = buf.length;
buffers[n_buffers].start =
mmap(NULL /* start anywhere */,
buf.length,
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */,
fd, buf.m.offset);
if (MAP_FAILED == buffers[n_buffers].start)
errno_exit("mmap");
}
}
static void init_userp(unsigned int buffer_size)
{
struct v4l2_requestbuffers req;
CLEAR(req);
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_USERPTR;
if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {
fprintf(stderr, "%s does not support "
"user pointer i/o\n", dev_name);
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_REQBUFS");
}
}
buffers = calloc(4, sizeof(*buffers));
if (!buffers) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);
}
for (n_buffers = 0; n_buffers < 4; ++n_buffers) {
buffers[n_buffers].length = buffer_size;
buffers[n_buffers].start = malloc(buffer_size);
if (!buffers[n_buffers].start) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);
}
}
}
static void init_device(void)
{
struct v4l2_capability cap;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
unsigned int min;
if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {
if (EINVAL == errno) {
fprintf(stderr, "%s is no V4L2 device\n",
dev_name);
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_QUERYCAP");
}
}
if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
fprintf(stderr, "%s is no video capture device\n",
dev_name);
exit(EXIT_FAILURE);
}
switch (io) {
case IO_METHOD_READ:
if (!(cap.capabilities & V4L2_CAP_READWRITE)) {
fprintf(stderr, "%s does not support read i/o\n",
dev_name);
exit(EXIT_FAILURE);
}
break;
case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:
if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf(stderr, "%s does not support streaming i/o\n",
dev_name);
exit(EXIT_FAILURE);
}
break;
}
/* Select video input, video standard and tune here. */
CLEAR(cropcap);
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */
if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {
switch (errno) {
case EINVAL:
/* Cropping not supported. */
break;
default:
/* Errors ignored. */
break;
}
}
} else {
/* Errors ignored. */
}
CLEAR(fmt);
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fprintf(stderr, "Force Format %d\n", force_format);
if (force_format) {
if (force_format==2){
fmt.fmt.pix.width = 1920;
fmt.fmt.pix.height = 1080;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_H264;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
}
else if(force_format==1){
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
}
if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))
errno_exit("VIDIOC_S_FMT");
/* Note VIDIOC_S_FMT may change width and height. */
} else {
/* Preserve original settings as set by v4l2-ctl for example */
if (-1 == xioctl(fd, VIDIOC_G_FMT, &fmt))
errno_exit("VIDIOC_G_FMT");
}
/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)
fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)
fmt.fmt.pix.sizeimage = min;
switch (io) {
case IO_METHOD_READ:
init_read(fmt.fmt.pix.sizeimage);
break;
case IO_METHOD_MMAP:
init_mmap();
break;
case IO_METHOD_USERPTR:
init_userp(fmt.fmt.pix.sizeimage);
break;
}
}
static void close_device(void)
{
if (-1 == close(fd))
errno_exit("close");
fd = -1;
}
static void open_device(void)
{
struct stat st;
if (-1 == stat(dev_name, &st)) {
fprintf(stderr, "Cannot identify '%s': %d, %s\n",
dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);
}
if (!S_ISCHR(st.st_mode)) {
fprintf(stderr, "%s is no device\n", dev_name);
exit(EXIT_FAILURE);
}
fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);
if (-1 == fd) {
fprintf(stderr, "Cannot open '%s': %d, %s\n",
dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);
}
}
static void usage(FILE *fp, int argc, char **argv)
{
fprintf(fp,
"Usage: %s [options]\n\n"
"Version 1.3\n"
"Options:\n"
"-d | --device name Video device name [%s]\n"
"-h | --help Print this message\n"
"-m | --mmap Use memory mapped buffers [default]\n"
"-r | --read Use read() calls\n"
"-u | --userp Use application allocated buffers\n"
"-o | --output Outputs stream to stdout\n"
"-f | --format Force format to 640x480 YUYV\n"
"-F | --formatH264 Force format to 1920x1080 H264\n"
"-c | --count Number of frames to grab [%i] - use 0 for infinite\n"
"\n"
"Example usage: capture -F -o -c 300 > output.raw\n"
"Captures 300 frames of H264 at 1920x1080 - use raw2mpg4 script to convert to mpg4\n",
argv[0], dev_name, frame_count);
}
static const char short_options[] = "d:hmruofFc:";
static const struct option
long_options[] = {
{ "device", required_argument, NULL, 'd' },
{ "help", no_argument, NULL, 'h' },
{ "mmap", no_argument, NULL, 'm' },
{ "read", no_argument, NULL, 'r' },
{ "userp", no_argument, NULL, 'u' },
{ "output", no_argument, NULL, 'o' },
{ "format", no_argument, NULL, 'f' },
{ "formatH264", no_argument, NULL, 'F' },
{ "count", required_argument, NULL, 'c' },
{ 0, 0, 0, 0 }
};
int main(int argc, char **argv)
{
dev_name = "/dev/video0";
for (;;) {
int idx;
int c;
c = getopt_long(argc, argv,
short_options, long_options, &idx);
if (-1 == c)
break;
switch (c) {
case 0: /* getopt_long() flag */
break;
case 'd':
dev_name = optarg;
break;
case 'h':
usage(stdout, argc, argv);
exit(EXIT_SUCCESS);
case 'm':
io = IO_METHOD_MMAP;
break;
case 'r':
io = IO_METHOD_READ;
break;
case 'u':
io = IO_METHOD_USERPTR;
break;
case 'o':
out_buf++;
break;
case 'f':
force_format=1;
break;
case 'F':
force_format=2;
break;
case 'c':
errno = 0;
frame_count = strtol(optarg, NULL, 0);
if (errno)
errno_exit(optarg);
break;
default:
usage(stderr, argc, argv);
exit(EXIT_FAILURE);
}
}
open_device();
init_device();
start_capturing();
mainloop();
stop_capturing();
uninit_device();
close_device();
fprintf(stderr, "\n");
return 0;
}
It's a modified version of a V4L2 video capture example.
Then I know that if I have outputed the streame to a file I would have to run this command to convert the raw format to mp4 format:
ffmpeg -f h264 -i output.raw -vcodec copy output.mp4
And the v4l2loopback program I'm using is foud here:
https://github.com/umlaeute/v4l2loopback
------------------Update------------------
Okay. So I got the pipe from the capture program to ffmpeg working. It captures, decodes the h264 and I can write it to a mp4 file with this command:
./capture -F -d /dev/video0 -o | ffmpeg -f h264 -i - -vcodec copy out.mp4
Now I am trying to get the last pipe working with this command:
./capture -F -d /dev/video0 -o | ffmpeg -f h264 -i - -vcodec copy -f mp4 - | gst-launch-0.10 -v fdsrc ! v4l2sink device=/dev/video3
I get these errors:
muxer does not support non seekable output
Could not write header for output file #0 (incorrect codec parameters ?): Invalid argument
Any ideas?
In your last command you are piping an MP4 to GStreamer. See the -f mp4 - part:
./capture -F -d /dev/video0 -o | ffmpeg -f h264 -i - -vcodec copy -f mp4 - | gst-launch-0.10 -v fdsrc ! v4l2sink device=/dev/video3
What you want to do is pipe the H.264 stream inside the MP4 instead.
Try replacing -f mp4 - with -f h264 -.
In fact you could probably skip entirely the creation of an MP4 and just do:
./capture -F -d /dev/video0 -o | gst-launch-0.10 -v fdsrc ! v4l2sink device=/dev/video3
since the -F option forces H.264.

linux serial port : read be blocked mode

My goal is to set 2 threads for serial ports: one for read, one for write.
My example is refer to the [one](//refer to how to open, read, and write from serial port in C) heavily, but I added pthread to my code:
//refer to https://stackoverflow.com/questions/6947413/how-to-open-read-and-write-from-serial-port-in-c
//refer to https://stackoverflow.com/questions/6947413/how-to-open-read-and-write-from-serial-port-in-c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>
#include <pthread.h> /* POSIX Threads */
#define MAX_STR_LEN 256
/*
* The values for speed are
* B115200, B230400, B9600, B19200, B38400, B57600, B1200, B2400, B4800, etc
*
* The values for parity are 0 (meaning no parity),
* PARENB|PARODD (enable parity and use odd),
* PARENB (enable parity and use even),
* PARENB|PARODD|CMSPAR (mark parity),
* and PARENB|CMSPAR (space parity).
* */
int SetInterfaceAttribs(int fd, int speed, int parity)
{
struct termios tty;
memset (&tty, 0, sizeof tty);
if (tcgetattr (fd, &tty) != 0) /* save current serial port settings */
{
printf("__LINE__ = %d, error %s\n", __LINE__, strerror(errno));
return -1;
}
cfsetospeed (&tty, speed);
cfsetispeed (&tty, speed);
tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars
// disable IGNBRK for mismatched speed tests; otherwise receive break
// as \000 chars
tty.c_iflag &= ~IGNBRK; // disable break processing
tty.c_lflag = 0; // no signaling chars, no echo,
// no canonical processing
tty.c_oflag = 0; // no remapping, no delays
tty.c_cc[VMIN] = 0; // read doesn't block
tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
tty.c_iflag &= ~(IXON | IXOFF | IXANY); // shut off xon/xoff ctrl
tty.c_cflag |= (CLOCAL | CREAD);// ignore modem controls,
// enable reading
tty.c_cflag &= ~(PARENB | PARODD); // shut off parity
tty.c_cflag |= parity;
tty.c_cflag &= ~CSTOPB;
tty.c_cflag &= ~CRTSCTS;
if (tcsetattr (fd, TCSANOW, &tty) != 0)
{
printf("__LINE__ = %d, error %s\n", __LINE__, strerror(errno));
return -1;
}
return 0;
}/*set_interface_attribs*/
void SetBlocking(int fd, int should_block)
{
struct termios tty;
memset (&tty, 0, sizeof tty);
if (tcgetattr(fd, &tty) != 0)
{
printf("__LINE__ = %d, error %s\n", __LINE__, strerror(errno));
return;
}
tty.c_cc[VMIN] = should_block ? 1 : 0;
tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
if (tcsetattr (fd, TCSANOW, &tty) != 0)
printf("__LINE__ = %d, error %s\n", __LINE__, strerror(errno));
}/*SetBlocking*/
void *sendThread(void *parameters)
{
char sendBuff[MAX_STR_LEN];
memset(&sendBuff[0], 0, MAX_STR_LEN);
snprintf(&sendBuff[0], MAX_STR_LEN, "hello!");
int fd;
fd = *((int*)parameters);
while(1)
{
write(fd, &sendBuff[0], strlen(&sendBuff[0]) );
// sleep enough to transmit the length plus receive 25:
// approx 100 uS per char transmit
usleep((strlen(&sendBuff[0]) + 25) * 100);
}/*while*/
pthread_exit(0);
}/*sendThread */
void *readThread(void *parameters)
{
char readBuff[MAX_STR_LEN];
int fd;
fd = *((int*)parameters);
while(1)
{
ssize_t len;
memset(&readBuff[0], 0, MAX_STR_LEN);
len = read(fd, &readBuff[0], MAX_STR_LEN);
if (len == -1)
{
switch(errno)
{
case EAGAIN:
printf("__FUNCTION__ = %s, __LINE__ = %d\n", __FUNCTION__, __LINE__);
usleep(5*1000);
continue;
break;
default:
printf("__FUNCTION__ = %s, __LINE__ = %d\n", __FUNCTION__, __LINE__);
pthread_exit(0);
break;
}
}
// sleep enough to transmit the length plus receive 25:
// approx 100 uS per char transmit
usleep((len + 25) * 100);
printf("len = %d\n", (int)len);
int i;
for(i = 0; i< len; i++)
printf("%c(%d %#x)\t", readBuff[i], readBuff[i], readBuff[i]);
printf("\n");
}/*while*/
pthread_exit(0);
}/*readThread */
int main(int argc, char *argv[])
{
int fd, c, res;
struct termios oldtio,newtio;
char buf[MAX_STR_LEN];
int k;
char deviceName[MAX_STR_LEN];
memset(&deviceName[0], 0, MAX_STR_LEN);
snprintf(&deviceName[0], MAX_STR_LEN, "/dev/ttyUSB0");
k = 1;
while(argc > k)
{
if(0 == strncmp(argv[k], "-d", MAX_STR_LEN))
{
if(k + 1 < argc)
{
snprintf(&deviceName[0], MAX_STR_LEN, "%s", argv[k + 1]);
}
else
{
printf("error : -d should be follow a device!\n");
return 0;
}/*if */
}
k++;
}/*while k*/
printf("__FUNCTION__ = %s, __LINE__ = %d\n", __FUNCTION__, __LINE__);
fd = open(&deviceName[0], O_RDWR | O_NOCTTY |O_NONBLOCK| O_NDELAY);
if(0 > fd)
{
perror(&deviceName[0]);
exit(-1);
}/*if */
SetInterfaceAttribs(fd, B115200, 0); /* set speed to 115,200 bps, 8n1 (no parity)*/
SetBlocking(fd, 1);
pthread_t readThread_t, sendThread_t; /* thread variables */
pthread_create(&sendThread_t, NULL, (void *)sendThread, (void *)&fd);
pthread_create(&readThread_t, NULL, (void *)readThread, (void *)&fd);
pthread_join(sendThread_t, NULL);
pthread_join(readThread_t, NULL);
close(fd);
return 0;
}/*main*/
The send data thread works well.
But the read data thread : I could not set it as blocking, the read function returns immediately, even the read data length is zero.
How should I modify the code to make the read function be blocked?
fd = open(&deviceName[0], O_RDWR | O_NOCTTY |O_NONBLOCK| O_NDELAY);
Try removing O_NONBLOCK and O_NDELAY from your open call. Or is there a particular reason you have that even though you specifically want it to block?

Can't read received packet when the data section starts with 2

so... context: I'm doing a layer 2 protocol for flexible forwarding in vehicular environment (for now my testbed is in virtual machines), this should take in consideration a different number of interfaces (for multihoming) and multihop.
So what I have:
A way of broadcasting hop-by-hop the service provider.
What I'm triyng to do:
A way to register a session all the way from the client to the provider (And here is the problem)
Problem: I have two types of packets
1st is listened correctly and data payload starts with a 1
2nd for some reason is not detected but I can see the packet is sent and correct with tcpdump
Since I have to register in the application the interface where the connection is made I used select() which seems to be part of the problem since I only guessed how it was used and I'm kind of in the dark about this.
UPDATED v3:
Okay so as soon as I removed most of the stuff about only sending on a specific interface all the stuff worked perfectly (I still need to clean this code... it's kind of messy). Here is code if someone is interested:
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <ifaddrs.h>
#include <signal.h>
#include <unistd.h>
#include <errno.h>
#include <arpa/inet.h>
#include <linux/if_packet.h>
#include <net/ethernet.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netinet/in.h>
#define ETH_P_CUSTOM 0x0801 /* EtherType of Current Used Protocol*/
#define BUF_SIZE 1024
typedef enum {
false, true
} Bool; /* Boolean Definition*/
typedef struct Stat {
uint8_t maxSocket; /*Number of sockets to use in receive*/
uint8_t nInterfaces; /*Number of interfaces owned by this machine*/
uint8_t nSession; /*Number of Sessions Known in the linked list*/
uint8_t upMac[ETH_ALEN]; /*MAC of this host upstream parent*/
uint8_t nHops; /*Hops to Provider*/
char ifName[IF_NAMESIZE + 1]; /*Interface to Provider*/
} Stat;
typedef struct Node {
uint64_t session; /*Client Session*/
uint8_t nextHop[ETH_ALEN]; /*Next-Hop to Client*/
char ifName[IF_NAMESIZE + 1]; /*Outgoing Interface that connects to Next-Hop*/
struct Node * next; /*Next Session*/
} Node;
typedef struct ifNode {
uint8_t ifIndex; /*Interface index*/
uint8_t sock; /*Index in array of sockets*/
uint8_t mac[ETH_ALEN]; /*Interface MAC*/
char ifName[IF_NAMESIZE + 1]; /*Interface Name*/
struct ifNode * next; /*Next Session*/
} ifNode;
Stat * op; /* Variable which tracks status of certain structures/variables*/
Node * first = NULL, *last = NULL; /* Edges of linked list */
ifNode * iffirst = NULL, *iflast = NULL; /* Edges of interface linked list */
int cargc;
char **cargv;
int receiveP();
int broadServ();
int announceSelf();
Node* create(uint64_t sess, uint8_t n[ETH_ALEN], char interface[IF_NAMESIZE]);
void insert_node(Node * p);
Node* search(uint64_t session);
void update(uint64_t session, Node * p);
ifNode* createif(uint8_t idx, uint8_t sock, uint8_t ifmac[ETH_ALEN],
char interface[IF_NAMESIZE]);
void insert_ifnode(ifNode * p);
ifNode* searchif(uint8_t idx, uint8_t mode);
void updateif(uint8_t idx, ifNode * p);
void display();
void displayif();
void ctrlcoverride(int sig) {
printf("\nCtrl-C - Signal Caught - Exiting\n\n");
printf(
"Current Upstream MAC: %02x:%02x:%02x:%02x:%02x:%02x - NHops : %u - At Interface %s\n\n",
op->upMac[0], op->upMac[1], op->upMac[2], op->upMac[3],
op->upMac[4], op->upMac[5], op->nHops, op->ifName);
display();
exit(EXIT_SUCCESS);
}
Node* create(uint64_t sess, uint8_t n[ETH_ALEN], char interface[IF_NAMESIZE]) {
Node * new = (Node *) malloc(sizeof(Node));
if (new == NULL) {
printf("Could not create new node\n");
return NULL;
} else {
strcpy(new->ifName, interface);
new->session = sess;
int i;
for (i = 0; i < ETH_ALEN; i++)
new->nextHop[i] = n[i];
new->next = NULL;
return new;
}
}
ifNode* createif(uint8_t idx, uint8_t sock, uint8_t ifmac[ETH_ALEN],
char interface[IF_NAMESIZE]) {
ifNode * new = (ifNode *) malloc(sizeof(ifNode));
if (new == NULL) {
printf("Could not create new interface node\n");
return NULL;
} else {
new->ifIndex = idx;
new->sock = sock;
strcpy(new->ifName, interface);
int i;
for (i = 0; i < ETH_ALEN; i++)
new->mac[i] = ifmac[i];
new->next = NULL;
return new;
}
}
void insert_node(Node * p) {
if (first == last && last == NULL) {
first = last = p;
first->next = NULL;
last->next = NULL;
} else {
last->next = p;
last = last->next;
last->next = NULL;
}
}
void insert_ifnode(ifNode * p) {
if (iffirst == iflast && iflast == NULL) {
iffirst = iflast = p;
iffirst->next = NULL;
iflast->next = NULL;
} else {
iflast->next = p;
iflast = iflast->next;
iflast->next = NULL;
}
}
Node* search(uint64_t session) {
if (first == last && last == NULL) {
return NULL;
} else {
Node * temp;
for (temp = first; temp != NULL; temp = temp->next) {
if (temp->session == session) {
return temp;
}
}
return NULL;
}
}
ifNode* searchif(uint8_t idx, uint8_t mode) {
if (iffirst == iflast && iflast == NULL) {
return NULL;
} else {
ifNode * temp;
for (temp = iffirst; temp != NULL; temp = temp->next) {
if (temp->ifIndex == idx && mode == 0) {
return temp;
} else if (temp->sock == idx && mode == 1) {
return temp;
}
}
return NULL;
}
}
void update(uint64_t session, Node * p) {
if (first == last && last == NULL) {
return;
} else {
Node * temp;
for (temp = first; temp != NULL; temp = temp->next) {
if (temp->session == session) {
strcpy(temp->ifName, p->ifName);
temp->next = p->next;
int i;
for (i = 0; i < ETH_ALEN; i++)
temp->nextHop[i] = p->nextHop[i];
return;
}
}
}
}
void updateif(uint8_t idx, ifNode * p) {
if (iffirst == iflast && iflast == NULL) {
return;
} else {
ifNode * temp;
for (temp = iffirst; temp != NULL; temp = temp->next) {
if (temp->ifIndex == idx) {
strcpy(temp->ifName, p->ifName);
temp->sock = p->sock;
temp->next = p->next;
int i;
for (i = 0; i < ETH_ALEN; i++)
temp->mac[i] = p->mac[i];
return;
}
}
}
}
void display() {
Node * temp = first;
while (temp != NULL) {
printf("Session %" PRIu64 " Through %s - NextHop at ", temp->session,
temp->ifName);
int i;
for (i = 0; i < ETH_ALEN; i++)
printf("%02x ", temp->nextHop[i]);
printf("\n");
temp = temp->next;
}
}
void displayif() {
ifNode * temp = iffirst;
while (temp != NULL) {
printf("Interface Index %u Socket Number %u - Name %s with MAC: ",
temp->ifIndex, temp->sock, temp->ifName);
int i;
for (i = 0; i < ETH_ALEN; i++)
printf("%02x ", temp->mac[i]);
printf("\n");
temp = temp->next;
}
}
uint8_t counter() {
Node * temp = first;
uint8_t counter = 0;
while (temp != NULL) {
counter++;
temp = temp->next;
}
return counter;
}
fd_set rfds;
int rec;
int main(int argc, char **argv) {
setbuf(stdout, NULL);
signal(SIGINT, ctrlcoverride);
cargc = argc;
cargv = argv;
/*Setting Base Variables to Initial Values*/
op = (Stat*) malloc(sizeof(Stat));
op->nSession = 0;
memset(op->ifName, 0, IF_NAMESIZE);
op->maxSocket = 0;
op->nHops = UINT8_MAX - 1;
int i;
for (i = 0; i < ETH_ALEN; i++) {
op->upMac[i] = 0x00;
}
memset(&rfds, 0, sizeof(fd_set));
FD_ZERO(&rfds);
if (argc != 2) {
printf("USAGE: sudo %s {provider|node|nodekey}\n", cargv[0]);
exit(EXIT_FAILURE);
} else if (!(strcmp(cargv[1], "provider") == 0
|| strcmp(cargv[1], "node") == 0 || strcmp(cargv[1], "nodekey") == 0)) {
printf("USAGE: sudo %s {provider|node|nodekey}\n", cargv[0]);
exit(EXIT_FAILURE);
}
if (strcmp(cargv[1], "nodekey") == 0) {
srand(time(NULL));
uint8_t myArray[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
insert_node(
create((uint64_t) (100 * ((float) rand() / RAND_MAX)), myArray,
"SOURCE"));
}
struct ifaddrs *ifaddr, *ifa;
if (getifaddrs(&ifaddr) == -1) {
perror("getifaddrs");
exit(EXIT_FAILURE);
}
for (ifa = ifaddr, op->nInterfaces = 0; ifa != NULL; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == NULL)
continue;
if (ifa->ifa_addr->sa_family == AF_PACKET
&& strncmp(ifa->ifa_name, "lo", strlen("lo")) != 0
&& strncmp(ifa->ifa_name, "tap", strlen("tap")) != 0) {
op->nInterfaces++;
}
}
rec = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_CUSTOM));
int sockopt;
char ifName[IFNAMSIZ];
struct ifreq ifr;
for (i = 1, ifa = ifaddr; ifa != NULL;
ifa = ifa->ifa_next, i++) {
if (ifa->ifa_addr == NULL)
continue;
if (ifa->ifa_addr->sa_family == AF_PACKET
&& strncmp(ifa->ifa_name, "lo", strlen("lo")) != 0
&& strncmp(ifa->ifa_name, "tap", strlen("tap")) != 0) {
uint8_t sock;
if ((sock = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_CUSTOM)))
== -1) {
printf("socket() error: %u - %s\n", errno, strerror(errno));
return EXIT_FAILURE;
}
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &sockopt,
sizeof sockopt) == -1) {
printf("SO_REUSEADDR error: %u - %s\n", errno, strerror(errno));
close(sock);
return EXIT_FAILURE;
}
memset(&ifr, 0, sizeof(struct ifreq));
ifr.ifr_ifindex = i;
strcpy(ifr.ifr_name, ifa->ifa_name);
if (setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE, ifa->ifa_name,
IF_NAMESIZE) == -1) {
printf("SO_BINDTODEVICE error: %u - %s\n", errno,
strerror(errno));
close(sock);
return EXIT_FAILURE;
}
struct sockaddr_ll sll;
sll.sll_family = AF_PACKET;
sll.sll_ifindex = i;
sll.sll_protocol = htons(ETH_P_CUSTOM);
if ((bind(sock, (struct sockaddr *) &sll, sizeof(sll))) == -1) {
perror("Error binding raw socket to interface\n");
exit(-1);
}
if ((ioctl(sock, SIOCGIFHWADDR, &ifr)) != 0) {
printf("SIOCGIFHWADDR error: %u - %s\n", errno,
strerror(errno));
return EXIT_FAILURE;
}
int j;
uint8_t ifmac[ETH_ALEN];
for (j = 0; j < ETH_ALEN; j++) {
ifmac[j] = (uint8_t) (ifr.ifr_hwaddr.sa_data)[j];
}
FD_SET(sock, &rfds);
op->maxSocket = (op->maxSocket < sock) ? sock : op->maxSocket;
insert_ifnode(createif(i, sock, ifmac, ifr.ifr_name));
}
}
displayif();
if (strcmp(cargv[1], "provider") == 0) {
struct ifreq if_mac; // interface
char * interface = "eth1";
int sockfd;
if ((sockfd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_CUSTOM))) == -1) {
printf("socket() error: %u - %s\n", errno, strerror(errno));
return EXIT_FAILURE;
}
memset(&if_mac, 0, sizeof(struct ifreq));
strncpy(if_mac.ifr_name, interface, IFNAMSIZ - 1);
if ((ioctl(sockfd, SIOCGIFHWADDR, &if_mac)) != 0) {
printf("SIOCGIFHWADDR error: %u - %s\n", errno, strerror(errno));
return EXIT_FAILURE;
}
int i;
for (i = 0; i < ETH_ALEN; i++)
op->upMac[i] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[i];
op->nHops = 0;
close(sockfd);
}
freeifaddrs(ifaddr);
int stat = 0;
while (1) {
if (strcmp(cargv[1], "provider") == 0) {
if ((stat = receiveP()) != 0)
return stat;
if ((stat = broadServ()) != 0)
return stat;
display();
usleep(100000);
} else if (strcmp(cargv[1], "node") == 0
|| strcmp(cargv[1], "nodekey") == 0) {
if ((stat = receiveP()) != 0)
return stat;
if ((stat = announceSelf()) != 0){
return stat;
}
if ((stat = broadServ()) != 0)
return stat;
display();
usleep(100000);
}
}
ifNode * temp = iffirst;
while (temp != NULL) {
close(temp->sock);
temp = temp->next;
}
exit(stat);
}
int receiveP() {
int stat = 0;
struct ifreq ifr;
struct sockaddr saddr;
long unsigned int numbytes = 0;
char buf[BUF_SIZE];
memset(buf, 0, BUF_SIZE);
struct ether_header *eh = (struct ether_header *) buf;
unsigned int saddr_size = sizeof saddr;
struct timeval tv;
tv.tv_sec = 3; /* 3 Secs Timeout */
tv.tv_usec = 0;
setsockopt(rec, SOL_SOCKET, SO_RCVTIMEO, (char *) &tv,
sizeof(struct timeval));
numbytes = recvfrom(rec, buf, BUF_SIZE, 0, &saddr, &saddr_size);
int len;
int ntable;
switch (buf[sizeof(struct ether_header)]) {
case 1:
if (buf[sizeof(struct ether_header) + 1] < op->nHops) {
op->upMac[0] = eh->ether_shost[0];
op->upMac[1] = eh->ether_shost[1];
op->upMac[2] = eh->ether_shost[2];
op->upMac[3] = eh->ether_shost[3];
op->upMac[4] = eh->ether_shost[4];
op->upMac[5] = eh->ether_shost[5];
op->nHops = buf[sizeof(struct ether_header) + 1] + 1;
memset(&ifr, 0, sizeof(struct ifreq));
memset(&ifr.ifr_name, 0, IF_NAMESIZE);
printf(
"Server %u Hops Away - Through %02x:%02x:%02x:%02x:%02x:%02x At Interface %s\n",
op->nHops, eh->ether_shost[0], eh->ether_shost[1],
eh->ether_shost[2], eh->ether_shost[3], eh->ether_shost[4],
eh->ether_shost[5], op->ifName);
printf("\n\n");
}
break;
case 2:
len = sizeof(struct ether_header) + 1;
ntable = buf[len++];
int j;
for (j = 0; j < ntable; j++, len++) {
if (search(buf[len]) == NULL) {
insert_node(create(buf[len], eh->ether_shost, ""));
}
}
break;
}
return stat;
}
int broadServ() {
int stat = 0;
int tx_len = 0;
char sendbuf[BUF_SIZE];
char ifName[IF_NAMESIZE - 1];
struct ether_header *eh = (struct ether_header *) sendbuf;
struct sockaddr_ll socket_address;
int i;
struct ifreq ifr, if_mac;
ifNode * temp = iffirst;
while (temp != NULL) {
/* Get the index of the interface to send on */
memset(&ifr, 0, sizeof(struct ifreq));
ifr.ifr_ifindex = temp->ifIndex;
if (ioctl(temp->sock, SIOCGIFNAME, &ifr) < 0)
perror("SIOCGIFINDEX");
memset(ifName, 0, IF_NAMESIZE - 1);
strncpy(ifName, ifr.ifr_name, IF_NAMESIZE - 1);
/* Get the MAC address of the interface to send on */
memset(&if_mac, 0, sizeof(struct ifreq));
strncpy(if_mac.ifr_name, ifName, IFNAMSIZ - 1);
if (ioctl(temp->sock, SIOCGIFHWADDR, &if_mac) < 0)
perror("SIOCGIFHWADDR");
if (((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[0] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[1] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[2] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[3] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[4] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[5] == 0x00)
continue;
memset(sendbuf, 0, BUF_SIZE);
/* Ethernet header */
eh->ether_shost[0] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[0];
eh->ether_shost[1] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[1];
eh->ether_shost[2] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[2];
eh->ether_shost[3] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[3];
eh->ether_shost[4] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[4];
eh->ether_shost[5] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[5];
eh->ether_dhost[0] = 0xff;
eh->ether_dhost[1] = 0xff;
eh->ether_dhost[2] = 0xff;
eh->ether_dhost[3] = 0xff;
eh->ether_dhost[4] = 0xff;
eh->ether_dhost[5] = 0xff;
/* Ethertype field */
eh->ether_type = htons(ETH_P_CUSTOM);
tx_len = sizeof(struct ether_header);
/* Packet data */
sendbuf[tx_len++] = 1;
sendbuf[tx_len++] = op->nHops; //+1;
/* Index of the network device */
socket_address.sll_ifindex = temp->ifIndex;
/* Address length*/
socket_address.sll_halen = ETH_ALEN;
/* Destination MAC */
socket_address.sll_addr[0] = 0xff;
socket_address.sll_addr[1] = 0xff;
socket_address.sll_addr[2] = 0xff;
socket_address.sll_addr[3] = 0xff;
socket_address.sll_addr[4] = 0xff;
socket_address.sll_addr[5] = 0xff;
/* Send packet */
if (sendto(temp->sock, sendbuf, tx_len, 0,
(struct sockaddr*) &socket_address, sizeof(struct sockaddr_ll))
< 0)
printf("Send failed\n");
temp = temp->next;
}
return stat;
}
int announceSelf() {
if (op->upMac[0] == 0x00 && op->upMac[1] == 0x00 && op->upMac[2] == 0x00
&& op->upMac[3] == 0x00 && op->upMac[4] == 0x00
&& op->upMac[5] == 0x00)
return EXIT_SUCCESS;
int stat = 0;
int tx_len = 0;
char sendbuf[BUF_SIZE];
char ifName[IF_NAMESIZE - 1];
struct ether_header *eh = (struct ether_header *) sendbuf;
struct sockaddr_ll socket_address;
int i;
struct ifreq ifr, if_mac;
ifNode * temp = iffirst;
while (temp != NULL) {
memset(&ifr, 0, sizeof(struct ifreq));
ifr.ifr_ifindex = temp->ifIndex;
if (ioctl(temp->sock, SIOCGIFNAME, &ifr) < 0)
perror("SIOCGIFINDEX");
memset(ifName, 0, IF_NAMESIZE - 1);
strncpy(ifName, ifr.ifr_name, IF_NAMESIZE - 1);
/* Get the MAC address of the interface to send on */
memset(&if_mac, 0, sizeof(struct ifreq));
strncpy(if_mac.ifr_name, ifName, IFNAMSIZ - 1);
if (ioctl(temp->sock, SIOCGIFHWADDR, &if_mac) < 0)
perror("SIOCGIFHWADDR");
if (((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[0] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[1] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[2] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[3] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[4] == 0x00
&& ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[5] == 0x00)
continue;
memset(sendbuf, 0, BUF_SIZE);
/* Ethernet header */
eh->ether_shost[0] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[0];
eh->ether_shost[1] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[1];
eh->ether_shost[2] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[2];
eh->ether_shost[3] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[3];
eh->ether_shost[4] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[4];
eh->ether_shost[5] = ((uint8_t *) &if_mac.ifr_hwaddr.sa_data)[5];
eh->ether_dhost[0] = op->upMac[0];
eh->ether_dhost[1] = op->upMac[1];
eh->ether_dhost[2] = op->upMac[2];
eh->ether_dhost[3] = op->upMac[3];
eh->ether_dhost[4] = op->upMac[4];
eh->ether_dhost[5] = op->upMac[5];
/* Ethertype field */
eh->ether_type = htons(ETH_P_CUSTOM);
tx_len = sizeof(struct ether_header);
/* Packet data */
sendbuf[tx_len++] = 2;
sendbuf[tx_len++] = counter();
Node *temp1 = first;
for (; temp1 != NULL; temp1 = temp1->next) {
sendbuf[tx_len++] = temp1->session;
}
socket_address.sll_ifindex = temp->ifIndex;
/* Address length*/
socket_address.sll_halen = ETH_ALEN;
/* Destination MAC */
socket_address.sll_addr[0] = op->upMac[0];
socket_address.sll_addr[1] = op->upMac[1];
socket_address.sll_addr[2] = op->upMac[2];
socket_address.sll_addr[3] = op->upMac[3];
socket_address.sll_addr[4] = op->upMac[4];
socket_address.sll_addr[5] = op->upMac[5];
/* Send packet */
if (sendto(temp->sock, sendbuf, tx_len, 0,
(struct sockaddr*) &socket_address, sizeof(struct sockaddr_ll))
< 0)
printf("Send failed\n");
temp = temp->next;
}
return stat;
}
So to test this you can have VM with linux connected like this (for example):
Provider ----- Node ----- Node ----- Nodekey
I still had a problem when creating multiple sessions, i wasn't incrementing the buffer when reading and I was reading multiple times the same position. Now it's working good
OK, let's begin with the easiest recommendations but I'm not sure this is going to resolve the problem at once. I did a system like this many years ago for different boards with different processor architectures communicating with each other. All the boards were running within a telecommunication switch. It's a very nice problem and you are facing it in the proper way with a peer-to-peer distributed solution.
I didn't go through all code but it seems each node is discovering the neighbour nodes in the network and everyone is creating a tree.
In select, the first argument should not be FD_SETSIZE but the highest-numbered file descriptor in any of the three sets (in this case the read set), plus 1.
The infinite loop is calling receiveSession which is creating all sockets again and then it reads. If a frame with your specific layer-2 protocol arrives in the middle and there is no socket listening for it, it will be discarded. Maybe your problem could be here.
When you send Ethernet frames directly, the hardware will complete the frame to the minimum Ethernet size: 64 octets (so you might receive padding data up to 46 octets - Octets not Bytes)
Please read here:
http://en.wikipedia.org/wiki/Ethernet_frame
It is good you chose an EtherType ETH_P_CUSTOM higher than 1536 that is not already in use but maybe you want to use a much higher number in order to minimize possibilities of collision with other protocols.
Something important. Your testbed now is with VM's which are usually x86 architectures, 64 bits. When you run your software in real devices with different processors, that might not be the situation. This is very important because you might have different architectures with different endianship and different integer size. That will affect the integer numbers you send, especially in ether_header, and the size of your structures. You have to use the the macros ntohs, ntohl, htons, htonl to change between host and network endianship (session is uint64_t). You should send data in network endianship. This is not solving your very current problem but you might have this problem in the future.

NUMA Memory Page Migration Overhead

I have to find the overhead associated with NUMA memory page migration under Linux.
Can you please tell me which tools I can use?
If possible could you show an example.
If you want to understand whether your system is doing excessive remote node memory accesses and you're using intel CPUs, Intel's PMU has a utility called vtbwrun to report the QPI/uncore activity.
If you want to see how long it takes to execute a page migration, you can measure the duration of calls to numa_move_pages (provided by the numactl package).
Here's an example:
/*
* Test program to test the moving of a processes pages.
*
* (C) 2006 Silicon Graphics, Inc.
* Christoph Lameter <clameter#sgi.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include "../numa.h"
#include <unistd.h>
#include <errno.h>
unsigned int pagesize;
unsigned int page_count = 32;
char *page_base;
char *pages;
void **addr;
int *status;
int *nodes;
int errors;
int nr_nodes;
struct bitmask *old_nodes;
struct bitmask *new_nodes;
int main(int argc, char **argv)
{
int i, rc;
pagesize = getpagesize();
nr_nodes = numa_max_node()+1;
old_nodes = numa_bitmask_alloc(nr_nodes);
new_nodes = numa_bitmask_alloc(nr_nodes);
numa_bitmask_setbit(old_nodes, 1);
numa_bitmask_setbit(new_nodes, 0);
if (nr_nodes < 2) {
printf("A minimum of 2 nodes is required for this test.\n");
exit(1);
}
setbuf(stdout, NULL);
printf("migrate_pages() test ......\n");
if (argc > 1)
sscanf(argv[1], "%d", &page_count);
page_base = malloc((pagesize + 1) * page_count);
addr = malloc(sizeof(char *) * page_count);
status = malloc(sizeof(int *) * page_count);
nodes = malloc(sizeof(int *) * page_count);
if (!page_base || !addr || !status || !nodes) {
printf("Unable to allocate memory\n");
exit(1);
}
pages = (void *) ((((long)page_base) & ~((long)(pagesize - 1))) + pagesize);
for (i = 0; i < page_count; i++) {
if (i != 2)
/* We leave page 2 unallocated */
pages[ i * pagesize ] = (char) i;
addr[i] = pages + i * pagesize;
nodes[i] = 1;
status[i] = -123;
}
/* Move to starting node */
rc = numa_move_pages(0, page_count, addr, nodes, status, 0);
if (rc < 0 && errno != ENOENT) {
perror("move_pages");
exit(1);
}
/* Verify correct startup locations */
printf("Page location at the beginning of the test\n");
printf("------------------------------------------\n");
numa_move_pages(0, page_count, addr, NULL, status, 0);
for (i = 0; i < page_count; i++) {
printf("Page %d vaddr=%p node=%d\n", i, pages + i * pagesize, status[i]);
if (i != 2 && status[i] != 1) {
printf("Bad page state before migrate_pages. Page %d status %d\n",i, status[i]);
exit(1);
}
}
/* Move to node zero */
numa_move_pages(0, page_count, addr, nodes, status, 0);
printf("\nMigrating the current processes pages ...\n");
rc = numa_migrate_pages(0, old_nodes, new_nodes);
if (rc < 0) {
perror("numa_migrate_pages failed");
errors++;
}
/* Get page state after migration */
numa_move_pages(0, page_count, addr, NULL, status, 0);
for (i = 0; i < page_count; i++) {
printf("Page %d vaddr=%lx node=%d\n", i,
(unsigned long)(pages + i * pagesize), status[i]);
if (i != 2) {
if (pages[ i* pagesize ] != (char) i) {
printf("*** Page contents corrupted.\n");
errors++;
} else if (status[i]) {
printf("*** Page on the wrong node\n");
errors++;
}
}
}
if (!errors)
printf("Test successful.\n");
else
printf("%d errors.\n", errors);
return errors > 0 ? 1 : 0;
}

Resources