What does vanilla mean? - programming-languages

The vanilla adjective appears in many places: plain-vanilla java, vanilla javascript: what does it exactly mean?
From context, is seems to stand for something "plain".
When is a specific code considered vanilla and when is it not? Plain, like not wrapped in a framework?

Computer software, and sometimes also other computing-related systems
like computer hardware or algorithms, is called Vanilla when not
customized from its original form, meaning that it is used without any
customizations or updates applied to it.
http://en.wikipedia.org/wiki/Vanilla_software

Vanilla often refers to pure or plain. So in terms of programming languages, it means either without the use of 3rd party libraries or without the use of frameworks.

It derives from the time when, of the various flavours of ice-cream available, vanilla flavour was the most common, simple and often even the only one available. Other flavours were rarer and more exotic.
In programming terms it does not refer to anything specific but implies any or all of:
No bells and whistles
No extra (perhaps unnecessary) features
Uses no external libraries
The pure language without any extras
Despite how boring "vanilla" might be seen in terms of ice-cream, it's rarely used derogatively in programming.

I know this a very old post but for posterity purposes. Simply put Vanilla is the raw, un-altered, plain, form of a thing without modification. E.g : vanilla js means javascript as it is without frameworks like react, jquery, etc and vanilla sql means sql without orm like laravel eloquent for instance.

In computer science, vanilla is the term used to refer when computer software and sometimes also other computing-related systems like computer hardware or algorithms are not customized from their original form, i.e., they are used without any customizations or updates applied to them. (Wiki)

Related

Securely running user's code

I am looking to create an AI environment where users can submit their own code for the AI and let them compete. The language could be anything, but something easy to learn like JavaScript or Python is preferred.
Basically I see three options with a couple of variants:
Make my own language, e.g. a JavaScript clone with only very basic features like variables, loops, conditionals, arrays, etc. This is a lot of work if I want to properly implement common language features.
1.1 Take an existing language and strip it to its core. Just remove lots of features from, say, Python until there is nothing left but the above (variables, conditionals, etc.). Still a lot of work, especially if I want to keep up to date with upstream (though I just could also just ignore upstream).
Use a language's built-in features to lock it down. I know from PHP that you can disable functions and searching around, similar solutions seem to exist for Python (with lots and lots of caveats). For this I'd need to have a good understanding of all the language's features and not miss anything.
2.1. Make a preprocessor that rejects code with dangerous stuff (preferably whitelist based). Similar to option 1, except that I only have to implement the parser and not implement all features: the preprocessor has to understand the language so that you can have variables named "eval" but not call the function named "eval". Still a lot of work, but more manageable than option 1.
2.2. Run the code in a very locked-down environment. Chroot, no unnecessary permissions... perhaps in a virtual machine or container. Something in that sense. I'd have to research how to achieve this and how to make it give me the results in a secure way, but that seems doable.
Manually read through all code. Doable on a small scale or with moderators, though still tedious and error-prone (I might miss stuff like if (user.id = 0)).
The way I imagine 2.2 to work is like this: run both AIs in a virtual machine (or something) and constrain it to communicate with the host machine only (no other Internet or LAN access). Both AIs run in a separate machine and communicate with each other (well, with the playing field, and thereby they see each other's positions) through an API running on the host.
Option 2.2 seems the most doable, but also relatively hacky... I let someone's code loose in a virtualized or locked down environment, hoping that that'll keep them in while giving them free game to DoS or break out of the environment. Then again, most other options are not much better.
TL;DR: in essence my question is: how do I let people give me 'logic' for an AI (which I think is most easily done using code) and then run that without compromising the functionality of the system? There must be at least 2 AIs working on the same playing field.
This is really just a plugin system, so researching how others implement plugins is a good starting point. In particular, I'd look at web browsers like Chrome and Safari and their plugin systems.
A common theme in modern plugins systems is process isolation. Ideally you should run the plugin in its own process space in a sandbox. In OS X look at XPC, which is designed explicitly for this problem. On Linux (or more portably), I would probably look at NaCl (Native Client). The JVM is also designed to provide sandboxing, and offers a rich selection of languages. (That said, I don't personally consider the JVM a very strong sandbox. It's had a history of security problems.)
In general, my preference on these kinds of projects is a language-agnostic API. I most often use REST APIs (or "REST-like"). This allows the plugin to be highly restricted, while not restricting the language choice. I like simple HTTP for communications whenever possible because it has rich support in numerous languages, so it puts little restriction on the plugin. In fact, given your description, you wouldn't even have to run the plugin on your hardware (and certainly not on the main server). Making the plugins remote clients removes many potential concerns.
But ultimately, I think something like your "2.2" is the right direction.

Why did you decide "against" using Erlang?

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Have you actually "tried" (means programmed in, not just read an article on it) Erlang and decided against it for a project? If so, why? Also, if you have opted to go back to your old language, or to use another functional language like F#, Haskell, Clojure, Scala, or something else then this counts too, and state why.
I returned to Haskell for my personal projects from Erlang for the simple virtue of Haskell's amazing type system. Erlang gives you a ton of tools to handle when things go wrong. Haskell gives you tools to keep you from going wrong in the first place.
When working in a language with a strong type system you are effectively proving free theorems about your code every time you compile.
You also get a bunch of overloading sugar from Haskell's typeclass machinery, but that is largely secondary to me -- even if it does allow me to express a number of abstractions that would be terribly verbose or non-idiomatic and unusable in Erlang (e.g. Haskell's category-extras).
I love Erlang, I love its channels and its effortless scalability. I turn to it when these are the things I need. Haskell isn't a panacea. I give up a better operational understanding of space consumption. I give up the magical one pass garbage collector. I give up OTP patterns and all that effortless scalability.
But its hard for me to give up the security blanket that, as is commonly said, in Haskell, if it typechecks, it is probably correct.
We use Haskell, OCaml and (now) F# so for us it has nothing to do with lack of C-like syntax. Rather we skip Erlang because:
It's dynamically typed (we're fans of Haskell's type system)
Doesn't provide a 'real' string type (I understand why, but it's annoying that this hasn't been corrected at the language level yet)
Tends to have poor (incomplete or unmaintained) database drivers
It isn't batteries included and doesn't appear to have a community working on correcting this. If it does, it isn't highly visible. Haskell at least has Hackage, and I'd guess that's what has us choosing that language over any other. In Windows environments F# is about to have the ultimate advantage here.
There are probably other reasons I can't think of right now, but these are the major points.
The best reason to avoid Erlang is when you cannot commit to the functional way of programming.
I read an anti-Erlang blog rant a few weeks ago, and one of the author's criticisms of Erlang is that he couldn't figure out how to make a function return a different value each time he called it with the same arguments. What he really hadn't figured out is that Erlang is that way on purpose. That's how Erlang manages to run so well on multiple processors without explicit locking. Purely functional programming is side-effect-free programming. You can arm-twist Erlang into working like our ranting blogger wanted, adding side effects, but in doing so you throw away the value Erlang offers.
Pure functional programming is not the only right way to program. Not everything needs to be mathematically rigorous. If you determine your application would be best written in a language that misuses the term "function", better cross Erlang off your list.
I have used Erlang in a few project already. I often use it for restful services. Where I don't use it however is for complex front end web applications where tools like Ruby on Rails are far better. But for the powerbroker behind the scenes I know of no better tool than Erlang.
I also use a few applications written in Erlang. I use CouchDB and RabbitMQ a bit and I have set up a few EJabberd servers. These applications are the most powerful, easiest and flexible tools in their field.
Not wanting to use Erlang because it does not use JVM is in my mind pretty silly. JVM is not some magical tool that is the best in doing everything in the world. In my mind the ability to choose from an arsenal of different tools and not being stuck in a single language or framework is what separates experts from code monkeys.
PS: After reading my comment back in context I noticed it looked like I was calling oxbow_lakes a code monkey. I really wasn't and apologize if he took it like that. I was generalizing about types of programmers and I would never call an individual such a negative name based on one comment by him. He is probably a good programmer even though I encourage him to not make the JVM some sort of a deal breaker.
Whilst I haven't, others on the internet have, e.g.
We investigated the relative merits of
C++ and Erlang in the implementation
of a parallel acoustic ray tracing
algorithm for the U.S. Navy. We found
a much smaller learning curve and
better debugging environment for
parallel Erlang than for
pthreads-based C++ programming. Our
C++ implementation outperformed the
Erlang program by at least 12x.
Attempts to use Erlang on the IBM Cell
BE microprocessor were frustrated by
Erlang's memory footprint. (Source)
And something closer to my heart, which I remember reading back in the aftermath of the ICFP contest:
The coding was very straightforward,
translating pseudocode into C++. I
could have used Java or C#, but I'm at
the point where programming at a high
level in C++ is just as easy, and I
wanted to retain the option of quickly
dropping down into some low-level
bit-twiddling if it came down to it.
Erlang is my other favorite language
for hacking around in, but was worried
about running into some performance
problem that I couldn't extricate
myself from. (Source)
For me, the fact that Erlang is dynamically typed is something that makes me wary. Although I do use dynamically typed languages because some of them are just so very problem-oriented (take Python, I solve a lot of problems with it), I wish they were statically typed instead.
That said, I actually intended to give Erlang a try for some time, and I’ve just started downloading the source. So your “question” achieved something after all. ;-)
I know Erlang since university, but have never used it in my own projects so far. Mainly because I'm mostly developing desktop applications, and Erlang is not a good language for making nice GUIs. But I will soon implement a server application, and I will give Erlang a try, because that's what it's good for. But I'm worring that I need more librarys, so maybe I'll try with Java instead.
A number of reasons:
Because it looks alien from anyone used to the C family of languages
Because I wanted to be able to run on the Java Virtual Machine to take advantage of tools I knew and understood (like JConsole) and the years of effort which have gone into JIT and GC.
Because I didn't want to have to rewrite all the (Java) libraries I've built up over the years.
Because I have no idea about the Erlang "ecosystem" (database access, configuration, build etc).
Basically I am familiar with Java, its platform and ecosystem and I have invested much effort into building stuff which runs on the JVM. It was easier by far to move to scala
I Decided against using Erlang for my project that was going to be run with a lot of shared data on a single multi-processor system and went with Clojure becuase Clojure really gets shared-memory-concurrency. When I have worked on distributed data storage systems Erlang was a great fit because Erlang really shines at distributed message passing systems. I compare the project to the best feature in the language and choose accordingly
Used it for a message gateway for a proprietary, multi-layered, binary protocol. OTP patterns for servers and relationships between services as well as binary pattern matching made the development process very easy. For such a use case I'd probably favor Erlang over other languages again.
The JVM is not a tool, it is a platform. Although I am all in favour of choosing the best tool for the job the platform is mostly already determined. Unless I am developing something standalone, from scratch and without the desire to reuse any existing code/library (three aspects that are unlikely in isolation already) I may be free to choose the platform.
I do use multiple tools and languages but I mainly targetg the JVM platform. That precludes Erlang for most if not all of my projects, as interesting as some of it concepts are.
Silvio
While I liked many design aspects of the Erlang runtime and the OTP platform, I found it to be a pretty annoying program language to develop in. The commas and periods are totally lame, and often require re-writing the last character of many lines of code just to change one line. Also, some operations that are simple in Ruby or Clojure are tedious in Erlang, for example string handling.
For distributed systems relying on a shared database the Mnesia system is really powerful and probably a good option, but I program in a language to learn and to have fun, and Erlang's annoying factor started to outweigh the fun factor once I had gotten past the basic bank account tutorials and started writing plugins for an XMPP server.
I love Erlang from the concurrency standpoint. Erlang really did concurrency right. I didn't end up using erlang primarily because of syntax.
I'm not a functional programmer by trade. I generally use C++, so I'm covet my ability to switch between styles (OOP, imperative, meta, etc). It felt like Erlang was forcing me to worship the sacred cow of immutable-data.
I love it's approach to concurrency, simple, beautiful, scalable, powerful. But the whole time I was programming in Erlang I kept thinking, man I'd much prefer a subset of Java that disallowed data sharing between thread and used Erlangs concurrency model. I though Java would have the best bet of restricting the language the feature set compatible with Erlang's processes and channels.
Just recently I found that the D Programing language offers Erlang style concurrency with familiar c style syntax and multi-paradigm language. I haven't tried anything massively concurrent with D yet, so I can't say if it's a perfect translation.
So professionally I use C++ but do my best to model massively concurrent applications as I would in Erlang. At some point I'd like to give D's concurrency tools a real test drive.
I am not going to even look at Erlang.
Two blog posts nailed it for me:
Erlang machinery walks the whole list to figure out whether they have a message to process, and the only way to get message means walking the whole list (I suspect that filtering messages by pid also involves walking the whole message list)
http://www.lshift.net/blog/2010/02/28/memory-matters-even-in-erlang
There are no miracles, indeed, Erlang does not provide too many services to deal with unavoidable overloads - e.g. it is still left to the application programmer to deal checking for available space in the message queue (supposedly by walking the queue to figure out the current length and I suppose there are no built-in mechanisms to ensure some fairness between senders).
erlang - how to limit message queue or emulate it?
Both (1) and (2) are way below naive on my book, and I am sure there are more software "gems" of similar nature sitting inside Erlang machinery.
So, no Erlang for me.
It seems that once you have to deal with a large system that requires high performance under overload C++ + Boost is still the only game in town.
I am going to look at D next.
I wanted to use Erlang for a project, because of it's amazing scalability with number of CPU'S. (We use other languages and occasionally hit the wall, leaving us with having to tweak the app)
The problem was that we must deliver our application on several platforms: Linux, Solaris and AIX, and unfortunately there is no Erlang install for AIX at the moment.
Being a small operation precludes the effort in porting and maintaining an AIX version of Erlang, and asking our customers to use Linux for part of our application is a no go.
I am still hoping that an AIX Erlang will arrive so we can use it.

Most dynamic dynamic programming language [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
It seems I've got to agree with this post when it states that
[...] code in dynamically typed languages follows static-typing conventions
Much dynamic language code I encounter does indeed seem to be quite static (thinking of PHP) whereas dynamic approaches look somewhat clumsy or unnecessary instead.
Most of the time, it's just about omitting type signatures, which, in the context of type-inference/structural typing, doesn't even have to imply dynamic typing at all.
So my question (and it's not meant to be too subjective) is, in which dynamic languages or fields of application are all these more advanced dynamic language features (that couln't be replicated in static/compiled languages that easily) actually and idomatically used.
Examples:
Reflection
First-class continuations
Runtime object alteration/generation
Metaprogramming
Run-time code evaluation
Non-existent member behaviour
What are useful applications for such techniques?
Some examples of widespread application of the above techniques are:
Continuations make their appearance in web frameworks like Rails or Seaside. They can be used to allow an API to fake a local context. In Seaside or Rails this makes the API behave much more like a local GUI form handler than an HTTP request handler, which serves to simplify the task of coding the application's user interface elements. However, although many dynamic languages have strong support for continuations they are certainly not unique to this type of language.
Reflection is quite widely used for O/R mappers and serialisation, but many statically typed langages support reflection as well. On duck typed languages it can be used to find out at runtime if a facility is implemented by looking at the object's metadata. Some O/R mappers (and similar tools) work by implementing accesses to instance variables and redirecting the updates to a cached record in the data access layer. This helps to make the persistence relatively transparent to the developer as the field accesses look much like local variables.
Runtime object alteration is slightly useful (think monkey-patching) but mostly a gimmick. There aren't many really killer uses for it that come to mind immediately, but people certainly do use it. One possible use for it is fixing slightly broken behaviour when subclassing is not an option for some reason.
Metaprogramming is quite a fuzzy definition for a term, but arguably generics and C++ templates are an example of metaprogramming - taking place on statically typed languages. On languages with metaclass support, custom metaclasses can be used to implement particular behaviours such as singletons or object registries.Another metaprogramming example is Smalltalk's #notImplemented: method which is called on attempts to invoke nonexistent methods. The method name and parameters are supplied to the implementor of #notImplemented:, and can subsequently be used to construct a method invocation reflectively. Trapping this can be used (for example) to implement generic proxy mechanisms.
LISP programmers would argue that LISP is the most dynamic language of all due to its first class support for diddling directly with the parse trees of the code (known as 'macros'). This facility makes implementing DSLs trivial in LISP - and integrating them transparently into your code base.
All features you enumerate are also available in statically typed languages some with constraints.
Reflection: Present in Java, C# (not type safe).
First-class continuations: restricted support in Scala (maybe others)
Runtime object alteration: Changing the type of an object is supported in a restriced form in C# with extension methods (will be in Java 7) and implicit type conversions in Scala. Although open class is not supported most of the use cases are covered by type conversions.
Metaprogramming: I would say Metaprogramming is the heading for a lot of related features like reflection, type changes at runtime, AOP etc.
So there is not a lot left that is supported only by dynamic languages to discuss. Support for example for Reflection circumvents the type system but it is useful in certain situations where this kind of flexibility is needed. The same is true in dynamic languages.
The open class feature supported by Ruby is something that compiled languages will never support. It is the most flexible form of Metaprogramming possible (with all the implications: security, performance, maintainability.) You can change classes of the platform. It's used by Ruby on Rails to create methods of domain objects from metadata on the fly. In a statically typed language you have at least to create (or generate the code of) the interface of your domain object.
If you're looking for the "most dymanic languages" all homoiconic languages like LISP and Prolog are good candidates. Interestingly, C# is somewhat homoiconic with the expression trees in LINQ.
You should visit Douglas Crockford's Wrrrld Wide Web and see his wizardry over Javascript. Javascript is usually written in pretty straightforward and simple manner, like slightly simplified C. But it's only the surface. The unmutable keywords are a small percent of the language power. Most of it lies in objects and methods exported by the system, and these are fully mutable. You can replace/extend methods on the fly, you can replace pretty deeply rooted system methods, nest eval(), load generated <SCRIPT> on the fly, and so on. This is usable in writing all kinds of language extensions, frameworks, toolboxes and such. Instead of 200 lines of code of your program in straightforward Javascript, you write 50 lines that modify how Javascript work, and another 50 that use the new syntax to get the work done. You can generate whole pages on the fly, including JS embedded in them. You turn webpage structure into data storage. You replace frequently used methods of popular objects, and your own, to change their behavior on the fly, changing not only looks but also function of a webpage in one click.
It really feels like Javascript becomes a metalanguage to modify the Javascript engine, and make Javascript function like a different language, then you further modify it using the already modified, and your actual, final app takes a dozen of extremely intuitive lines getting the language do exactly what it needs. Oh, and patches the countless bugs and shortcomings of Javascript implementation on MSIE in the process.
I won't claim Lisp is the "most dynamic" (I'm not even sure what that means), but Lisp programmers frequently do things that are difficult-to-impossible in other languages:
create new control structures
create new syntax for existing constructs (I think every metaclass I've ever seen has its own defwhatever form)
extend the runtime (every .emacs is a runtime extension, e.g., what would it take to write calendar-mode for another editor?)
Yegge talks about it some here w.r.t. Emacs, e.g., parse XML by converting it to s-expressions, writing functions for the tags you want to process, and actually running it.
Ultimately it's not languages that write dynamic code, it's programmers; and there's going to be a learning curve to adjust your patterns to styles you're not used to. So what types of work can make best use of dynamic capabilities? The first that comes to my mind is middleware; interfaces among heterogeneous systems; especially those with imperfectly documented APIs or APIs that change a lot, and data serialization is dynamic.
I'd say anywhere you see REST and jason being applied, you're more likely to find dynamic code, for instance, where javascript, php, perl, ruby, ... are popular at least partially because they are capable of dynamic adaptation.
Also, there's a lot of javascript browser code that deals with browser version and brand incmpatiblities using dynamic techniques.
Yes i feel JavaScript as good one.
JavaScript is so flexible that people working on different languages have different variants of it for them. Like Microsoft has Ajax library which has typical .NET/C# type syntax. Also there are some JavaScript libraries which uses $ which looks similar like PHP syntaxes. Its all there because JavaScript is bueaty How many other languages one can tell which can facilitates something like this?
And one should know about the JavaScript closure feature which is state of art and help create amazing algorithms with great results.

When to mix languages?

What are some situations where languages should be mixed?
I'm not talking about using ASP.NET with C# and HTML or an application written in C accessing a SQL database through SQL queries. I'm talking about things like mixing C++ with Fortran or Ada with Haskell etc. for example.
[EDIT]
First of all: thank you for all your answers.
When I asked this question I had in mind that you always read "every language has its special purpose".
In general, you can get almost everything done in any language by using special libraries. But, if you are interested in learning different languages, why not take the programming language that serves your purpose best instead of a library that solves a problem your language wasn't originally designed for?
For example, in video games we use different languages for different purpose :
Application (Game) code : have to be fast, organized and most of the time cross-platform (at least win, MacOS is to be envisaged), often on constraint-heavy platforms (consoles), so C++ (and sometimes C and asm) is used.
Development Tools : level design tools generates data that the game code will play with. Those kind of tool don't need to run on the target platform (but if you can it's easier to debug) so often they are made with fast-development languages such as C#, Python, etc.
Script system : some parts of the games will have to be tweaked by the designers, using variables or scripts. It's really easier and cheap to embed a scripting language instead of writing one so Lua or other similar scripting languages are often used.
Web application : sometimes a game will require to provide some data online, most often in a database accessed with SQL. The web application then is written in a language that might be C#, Ruby(R.O.R.), Python, PHP or anything else that is good for the job. As it's about the web, you then have to use HTML/Javascript too.
etc...
In my game I use HTML/Javascript for GUI too.
[EDIT]
To answer your edit : the language you know the best is not always the most efficient tool for the work. That's why for example I use C++ for my home-made game because I know it best (I could use a lot of other languages as the targets are Win/Mac/Linux, not consoles) but I use Python for everything related to build process, file manipulation etc. I don't know Python in depth but it's fare easier to do quick file manipulation with it than with C++. I wouldn't use C++ for web application for obvious reasons.
In the end, you use what is efficient for the job. That's what you learn by working in real world constraints, with money, time and quality in mind.
Well, the most obvious (and the most common) situation would be when you use some high level language to make most of your program, reaping the benefits of fast development and robustness, while using some lower level language like C or even assembly to gain speed where it is important.
Also, many times it is necessary to interface with other software written in some other language. A good example here are APIs exposed by the operating system - they're usually written with C in mind (though I remember some old MacOS versions using Pascal). If you don't have a native binding for your language-compiler infrastructure, you have to write some interface code to "glue" your program with "the other side".
There are also some domain-specific languages that are tuned specifically to efficiently express some type of computation. You usually don't write your entire program in them, just some parts where it is the appropriate tool. Prolog is a good example.
Last but not least, you sometimes have heaps of old and tested code written in another language at hand, which you could benefit from using. Instead of reinventing the wheel in a new and better language, you may simply want to interface it to your new program. This is probably the most usual (if not the only) case when languages geared for similar uses are mixed together (was that C++ and Fortran you mentioned?).
Generally, different languages have different strengths and weaknesses. You should try to use the appropriate tool for the job at hand. If the benefits from expressing some parts of the program in a different language are greater than the problems this introduces, then it's best to go for it.
I know in your question you sort of ruled this out, but different languages are used for different domains.
Right now I am working on a data visualizer, the data is in a database so of course there is some SQL, but that hardly counts because it's small and required frequently. The data is turned into a series of graphs, I'm using R, which is like MATLAB but open source. It is a unique statistical language with some advanced plotting features.
A data visualizer isn't just a graph generator, so there needs to be a way to browse and navigate this pile of image files. We opted to use html with embedded javascript to build an offline "application" that can be easily distributed. It's offline in the sense that it is self contained, that html is carefully generated and the js inside it is carefully crafted to allow the user to browse thousands of images sorting or filtering by a number of criteria.
How do you carefully craft javascript and html based on a database structure that changes as the rest of my team makes progress? They are made by a perl program (single pass script really) that reads into the db for some structure and key information, and then outputs over 300 kilobytes of html/js. It's not entirely trivial html either, imagemaps that are carefully aligned with the R plots and some onclick() javascript allow the user to actually interact with a plain image plot so this whole thing feels like a real data browser/visualizer application.
That's four 'languages', five if you count SQL, just to make a single end product.
I dont think doing this in a single language would be a good choice, because we are exploiting the capabilities of a real web browser to give us a free GUI and frontend.
An excellent current example would be to write methods for creating XML documents in VB.NET, which has an "XML Literals" feature, which C# lacks. Since they're both .NET languages, there's no reason not to call one from the other:
Public Function GetEmployeeXml (ByVal salesTerritoryKey As Integer) As XElement
Using context As New AdventureWorksDW2008Entities
Dim x = <x>
<%= From s In context.DimSalesTerritory _
Where s.SalesTerritoryKey = salesTerritoryKey _
Select _
<SalesTerritory
region=<%= s.SalesTerritoryRegion %>
country=<%= s.SalesTerritoryCountry %>>
<%= From e in s.DimEmployee _
Select _
<Employee firstName=<%= e.FirstName %> lastName=<%= e.LastName %>>
<%= From sale in e.FactResellerSales _
Select _
<Sale
orderNumber=<%= sale.SalesOrderNumber %>
price=<%= sale.ExtendedAmount %>/> %>
</Employee> %>
</SalesTerritory> %>
</x>
Return x
End Using
End Function
The biggest reason you would mix langauges is because one language has advantages in certain areas, where another has advantages in another. So, you try to harness the capabilities of both by throwing them together. A common example is using C and ASM, because C is more abstract and makes it easy to do the more complex stuff in a program, however, you would want to use ASM to do base level stuff with hardware and the processor. So, they are often mixed, given the nature of C and its use in embedded systems.
Depending on what paradigm a language falls under, it has its pros and cons. For example, one might want to use the GUI capabilities of C# but use the efficient backtracking or Artificial Intelligence capabilities of Prolog (a language in the logical paradigm) to compute some details before displaying them.
A simplified example
Imagine trying to write a program that allows a user to play Chess against a computer.
(Potentially) I would:
1.) Create the visuals with Windows GUI Libraries.
2.) Calculate the possible moves using Prolog, and choose the best/most viable move.
3.) Retrieve the results from step 2 from Prolog in my C# code, and render the results.
4.) Allow for the gameplay and rapid development of visuals and UI in C# and rely on the Prolog for the calculations/backtracking
This most often happens when you already have code written in two or more different languages and you notice that it makes sense to combine the programs. Rewriting is expensive and takes time.
In the financial world you often have to keep programs alive (or replaced) 50 years. With technology replacement every 10 years, new contracts (mortgages, life insurance) are created in the newest language/environment. The four older ones just handle the monthly payments and changes to existing contracts. To know how the company is doing, you need to integrate data from all five systems.
I suppose keeping the old ones alive is cheaper than migrating each time to the newest technology. From a risk avoiding point of view it makes sense.
Web applications should probably not be mixed language for the developer. Smalltalk does just fine, with Gemstone for persistence and Seaside as web application framework. The multiple languages (javascript) can be hidden in the framework.
When 2 heads are better than one.
I've commonly seen games where flash was embedded with C# - with the AI and other heavy code running off a C++ DLL.
When forced to
Writing new code to augment a new system supported by an old framework
For instance in games (which are pretty hardcore applications) you usually have a very tight c++ engine that does all the heavy lifting and a scripting language (such as Lua) that's accessible and suited for making that collection of special cases that we call 'game' happen.
People here have most of the reason. I'll just have this one:
There is also the case of graceful degradation. For instance I am working on a legacy intranet, and we're changing little by little from a language to another so at this point we have different languages in the same system.
Device Programming - typically you would want to program the UI with the OS's native UI language (Java for Android for example) but would need to program the device drivers with something that gets more into the low level (like C).

Using multiple languages in one project

From discussions I've had about language design, it seems like a lot of people make the argument that there is not and will never be "one true language". The alternative, according to these people, is to be familiar with several languages and to pick the right tool for the job. This makes perfect sense at the level of a whole project or a large subproject that only has to interact with the rest of the project through a very narrow, well-defined interface.
On the other hand, using lots of different languages seems like a very awkward thing to do when trying to solve lots of small subproblems elegantly. In other words, IMHO, general purpose languages that are decent at everything still matter. As a trivial example, let's say you need to do the following:
Read a bunch of data in some arbitrary format from a file. Check it for errors, etc. (Best done in something like Perl).
Load this data into matrices, do a bunch of hardcore matrix ops on it (Best done in something like Matlab).
Run a custom, computationally intensive routine on it that must be fast and space-efficient (Best done in C or C++).
This is a fairly simple project, other than writing the computationally intensive custom matrix processing routine, yet the only good answer about what language to use seems to be a general-purpose one that's decent at everything.
What am I missing here? How does one use multiple languages effectively to take advantage of each of their strengths?
I have worked on many projects that contain a fairly diverse mix of languages. Unless it's a .NET project, you usually use these different languages at different tiers or in different processes. Maybe your webapp is in PHP and your application server in java. So you do not really "mix and match" at method level.
In .NET and for some of the java vm languages the rules change a bit, since you can mix much more freely. But the features of these languages are mostly defined by the class libraries - which are common. So the motivation for switching languages in .net is usually driven by other factors, such as which language the developers know. F# actually provides quite a few language features that are specific for that language, so it seems to be a little bit of an exception within .NET. Some of the java VM languages also add methods to the standard java libraries, adding features not available in java.
You do actually get quite used to working with multiple languages as long as all of them have good IDE support. Without that I really think I would be lost.
Embedded languages like Lua make this pretty easy. Lua is a great dynamic language along the lines of Ruby or Python and allows you to quickly develop high quality code. It also has tight integration with C, which means you can take advantage of C/C++ libraries and optimize performance critical sections by writing them in C or C++.
In scientific computing it's also not uncommon to have a script that for example will do some data processing in Matlab, use Perl to reformat the output and then pass that into another app written in Matlab, C or whatever. This tends to be more common when integrating apps that have been written by different people than when developing something from scratch, though.
You're saying that the choices are either a) write everything in one language and lose efficiency, or b) cobble together a bunch of different executables in order to use the best language for each section of the job.
Most working programmers pick option c: do the best they can with the languages their IT departments support in production. Generally programmers have some limited language choice within a particular framework such as the JVM or CLR - so it's neither the toolbox utopia nor the monolanguage ghetto.
Even LAMP and Rails support (demand, really) different languages at different levels - HTML, Javascript, Ruby, C in the case of Rails. If you're writing software services (which is where most of the interesting work is happening these days) then you're hardly ever writing in just one language. But your choices aren't infinite, either.
Consider the most difficult part of your task. Is parsing the file the most complex part? A good language for reading files, and then manipulating them might be the most pertinent choice.
Are the math transformations the most difficult part? You might want to suck it up and use matlab, feeding it in with scripts or other home grown tools.
Is performance the most important part? How much calculation will be done versus the transformations and parsing? If 90% of the work done will be on calculation, and the other parts are only transitory, then consider a C/C++ solution.
There's nothing inherently wrong with playing to multiple language strengths in a simple solution, especially if you don't mind gluing it together with scripts. However, the more languages and modules that you integrate increase your dependencies, and the more dependencies you have, the more and more difficult it becomes to distribute and maintain your app. That's where the real trade-off lies: the fewer technologies, libraries, and bits of software you need to run the app, the simpler it becomes. The simpler the app, the more maintainable, distributable, debuggable, and usable it becomes.
If you don't mind the extra overhead of integrating the multiple pieces of technology, or that overhead will save you an equal or greater amount of development time, go right ahead.
I think it's fine. If you set it up as an n-tier setup where each layer accesses what is below it the same way (SOAP/XML/COM, etc), I have found it to be invisible in the end.
For your example, I would choose one language for the front end that is easy, quick, flexible, and can make many, many, many, many, many types of calls to different interfaces such as com, corba, xml, .net, custom dll libraries, ftp, and custom event gateways. This ensures that you can call, or interface with any other lanugage easily.
My tool of choice for this is Coldfusion from working with ASP/PHP/Java and a bit of Ruby. It seems to have it all in one place and is very simple. For your specific case, COldfusion will allow you to compile your own library tag that you can call in your web code. Inside the tag you can put all the c code you like and make it do whatever you want.
There are free and open source versions of Coldfusion available and it is fantastic for making Java and .NET calls naively from one code base. Check it out, I really feel it might be the best fit as it's made for these kinds of corporate solutions.
I know PHP can be pretty good for this too depending on your situation, and I'm sure Asp.net isn't too far behind.
My work in multiple languages has involved just a simple mix of C# and C++/CLI (that's like C++ with .NET if you haven't heard of it). I do think that it's worth saying that the way .NET and Visual Studio allow you to combine many different languages together means that you won't have as high of an overhead as you would normally expect when combining two languages - Visual Studio keeps it all together. Given that there are many .NET clones of various languages - F#, IronPython, IronRuby, JScript.NET for example - Visual Studio is quite a good way in which you can combine various languages.
Down to the technical level which sounds like what you're interested in, the way it's done in Visual Studio is you must have one project for each separate language, and each project gets compiled into an assembly - basically meaning it becomes a library for the other projects to use. You'll have one main project which drives everything and calls the other libraries. The requirement of each different language having to be a different project means you wouldn't change languages at the method level, but if you are doing a large enough application that you can logically separate it into multiple projects, it can actually be quite useful. In particular, the separation and abstraction can make things easier overall.

Resources