Haskell: translating to a Monad - haskell

In an effort to understand monads better, I'm attempting to write my own. I'm starting with some non-monadic code, and could use some help translating it into a monad.
Basic idea for this contrived example: for each integer result of a computation, I'd like to track if that integer is even or odd. For example, in 4 + 5 = 9, we might return (9, Odd).
I'd like to be able to chain/compose the calculations with >>=. For example:
return 1 >>= (+2) >>= (+5) >>= (+7) =result=> (15, Odd)
Right now, I have the following non-monadic code:
data Quality = Odd | Even deriving Show
qual :: Integer -> Quality
qual x = case odd x of
True -> Odd
_ -> Even
type Qualifier = (Integer, Quality)
mkQ :: Integer -> Qualifier
mkQ x = (x, qual x)
plusQ :: Qualifier -> Qualifier -> Qualifier
plusQ (x, _) (y, _) = (x+y, qual (x+y))
chain = plusQ (mkQ 7) . plusQ (mkQ 5) . plusQ (mkQ 2)
What are some ways I can translate the above code into a monad? What are some of the patterns I should look for, and what are common translation patterns for them?
Many thanks in advance!

I think what you actually want is a Num instance for Qualified:
data Qualified = Qualified { isEven :: Bool, value :: Integer }
instance Num Qualified where
(Qualified e1 n1) + (Qualified e2 n2) = Qualified e (n1 + n2)
where
e = (e1 && e2) || (not e1 && not e2)
(Qualified e1 n1) * (Qualified e2 n2) = Qualified (e1 || e2) (n1 * n2)
abs (Qualified e n) = Qualified e (abs n)
signum (Qualified e n) = Qualified e (signum n)
fromInteger n = Qualified (even n) n
This lets you manipulate Qualified numbers directly using math operators:
>>> let a = fromInteger 3 :: Qualified
>>> let b = fromInteger 4 :: Qualified
>>> a
Qualified {isEven = False, value = 3}
>>> b
Qualified {isEven = True, value = 4}
>>> a + b
Qualified {isEven = False, value = 7}
>>> a * b
Qualified {isEven = True, value = 12}

Lots of learning from this one. Many thanks to the commentors and answers for your time and guidance!
To summarize:
Solution: As #n.m. and others commented, there isn't a good monad translation for this example because my original model isn't type-generic. Monads are best for type-generic computation patterns. Good examples given include the Maybe monad for computations which may fail, and State monad for storing and carrying along accessory state information through a computation chain.
As an alternate solution, #GabrielGonzalez offered a great solution using type instancing. This keeps the inherent type-specificity of my original model, but broadens its interface to support more of the Num type class interface and clean up the functional interactions.
Next steps: As #weirdcanada and others recommended, I think I'll go play with the State monad and see how I can apply it to this particular example. Then I may try my hand at a custom definition of Maybe as #n.m. recommended.
Again, many thanks to those who commented and responded!

Related

Is this an accurate example of a Haskell Pullback?

I'm still trying to grasp an intuition of pullbacks (from category theory), limits, and universal properties, and I'm not quite catching their usefulness, so maybe you could help shed some insight on that as well as verifying my trivial example?
The following is intentionally verbose, the pullback should be (p, p1, p2), and (q, q1, q2) is one example of a non-universal object to "test" the pullback against to see if things commute properly.
-- MY DIAGRAM, A -> B <- C
type A = Int
type C = Bool
type B = (A, C)
f :: A -> B
f x = (x, True)
g :: C -> B
g x = (1, x)
-- PULLBACK, (p, p1, p2)
type PL = Int
type PR = Bool
type P = (PL, PR)
p = (1, True) :: P
p1 = fst
p2 = snd
-- (g . p2) p == (f . p1) p
-- TEST CASE
type QL = Int
type QR = Bool
type Q = (QL, QR)
q = (152, False) :: Q
q1 :: Q -> A
q1 = ((+) 1) . fst
q2 :: Q -> C
q2 = ((||) True) . snd
u :: Q -> P
u (_, _) = (1, True)
-- (p2 . u == q2) && (p1 . u = q1)
I was just trying to come up with an example that fit the definition, but it doesn't seem particularly useful. When would I "look for" a pull back, or use one?
I'm not sure Haskell functions are the best context
in which to talk about pull-backs.
The pull-back of A -> B and C -> B can be identified with a subset of A x C,
and subset relationships are not directly expressible in Haskell's
type system. In your specific example the pull-back would be
the single element (1, True) because x = 1 and b = True are
the only values for which f(x) = g(b).
Some good "practical" examples of pull-backs may be found
starting on page 41 of Category Theory for Scientists
by David I. Spivak.
Relational joins are the archetypal example of pull-backs
which occur in computer science. The query:
SELECT ...
FROM A, B
WHERE A.x = B.y
selects pairs of rows (a,b) where a is a row from table A
and b is a row from table B and where some function of a
equals some other function of b. In this case the functions
being pulled back are f(a) = a.x and g(b) = b.y.
Another interesting example of a pullback is type unification in type inference. You get type constraints from several places where a variable is used, and you want to find the tightest unifying constraint. I mention this example in my blog.

How to define a parameterized similarity class (an ==-like operator with 3rd param) in Haskell?

How to derive a parameterized similarity in a way that it would be convenient to use in Haskell?
The class should be such that the domain can be numeric or text (and possibly something else), and the parameter controlling the internals of comparison function can also be of several types.
Below, you may find the one approach that uses two class parameters. What implications this design entails if the goal is to define several "similarity or equality groups"? (What kind of use cases would be hard to implement compared to some alternative implementation?) In this example, the similarity groups of words could be defined to be edit distances of one, two etc. and in double to be different precisions.
Some of the methods take both numeric and textual inputs like the "quiteSimilar"-method. Why not use just some distance? Some of the similarities should be able to be defined by the user of the parameterized equality, e.g. on text (words) they could be based on synonyms.
And on doubles, well, I don't know yet, what kind of comparisons will be needed. (Suggestions are welcome.) After equalities comes the question, how to compare the order of items so that similar items will be deemed to be equal and not the larger and smaller, see the last line of the output.
{-# LANGUAGE MultiParamTypeClasses #-}
import Data.Array
import qualified Data.Text as T
-- parameterized eq
class Peq a b where peq :: a -> b -> b -> Bool
instance Peq Double Double where peq = almostEqRelPrec
instance Peq Int T.Text where peq = editDistance
class Comment a where
quiteSimilar :: a -> a -> T.Text
instance Comment Double where
quiteSimilar a b = if peq (epsilon * 100::Double) a b then T.pack "alike" else T.pack "unalike"
instance Comment T.Text where
quiteSimilar a b = if peq (1::Int) a b then T.pack "alike" else T.pack "unalike"
x1' x = quiteSimilar 0.25 (0.25 - x * epsilon :: Double)
x1 = quiteSimilar 0.25 (0.25 - 25 * epsilon :: Double)
x2 = quiteSimilar 0.25 (0.25 - 26 * epsilon :: Double)
x3' x = quiteSimilar 1e12 (1e12 - x * ulp 1e12 :: Double)
x3 = quiteSimilar 1e12 (1e12 - 181 * ulp 1e12 :: Double)
x4 = quiteSimilar 1e12 (1e12 - 182 * ulp 1e12 :: Double)
u181 = 181 * ulp 1e12 :: Double
main = do
let a = 0.2 + 0.65 :: Double
b = 0.85 :: Double
s = T.pack "trial"
t = T.pack "tr1al"
putStrLn $ "0.2 + 0.65 = " ++ show a ++ " and compared to " ++ show b ++ ", it is " ++ T.unpack (quiteSimilar a b)
putStrLn $ "Texts " ++ T.unpack s ++ " and " ++ T.unpack t ++ " are " ++ T.unpack (quiteSimilar s t)
putStrLn $ "Note that " ++ show a ++ " > " ++ show b ++ " is " ++ show (a > b)
-- packege Numeric.Limits contains this one
epsilon :: RealFloat a => a
epsilon = r
where r = 1 - encodeFloat (m-1) e
(m, e) = decodeFloat (1 `asTypeOf` r)
ulp :: RealFloat a => a -> a
ulp a = r
where r = a - encodeFloat (m-1) e
(m, e) = decodeFloat (a `asTypeOf` r)
almostEqRelPrec :: (RealFloat a) => a -> a -> a -> Bool
almostEqRelPrec maxRelPrec a b = d <= (largest * maxRelPrec)
where
d = abs $ a - b
largest = max (abs a) (abs b)
editDistance :: Int -> T.Text -> T.Text -> Bool
editDistance i a b = i == editDistance' (show a) (show b)
-- from https://wiki.haskell.org/Edit_distance
-- see also https://hackage.haskell.org/package/edit-distance-0.2.2.1
editDistance' :: Eq a => [a] -> [a] -> Int
editDistance' xs ys = table ! (m,n)
where
(m,n) = (length xs, length ys)
x = array (1,m) (zip [1..] xs)
y = array (1,n) (zip [1..] ys)
table :: Array (Int,Int) Int
table = array bnds [(ij, dist ij) | ij <- range bnds]
bnds = ((0,0),(m,n))
dist (0,j) = j
dist (i,0) = i
dist (i,j) = minimum [table ! (i-1,j) + 1, table ! (i,j-1) + 1,
if x ! i == y ! j then table ! (i-1,j-1) else 1 + table ! (i-1,j-1)]
On my machine, the output is:
0.2 + 0.65 = 0.8500000000000001 and compared to 0.85, it is alike
Texts trial and tr1al are alike
Note that 0.8500000000000001 > 0.85 is True
Edit:
Trying to rephrase the question: could this be achieved more elegantly with a similarity class that has only one parameter a and not two (a and b)? I have a feeling that multiparameter classes may turn out to be difficult later on. Is this a needless fear? First solution along this line that came to my mind was to define similarity class with one parameter a and a class for functions having two parameters. And on instances constraint other type to be similarity class parameter and the other would be for actual method returning Bool.
Are there some benefits of using the latter approach to the one presented? Or actually what are the possible trade-offs between these approaches? And if there are still more ways to make achieve this kind of things, how do they compare?
could this be achieved more elegantly with a similarity class that has only one parameter a and not two (a and b)
Yes. Many MultiParamTypeClasses can be rewritten quite easily to single-param ones... by simply degrading the second parameter to an associated type family:
{-# LANGUAGE TypeFamilies #-}
class Peq b where
type SimilarityThreshold b :: *
peq :: SimilarityThreshold b -> b -> b -> Bool
instance Peq Double where
type SimilarityThreshold Double = Double
peq = almostEqRelPrec
instance Peq T.Text where
type SimilarityThreshold T.Text = Int
peq = editDistance
This is quite a bit more verbose, but indeed I tend to favour this style. The main difference is that the associated type family always assigng each type of values to be compared unambiguously a threshold-type. This can save you some could not deduce... type inference trouble, however it also means that you can't use two different metric-types for a single type (but why would you, anyway).
Note that you can achieve exactly the same semantics by simply adding a fundep to your original class:
{-# LANGUAGE FunctionalDependencies #-}
class Peq a b | b -> a where
peq :: a -> b -> b -> Bool
This is just a bit different in usage – again I tend to favour the type families approach: it is more explicit in what the parameters are for, while at the same time avoiding the second parameter to turn up in the constraints to any Peq-polymorphic function.

Neighborhood of a mathematical expression using Haskell

I'm trying to implement with Haskell an algorithm to manipulate mathematical expressions.
I have this data type :
data Exp = Var String | IVal Int | Add Exp Exp
This will be enough for my question.
Given a set of expression transformations, for example :
(Add a b) => (Add b a)
(Add (Add a b) c) => (Add a (Add b c))
And an expression, for example : x = (Add (Add x y) (Add z t)), I want to find all expressions in the neighborhood of x. Given that neighborhood of x is defined as: y in Neighborhood(x) if y can be reached from x within a single transformation.
I am new to Haskell. I am not even sure Haskell is the right tool for this job.
The final goal is to get a function : equivalent x which returns a set of all expressions that are equivalent to x. In other words, the set of all expressions that are in the closure of the neighborhood of x (given a set of transformations).
Right now, I have the following :
import Data.List(nub)
import Data.Set
data Exp = IVal Int
| Scalar String
| Add Exp Exp
deriving (Show, Eq, Ord)
commu (Add a b) = (Add b a)
commu x = x
assoc (Add (Add a b) c) = (Add a (Add b c))
assoc (Add a (Add b c)) = (Add (Add a b) c)
assoc x = x
neighbors x = [commu x, assoc x]
equiv :: [Exp] -> [Exp]
equiv closure
| closure == closureUntilNow = closure
| otherwise = equiv closureUntilNow
where closureUntilNow = nub $ closure ++ concat [neighbors x|x<-closure]
But It's probably slower than needed (nub is O(n^2)) and some terms are missing.
For example, if you have f = (x+y)+z, then, you will not get (x+z)+y, and some others.
Imports, etc. below. I'll be using the multiset package.
import Control.Monad
import Data.MultiSet as M
data Exp = Var String | IVal Int | Add Exp Exp deriving (Eq, Ord, Show, Read)
A bit of paper-and-pencil work shows the following fact: expressions e1 and e2 are in the congruence closure of your relation iff the multiset of leaves are equal. By leaves, I mean the Var and IVal values, e.g. the output of the following function:
leaves :: Exp -> MultiSet Exp
leaves (Add a b) = leaves a `union` leaves b
leaves e = singleton e
So this suggests a nice clean way to generate all the elements in a particular value's neighborhood (without attempting to generate any duplicates in the first place). First, generate the multiset of leaves; then nondeterministically choose a partition of the multiset and recurse. The code to generate partitions might look like this:
partitions :: Ord k => MultiSet k -> [(MultiSet k, MultiSet k)]
partitions = go . toOccurList where
go [] = [(empty, empty)]
go ((k, n):bag) = do
n' <- [0..n]
(left, right) <- go bag
return (insertMany k n' left, insertMany k (n-n') right)
Actually, we only want partitions where both the left and right part are non-empty. But we'll check that after we've generated them all; it's cheap, as there's only two that aren't like that per invocation of partitions. So now we can generate the whole neighborhood in one fell swoop:
neighborhood :: Exp -> [Exp]
neighborhood = go . leaves where
full = guard . not . M.null
go m
| size m == 1 = toList m
| otherwise = do
(leftBag, rightBag) <- partitions m
full leftBag
full rightBag
left <- go leftBag
right <- go rightBag
return (Add left right)
By the way, the reason you're not getting all the terms is because you're generating the reflexive, transitive closure but not the congruence closure: you need to apply your rewrite rules deep in the term, not just at the top level.

How to handle expressions in Haskell?

Let's say I have :
f :: Double -> Double
f x = 3*x^2 + 5*x + 9
I would like to compute the derivative of this function and write
derivate f
so that
derivate f == \x -> 6*x + 5
but how to define derivate?
derivate :: (a -> a) -> (a -> a)
derivate f = f' -- how to compute f'?
I'm aware there is no native way to do this, but is there a library that can?
Do we have to rely on "meta"-datatypes to achieve this?
data Computation = Add Exp Expr | Mult Expr Expr | Power Expr Expr -- etc
Then, is it not a pain to make a corresponding constructor for each function ? However, datatypes should not represent functions (except for parsers).
Is Pure a good alternative because of its term-rewriting feature? Doesn't it have its drawbacks as well?
Are lists affordable?
f :: [Double]
f = [3, 5, 9]
derivate :: (a -> [a])
derivate f = (*) <$> f <*> (getNs f)
compute f x = sum $
((*) . (^) x) <$> (getNs f) <*> f
getNs f = (reverse (iterate (length f) [0..]))
Haskell now looks like it depends on LISP with a less appropriate syntax. Function and arguments waiting to be used together are quite stored in datatypes.
Plus, it's not very natural.
They don't seem to be "flexible" enough to be able my derivate function other than polynomials, such as homographic functions.
Right now, for example, I would like to use derivatives for a game. The character runs on a floor made using a function, and I would like him to slide if the floor is steep enough.
I also need to solve equations for various purposes. Some examples:
I'm a spaceship and I want to take a nap. During my sleep, if I don't place myself carefully, I might crash on a planet because of gravity. I don't have enough gas to go far away from celestial objects and I don't have a map either.
So I must place myself between the objects in this area so that the sum of their gravitationnal influence on me is canceled.
x and y are my coordinates. gravity is a function that takes two objects and return the vector of the gravitationnal force between them.
If there are two objects, say the Earth and the Moon, besides me, all I need to do to find where to go is to solve:
gravity earth spaceship + gravity moon spaceship == (0, 0)
It's much simpler and faster, etc., than to create a new function from scratch equigravityPoint :: Object -> Object -> Object -> Point.
If there are 3 objects besides me, it's still simple.
gravity earth spaceship + gravity moon spaceship + gravity sun spaceship == (0, 0)
Same for 4, and n. Handling a list of objects is much simpler this way than with equigravityPoint.
Other example.
I want to code an ennemy bot that shoots me.
If he just shoots targeting my current position, he will get me if I run towards me, but he'll miss me if I jump and fall on him.
A smarter bot thinks like that: "Well, he jumped from a wall. If I shoot targeting where he is now the bullet won't get him, because he will have moved until then. So I'm gonna anticipate where he'll be in a few seconds and shoot there so that the bullet and him reach this point at the same time".
Basically, I need the ability to compute trajectories. For example, for this case, I need the solution to trajectoryBullet == trajectoryCharacter, which gives a point where the line and the parabola meet.
A similar and simpler example not involving speed.
I'm a fireman bot and there's a building in fire. Another team of firemen is fighting the fire with their water guns. I am and there are people jumping from . While my friends are shooting water, I hold the trampoline.
I need to go where the people will fall before they do. So I need trajectories and equation-solving.
One way of doing this is to do automatic differentiation instead of symbolic differentiation; this is an approach where you simultaneously compute both f(x) and f′(x) in one computation. There's a really cool way of doing this using dual numbers that I learned about from Dan "sigfpe" Piponi's excellent blog post on automatic differentiation. You should probably just go read that, but here's the basic idea. Instead of working with the real numbers (or Double, our favorite (?) facsimile of them), you define a new set, which I'm going to call D, by adjoining a new element ε to ℝ such that ε2 = 0. This is much like the way we define the complex numbers ℂ by adjoining a new element i to ℝ such that i2 = -1. (If you like algebra, this is the same as saying D = ℝ[x]/⟨x2⟩.) Thus, every element of D is of the form a + bε, where a and b are real. Arithmetic over the dual numbers works like you expect:
(a + bε) ± (c + dε) = (a + c) ± (b + d)ε; and
(a + bε)(c + dε) = ac + bcε + adε + bdε2 = ac + (bc + ad)ε.
(Since ε2 = 0, division is more complicated, although the multiply-by-the-conjugate trick you use with the complex numbers still works; see Wikipedia's explanation for more.)
Now, why are these useful? Intuitively, the ε acts like an infinitesimal, allowing you to compute derivatives with it. Indeed, if we rewrite the rule for multiplication using different names, it becomes
(f + f′ε)(g + g′ε) = fg + (f′g + fg′)ε
And the coefficient of ε there looks a lot like the product rule for differentiating products of functions!
So, then, let's work out what happens for one large class of functions. Since we've ignored division above, suppose we have some function f : ℝ → ℝ defined by a power series (possibly finite, so any polynomial is OK, as are things like sin(x), cos(x), and ex). Then we can define a new function fD : D → D in the obvious way: instead of adding real numbers, we add dual numbers, etc., etc. Then I claim that fD(x + ε) = f(x) + f′(x)ε. First, we can show by induction that for any natural number i, it's the case that (x + ε)i = xi + ixi-1ε; this will establish our derivative result for the case where f(x) = xk. In the base case, this equality clearly holds when i = 0. Then supposing it holds for i, we have
(x + ε)i+1 = (x + ε)(x + ε)i by factoring out one copy of (x + ε)
= (x + ε)(xi + ixi-1ε) by the inductive hypothesis
= xi+1 + (xi + x(ixi-1))ε by the definition of dual-number multiplication
= xi+1 + (i+1)xiε by simple algebra.
And indeed, this is what we wanted. Now, considering our power series f, we know that
f(x) = a0 + a1x + a2x2 + … + aixi + …
Then we have
fD(x + ε) = a0 + a1(x + ε) + a2(x + ε)2 + … + ai(x + ε)i + …
= a0 + (a1x + a1ε) + (a2x2 + 2a2xε) + … + (aixi + iaixi-1ε) + … by the above lemma
= (a0 + a1x + a2x2 + … + aixi + …) + (a1ε + 2a2xε + … + iaixi-1ε + …) by commutativity
= (a0 + a1x + a2x2 + … + aixi + …) + (a1 + 2a2x + … + iaixi-1 + …)ε by factoring out the ε
= f(x) + f′(x)ε by definition.
Great! So dual numbers (at least for this case, but the result is generally true) can do differentiation for us. All we have to do is apply our original function to, not the real number x, but the dual number x + ε, and then extract the resulting coefficient of ε. And I bet you can see how one could implement this in Haskell:
data Dual a = !a :+? !a deriving (Eq, Read, Show)
infix 6 :+?
instance Num a => Num (Dual a) where
(a :+? b) + (c :+? d) = (a+c) :+? (b+d)
(a :+? b) - (c :+? d) = (a-c) :+? (b-d)
(a :+? b) * (c :+? d) = (a*c) :+? (b*c + a*d)
negate (a :+? b) = (-a) :+? (-b)
fromInteger n = fromInteger n :+? 0
-- abs and signum might actually exist, but I'm not sure what they are.
abs _ = error "No abs for dual numbers."
signum _ = error "No signum for dual numbers."
-- Instances for Fractional, Floating, etc., are all possible too.
differentiate :: Num a => (Dual a -> Dual a) -> (a -> a)
differentiate f x = case f (x :+? 1) of _ :+? f'x -> f'x
-- Your original f, but with a more general type signature. This polymorphism is
-- essential! Otherwise, we can't pass f to differentiate.
f :: Num a => a -> a
f x = 3*x^2 + 5*x + 9
f' :: Num a => a -> a
f' = differentiate f
And then, lo and behold:
*Main> f 42
5511
*Main> f' 42
257
Which, as Wolfram Alpha can confirm, is exactly the right answer.
More information about this stuff is definitely available. I'm not any kind of expert on this; I just think the idea is really cool, so I'm taking this chance to parrot what I've read and work out a simple proof or two. Dan Piponi has written more about dual numbers/automatic differentiation, including a post where, among other things, he shows a more general construction which allows for partial derivatives. Conal Elliott has a post where he shows how to compute derivative towers (f(x), f′(x), f″(x), …) in an analogous way. The Wikipedia article on automatic differentiation linked above goes into some more detail, including some other approaches. (This is apparently a form of "forward mode automatic differentiation", but "reverse mode" also exists, and can apparently be faster.)
Finally, there's a Haskell wiki page on automatic differentiation, which links to some articles—and, importantly, some Hackage packages! I've never used these, but it appears that the ad package, by Edward Kmett is the most complete, handling multiple different ways of doing automatic differentiation—and it turns out that he uploaded that package after writing a package to properly answer another Stack Overflow question.
I do want to add one other thing. You say "However, datatypes should not represent functions (except for parsers)." I'd have to disagree there—reifying your functions into data types is great for all sorts of things in this vein. (And what makes parsers special, anyway?) Any time you have a function you want to introspect, reifying it as a data type can be a great option. For instance, here's an encoding of symbolic differentiation, much like the encoding of automatic differentiation above:
data Symbolic a = Const a
| Var String
| Symbolic a :+: Symbolic a
| Symbolic a :-: Symbolic a
| Symbolic a :*: Symbolic a
deriving (Eq, Read, Show)
infixl 6 :+:
infixl 6 :-:
infixl 7 :*:
eval :: Num a => (String -> a) -> Symbolic a -> a
eval env = go
where go (Const a) = a
go (Var x) = env x
go (e :+: f) = go e + go f
go (e :-: f) = go e - go f
go (e :*: f) = go e * go f
instance Num a => Num (Symbolic a) where
(+) = (:+:)
(-) = (:-:)
(*) = (:*:)
negate = (0 -)
fromInteger = Const . fromInteger
-- Ignoring abs and signum again
abs = error "No abs for symbolic numbers."
signum = error "No signum for symbolic numbers."
-- Instances for Fractional, Floating, etc., are all possible too.
differentiate :: Num a => Symbolic a -> String -> Symbolic a
differentiate f x = go f
where go (Const a) = 0
go (Var y) | x == y = 1
| otherwise = 0
go (e :+: f) = go e + go f
go (e :-: f) = go e - go f
go (e :*: f) = go e * f + e * go f
f :: Num a => a -> a
f x = 3*x^2 + 5*x + 9
f' :: Num a => a -> a
f' x = eval (const x) $ differentiate (f $ Var "x") "x"
And once again:
*Main> f 42
5511
*Main> f' 42
257
The beauty of both of these solutions (or one piece of it, anyway) is that as long as your original f is polymorphic (of type Num a => a -> a or similar), you never have to modify f! The only place you need to put derivative-related code is in the definition of your new data type and in your differentiation function; you get the derivatives of your existing functions for free.
Numerical derivative can be done easily:
derive f x = (f (x + dx) - f (x - dx)) / (2 * dx) where dx = 0.00001
However, for symbolic derivatives, you need to create an AST, then implement the derivation rules through matching and rewriting the AST.
I don't understand your problem with using a custom data type
data Expr = Plus Expr Expr
| Times Expr Expr
| Negate Expr
| Exp Expr Expr
| Abs Expr
| Signum Expr
| FromInteger Integer
| Var
instance Num Expr where
fromInteger = FromInteger
(+) = Plus
(*) = Times
negate = Negate
abs = Abs
signum = Signum
toNumF :: Num a => Expr -> a -> a
toNumF e x = go e where
go Var = x
go (FromInteger i) = fromInteger i
go (Plus a b) = (go a) + (go b)
...
you can then use this just like you would Int or Double and all will just work! You can define a function
deriveExpr :: Expr -> Expr
which would then let you define the following (RankN) function
derivate :: Num b => (forall a. Num a => a -> a) -> b -> b
derivate f = toNumF $ deriveExpr (f Var)
you can extend this to work with other parts of the numerical hierarchy.

How to increment a variable in functional programming?

How do you increment a variable in a functional programming language?
For example, I want to do:
main :: IO ()
main = do
let i = 0
i = i + 1
print i
Expected output:
1
Simple way is to introduce shadowing of a variable name:
main :: IO () -- another way, simpler, specific to monads:
main = do main = do
let i = 0 let i = 0
let j = i i <- return (i+1)
let i = j+1 print i
print i -- because monadic bind is non-recursive
Prints 1.
Just writing let i = i+1 doesn't work because let in Haskell makes recursive definitions — it is actually Scheme's letrec. The i in the right-hand side of let i = i+1 refers to the i in its left hand side — not to the upper level i as might be intended. So we break that equation up by introducing another variable, j.
Another, simpler way is to use monadic bind, <- in the do-notation. This is possible because monadic bind is not recursive.
In both cases we introduce new variable under the same name, thus "shadowing" the old entity, i.e. making it no longer accessible.
How to "think functional"
One thing to understand here is that functional programming with pure — immutable — values (like we have in Haskell) forces us to make time explicit in our code.
In imperative setting time is implicit. We "change" our vars — but any change is sequential. We can never change what that var was a moment ago — only what it will be from now on.
In pure functional programming this is just made explicit. One of the simplest forms this can take is with using lists of values as records of sequential change in imperative programming. Even simpler is to use different variables altogether to represent different values of an entity at different points in time (cf. single assignment and static single assignment form, or SSA).
So instead of "changing" something that can't really be changed anyway, we make an augmented copy of it, and pass that around, using it in place of the old thing.
As a general rule, you don't (and you don't need to). However, in the interests of completeness.
import Data.IORef
main = do
i <- newIORef 0 -- new IORef i
modifyIORef i (+1) -- increase it by 1
readIORef i >>= print -- print it
However, any answer that says you need to use something like MVar, IORef, STRef etc. is wrong. There is a purely functional way to do this, which in this small rapidly written example doesn't really look very nice.
import Control.Monad.State
type Lens a b = ((a -> b -> a), (a -> b))
setL = fst
getL = snd
modifyL :: Lens a b -> a -> (b -> b) -> a
modifyL lens x f = setL lens x (f (getL lens x))
lensComp :: Lens b c -> Lens a b -> Lens a c
lensComp (set1, get1) (set2, get2) = -- Compose two lenses
(\s x -> set2 s (set1 (get2 s) x) -- Not needed here
, get1 . get2) -- But added for completeness
(+=) :: (Num b) => Lens a b -> Lens a b -> State a ()
x += y = do
s <- get
put (modifyL x s (+ (getL y s)))
swap :: Lens a b -> Lens a b -> State a ()
swap x y = do
s <- get
let x' = getL x s
let y' = getL y s
put (setL y (setL x s y') x')
nFibs :: Int -> Int
nFibs n = evalState (nFibs_ n) (0,1)
nFibs_ :: Int -> State (Int,Int) Int
nFibs_ 0 = fmap snd get -- The second Int is our result
nFibs_ n = do
x += y -- Add y to x
swap x y -- Swap them
nFibs_ (n-1) -- Repeat
where x = ((\(x,y) x' -> (x', y)), fst)
y = ((\(x,y) y' -> (x, y')), snd)
There are several solutions to translate imperative i=i+1 programming to functional programming. Recursive function solution is the recommended way in functional programming, creating a state is almost never what you want to do.
After a while you will learn that you can use [1..] if you need a index for example, but it takes a lot of time and practice to think functionally instead of imperatively.
Here's a other way to do something similar as i=i+1 not identical because there aren't any destructive updates. Note that the State monad example is just for illustration, you probably want [1..] instead:
module Count where
import Control.Monad.State
count :: Int -> Int
count c = c+1
count' :: State Int Int
count' = do
c <- get
put (c+1)
return (c+1)
main :: IO ()
main = do
-- purely functional, value-modifying (state-passing) way:
print $ count . count . count . count . count . count $ 0
-- purely functional, State Monad way
print $ (`evalState` 0) $ do {
count' ; count' ; count' ; count' ; count' ; count' }
Note: This is not an ideal answer but hey, sometimes it might be a little good to give anything at all.
A simple function to increase the variable would suffice.
For example:
incVal :: Integer -> Integer
incVal x = x + 1
main::IO()
main = do
let i = 1
print (incVal i)
Or even an anonymous function to do it.

Resources