Luminance Matching Two Colors - graphics

This will likely seem like a very easy thing I'm trying to do but Google search has not turned up exactly what I'm looking for and I'd like to do this correctly.
Essentially I need to luminance match two bmps. They are simple circles (125x125 pixels) and their original color is only know to me by their (0-255 ranged) RGB value of 255,0,0. I need to find an RGB value of gray that is the same luminance of these circles.
All other luminance/brightness matching tutorials I have seen have been for pictures that have included, a variety of hues, brightnesses, etc. and I am not sure if those techniques will work in this (admittedly more simple) case.
I am hoping to be able to just figure out the RGB values so I can input them into an experiment builder program but I do have access to GIMP if any of its tools are needed or will help.
I apologize for this likely easy question but I know little of graphics, brightness measures, etc. I appreciate any help that can be provided.
ADDENDUM: I actually think this would be a good place to ask one additional question. Is there a formula for conversion of candela to (perhaps approximate?) RGB values? I'm basing these color values loosely off of candela values and would love to know if an equation/way of equating the two beyond guesswork exists.

You need to be careful about luminance-matching digital images, because the actual luminance depends on how they're displayed. In particular, you want to watch out for "gamma correction", which is a nonlinear mapping between the RGB values and the actual display brightness. Some images may have an internal "gamma" value associated with the data itself, and many display devices effectively apply a "gamma" to the RGB values they display.
However, for an image stored and displayed linearly (with an effective gamma of 1), there is a standard luminance measure for RGB values:
Y = 0.2126 * R + 0.7152 * G + 0.0722 * B
There are, actually, a number of standards, with different weights for the linear R, G, and B components. However, if you aren't sure exactly how your image will be displayed, you might as well pick one and stick with it...
Anyway, you can use this to solve your specific problem, as follows: you want a grey value (r,g,b) = (x,x,x) with the same luminance as a pure-red value of 255. Conveniently, the three luminance constants sum to 1.0. This gives you the following formula:
Y == 1.0 * x == 0.2126 * 255
--> x ~ 54
If you want to match a different color, or use different luminance weights (which still sum to 1.0), the procedure is the same: just weight the RGB values according to the luminance formula, then pick a grey value equal to the luminance.

I believe the answer already given is misleading (SO doesn't let me comment). As mentioned the formula given applies to intensities and you should watch out for gamma, see e.g. here:
http://www.poynton.com/notes/colour_and_gamma/GammaFAQ.html#luminance
Thus, the application example should use coefficients that account for gamma, or compensate the gamma by hand which it doesn't. Yes, the image could be linear (so you have actual intensities), but judging from the description the chance is close to zero that it is.
These coefficients yield 'luma', not luminance, but that is what you have asked for anyway. See:
http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html#RTFToC11
To summarize:
luma = 0.299 R + 0.587 G + 0.114 B
(r,g,b) = (luma, luma, luma)
The material should also help with your addendum question. I've found it to be very reliable, which is clearly an exception in this field.

Related

How to tell if an xyY color lies within the CIE 1931 gamut?

I'm trying to plot the CIE 1931 color gamut using math.
I take a xyY color with Y fixed to 1.0 then vary x and y from 0.0 to 1.0.
If I plot the resulting colors as an image (ie. the pixel at (x,y) is my xyY color converted to RGB) I get a pretty picture with the CIE 1931 color gamut somewhere in the middle of it, like this:
xyY from 0.0 to 1.0:
Now I want the classic tongue-shaped image so my question is: How do I cull pixels outside the range of the CIE 1931 color gamut?
ie. How can I tell if my xyY color is inside/outside the CIE 1931 color range?
I happened upon this question while searching for a slightly different but related issue, and what immediately caught my eye is the rendering at the top. It's identical to the rendering I had produced a few hours earlier, and trying to figure out why it didn't make sense is, in part, what led me here.
For readers: the rendering is what results when you convert from {x ∈ [0, 1], y ∈ [0, 1], Y = 1} to XYZ, convert that color to sRGB, and then clamp the individual components to [0, 1].
At first glance, it looks OK. At second glance, it looks off... it seems less saturated than expected, and there are visible transition lines at odd angles. Upon closer inspection, it becomes clear that the primaries aren't smoothly transitioning into each other. Much of the range, for example, between red and blue is just magenta—both R and B are 100% for almost the entire distance between them. When you then add a check to skip drawing any colors that have an out-of-range component, instead of clamping, everything disappears. It's all out-of-gamut. So what's going on?
I think I've got this one small part of colorimetry at least 80% figured out, so I'm setting this out, greatly simplified, for the edification of anyone else who might find it interesting or useful. I also try to answer the question.
(⚠️ Before I begin, an important note: valid RGB display colors in the xyY space can be outside the boundary of the CIE 1931 2° Standard Observer. This isn't the case for sRGB, but it is the case for Display P3, Rec. 2020, CIE RGB, and other wide gamuts. This is because the three primaries need to add up to the white point all by themselves, and so even monochromatic primaries must be incredibly, unnaturally luminous compared to the same wavelength under equivalent illumination.)
Coloring the chromaticity diagram
The xy chromaticity diagram isn't just a slice through xyY space. It's intrinsically two dimensional. A point in the xy plane represents chromaticity apart from luminance, so to the extent that there is a color there it is to represent as best as possible only the chromaticity, not any specific color. Normally the colors seem to be the brightest, most saturated colors for that chromaticity, or whatever's closest in the display's color space, but that's an arbitrary design decision.
Which is to say: to the extent that there are illustrative colors drawn they're necessarily fictitious, in much the same way that coloring an electoral map is purely a matter of data visualization: a convenience to aid comprehension. It's just that, in this case, we're using colors to visualize one aspect of colorimetry, so it's super easy to conflate the two things.
(Image credit: Michael Horvath)
The falsity, and necessity thereof, of the colors becomes obvious when we consider the full 3D shape of the visible spectrum in the xyY space. The classic spectral locus ("horse shoe") can easily be seen to be the base of a quasi-Gibraltian volume, widest at the spectral locus and narrowing to a summit (the white point) at {Y = 1}. If viewed as a top-down projection, then colors located on and near the spectral locus would be very dark (although still the brightest possible color for that chromaticity), and would grow increasingly luminous towards the center. If viewed as a slice of the xyY volume, through a particular value of Y, the colors would be equally luminous but would grow brighter overall and the shape of the boundary would shrink, again unevenly, with increasing Y, until it disappeared entirely. So far as I can tell, neither of these possibilities see much, if any, practical use, interesting though they may be.
Instead, the diagram is colored inside out: the gamut being plotted is colored with maximum intensities (each primary at its brightest, and then linear mixtures in the interior) and out-of-gamut colors are projected from the inner gamut triangle to the spectral locus. This is annoying because you can't simply use a matrix transformation to turn a point on the xy plane into a sensible color, but in terms of actually communicating useful and somewhat accurate information it seems, unfortunately, to be unavoidable.
(To clarify: it is actually possible to move a single chromaticity point into the sRGB space, and color the chromaticity diagram pixel-by-pixel with the most brightly saturated sRGB colors possible—it's just more complicated than a simple matrix transformation. To do so, first move the three-coordinate xyz chromaticity into sRGB. Then clamp any negative values to 0. Finally, scale the components uniformly such that the maximum component value is 1. Be aware this can be much slower than plotting the whitepoint and the primaries and then interpolating between them, depending on your rendering method and the efficiency of your data representations and their operations.)
Drawing the spectral locus
The most straightforward way to get the characteristic horseshoe shape is just to use a table of the empirical data.
(http://cvrl.ioo.ucl.ac.uk/index.htm, scroll down for the "historical" datasets that will most closely match other sources intended for the layperson. Their too-clever icon scheme for selecting data is that a dotted-line icon is for data sampled at 5nm, a solid line icon is for data sampled at 1nm.)
Construct a path with the points as vertices (you might want to trim some off the top, I cut it back to 700nm, the CIERGB red primary), and use the resulting shape as a mask. With 1nm samples, a polyline should be smooth enough for near any resolution: there's no need for fitting bezier curves or whatnot.
(Note: only every 5th point shown for illustrative purposes.)
If all we want to do is draw the standard horse shoe bounded by the triangle {x = 0, y = 0}, {0, 1}, and {1, 0} then that should suffice. Note that we can save rendering time by skipping any coordinates where x + y >= 1. If we want to do more complex things, like plot the changing boundary for different Y values, then we're talking about the color matching functions that define the XYZ space.
Color matching functions
(Image credit: User:Acdx - Own work, CC BY-SA 4.0)
The ground truth for the XYZ space is in the form of three functions that map spectral power distributions to {X, Y, Z} tristimulus values. A lot of data and calculations went into constructing the XYZ space, but it all gets baked into these three functions, which uniquely determine the {X, Y, Z} values for a given spectrum of light. In effect, what the functions do is define 3 imaginary primary colors, which can't be created with any actual light spectrum, but can be mixed together to create perceptible colors. Because they can be mixed, every non-negative point in the XYZ space is meaningful mathematically, but not every point corresponds to a real color.
The functions themselves are actually defined as lookup tables, not equations that can be calculated exactly. The Munsell Color Science Laboratory (https://www.rit.edu/science/munsell-color-lab) provides 1nm resolution samples: scroll down to "Useful Color Data" under "Educational Resources." Unfortunately, it's in Excel format. Other sources might provide 5nm data, and anything more precise than 1nm is probably a modern reconstruction which might not commute with the 1931 space.
(For interest: this paper—http://jcgt.org/published/0002/02/01/—provides analytic approximations with error within the variability of the original human subject data, but they're mostly intended for specific use cases. For our purposes, it's preferable, and simpler, to stick with the empirically sampled data.)
The functions are referred to as x̅, y̅, and z̅ (or x bar, y bar, and z bar.) Collectively, they're known as the CIE 1931 2 Degree Standard Observer. There's a separate 1964 standard observer constructed from a wider 10 degree field-of-view, with minor differences, which can be used instead of the 1931 standard observer, but which arguably creates a different color space. (The 1964 standard observer shouldn't be confused with the separate CIE 1964 color space.)
To calculate the tristimulus values, you take the inner product of (1) the spectrum of the color and (2) the color matching function. This just means that every point (or sample) in the spectrum is multiplied by the corresponding point (or sample) in the color matching function, which serves to reweight the data. Then, you take the integral (or summation, more accurately, since we're dealing with discrete samples) over the whole range of visible light ([360nm, 830nm].) The functions are normalized so that they have equal area under their curves, so an equal energy spectrum (the sampled value for every wavelength is the same) will have {X = Y = Z}. (FWIW, the Munsell Color Lab data are properly normalized, but they sum to 106 and change, for some reason.)
Taking another look at that 3D plot of the xyY space, we notice again that the familiar spectral locus shape seems to be the shape of the volume at {Y = 0}, i.e. where those colors are actually black. This now makes some sort of sense, since they are monochromatic colors, and their spectrums should consist of a single point, and thus when you take the integral over a single point you'll always get 0. However, that then raises the question: how do they have chromaticity at all, since the other two functions should also be 0?
The simplest explanation is that Y at the base of the shape is actually ever-so-slightly greater than zero. The use of sampling means that the spectrums for the monochromatic sources are not taken to be instantaneous values. Instead, they're narrow bands of the spectrum near their wavelengths. You can get arbitrarily close to instantaneous and still expect meaningful chromaticity, within the bounds of precision, so the limit as the sampling bandwidth goes to 0 is the ideal spectral locus, even if it disappears at exactly 0. However, the spectral locus as actually derived is just calculated from the single-sample values for the x̅, y̅, and z̅ color matching functions.
That means that you really just need one set of data—the lookup tables for x̅, y̅, and z̅. The spectral locus can be computed from each wavelength by just dividing x̅(wl) and y̅(wl) by x̅(wl) + y̅(wl) + z̅(wl).
(Image credit: Apple, screenshot from ColorSync Utility)
Sometimes you'll see a plot like this, with a dramatically arcing, rainbow-colored line swooping up and around the plot, and then back down to 0 at the far red end of the spectrum. This is just the y̅ function plotted along the spectral locus, scaled so that y̅ = Y. Note that this is not a contour of the 3D shape of the visible gamut. Such a contour would be well inside the spectral locus through the blue-green range, when plotted in 2 dimensions.
Delineating the visible spectrum in XYZ space
The final question becomes: given these three color matching functions, how do we use them to decide if a given {X, Y, Z} is within the gamut of human color perception?
Useful fact: you can't have luminosity by itself. Any real color will also have a non-zero value for one or both of the other functions. We also know Y by definition has a range of [0, 1], so we're really only talking about figuring whether {X, Z} is valid for a given Y.
Now the question becomes: what spectrums (simplified for our purposes: an array of 471 values, either 0 or 1, for the wavelengths [360nm, 830nm], band width 1nm), when weighted by y̅, will sum to Y?
The XYZ space is additive, like RGB, so any non-monochromatic light is equivalent to a linear combination of monochromatic colors at various intensities. In other words, any point inside of the spectral locus can be created by some combination of points situated exactly on the boundary. If you took the monochromatic CIE RGB primaries and just added up their tristimulus values, you'd get white, and the spectrum of that white would just be the spectrum of the three primaries superimposed, a thin band at the wavelength for each primary.
It follows, then, that every possible combination of monochromatic colors is within the gamut of human vision. However, there's a ton of overlap: different spectrums can produce the same perceived color. This is called metamerism. So, while it might be impractical to enumerate every possible individually perceptible color or spectrums that can produce them, it's actually relatively easy to calculate the overall shape of the space from a trivially enumerable set of spectrums.
What we do is step through the gamut wavelength-by-wavelength, and, for that given wavelength, we iteratively sum ever-larger slices of the spectrum starting from that point, until we either hit our Y target or run out of spectrum. You can picture this as going around a circle, drawing progressively larger arcs from one starting point and plotting the center of the resulting shape—when you get to an arc that is just the full circle, the centers coincide, and you get white, but until then the points you plot will spiral inward from the edge. Repeat that from every point on the circumference, and you'll have points spiraling in along every possible path, covering the gamut. You can actually see this spiraling in effect, sometimes, in 3D color space plots.
In practice, this takes the form of two loops, the outer loop going from 360 to 830, and the inner loop going from 1 to 470. In my implementation, what I did for the inner loop is save the current and last summed values, and once the sum exceeds the target I use the difference to calculate a fractional number of bands and push the outer loop's counter and that interpolated width onto an array, then break out of the inner loop. Interpolating the bands greatly smooths out the curves, especially in the prow.
Once we have the set of spectrums of the right luminance, we can calculate their X and Z values. For that, I have a higher order summation function that gets passed the function to sum and the interval. From there, the shape of the gamut on the chromaticity diagram for that Y is just the path formed by the derived {x, y} coordinates, as this method only enumerates the surface of the gamut, without interior points.
In effect, this is a simpler version of what libraries like the one mentioned in the accepted answer do: they create a 3D mesh via exhaustion of the continuous spectrum space and then interpolate between points to decide if an exact color is inside or outside the gamut. Yes, it's a pretty brute-force method, but it's simple, speedy, and effective enough for demonstrative and visualization purposes. Rendering a 20-step contour plot of the overall shape of the chromaticity space in a browser is effectively instantaneous, for instance, with nearly perfect curves.
There are a couple of places where a lack of precision can't be entirely smoothed over: in particular, two corners near orange are clipped. This is due to the shapes of the lines of partial sums in this region being a combination of (1) almost perfectly horizontal and (2) having a hard cusp at the corner. Since the points exactly at the cusp aren't at nice even values of Y, the flatness of the contours is more a problem because they're perpendicular to the mostly-vertical line of the cusp, so interpolating points to fit any given Y will be most pessimum in this region. Another problem is that the points aren't uniformly distributed, being concentrated very near to the cusp: the clipping of the corner corresponds to situations where an outlying point is interpolated. All these issues can clearly be seen in this plot (rendered with 20nm bins for clarity but, again, more precision doesn't eliminate the issue):
Conclusion
Of course, this is the sort of highly technical and pitfall-prone problem (PPP) that is often best outsourced to a quality 3rd party library. Knowing the basic techniques and science behind it, however, demystifies the entire process and helps us use those libraries effectively, and adapt our solutions as needs change.
You could use Colour and the colour.is_within_visible_spectrum definition:
>>> import numpy as np
>>> is_within_visible_spectrum(np.array([0.3205, 0.4131, 0.51]))
array(True, dtype=bool)
>>> a = np.array([[0.3205, 0.4131, 0.51],
... [-0.0005, 0.0031, 0.001]])
>>> is_within_visible_spectrum(a)
array([ True, False], dtype=bool)
Note that this definition expects CIE XYZ tristimulus values, so you would have to convert your CIE xyY colourspace values to XYZ by using colour.xyY_to_XYZ definition.

Why does greyscale work the way it does?

My original question
I read that to convert a RGB pixel into greyscale RGB, one should use
r_new = g_new = b_new = r_old * 0.3 + g_old * 0.59 + b_old * 0.11
I also read, and understand, that g has a higher weighting because the human eye is more sensitive to green. Implementing that, I saw the results were the same as I would get from setting an image to 'greyscale' in an image editor like the Gimp.
Before I read this, I imagined that to convert a pixel to greyscale, one would convert it to HSL or HSV, then set the saturation to zero (hence, removing all colour). However, when I did this, I got a quite different image output, even though it also lacked colour.
How does s = 0 exactly differ from the 'correct' way I read, and why is it 'incorrect'?
Ongoing findings based on answers and other research
It appears that which luminance coefficients to use is the subject of some debate. Various combinations and to-greyscale algorithms have different results. The following are some presets used in areas like TV standards:
the coefficients defined by ITU-R BT.601 (NTSC?) are 0.299r + 0.587g + 0.114b
the coefficients defined by ITU-R BT.709 (newer) are 0.2126r + 0.7152g + 0.0722b
the coefficients of equal thirds, (1/3)(rgb), is equivalent to s = 0
This scientific article details various greyscale techniques and their results for various images, plus subjective survey of 119 people.
However, when converting an image to greyscale, to achieve the 'best' artistic effect, one will almost certainly not be using these predefined coefficients, but tweaking the contribution from each channel to produce the best output for the particular image.
Although these transformation coefficients exist, nothing binds you to using them. As long as the total intensity of each pixel is unchanged, the contributions from each channel can be anything, ranging from 0 to 100%.
Photographers converting images to grayscale use channel mixers to adjust levels of each channel (RGB or CMYK). In your image, there are many reds and greens, so it might be desirable (depending on your intent) to have those channels more highly represented in the gray level intensity than the blue.
This is what distinguishes "scientific" transformation of the image from an "artistic" combination of the bands.
An additional consideration is the dynamic range of values in each band, and attempting to preserve them in the grayscale image. Boosting shadows and/or highlights might require increasing the contribution of the blue band, for example.
An interesting article on the topic here.... "because human eyes don't detect brightness linearly with color".
http://www.scantips.com/lumin.html
Looks like these coefficients come from old CRT technology and are not well adapted to today's monitors, from the Color FAQ:
The coefficients 0.299, 0.587 and
0.114 properly computed luminance for monitors having phosphors that were
contemporary at the introduction of
NTSC television in 1953. They are
still appropriate for computing video
luma to be discussed below in section
11. However, these coefficients do not accurately compute luminance for
contemporary monitors.
Couldn't find the right conversion coefficient, however.
See also RGB to monochrome conversion
Using s = 0 in HSL/HSV and converting to RGB results in R = G = B, so is the same as doing r_old * 1/3 + g_old * 1/3 + b_old * 1/3.
To understand why, have a look at the Wikipedia page that describes conversion HSV->RGB. Saturation s will be 0, so C and X will be, too. You'll end up with R_1,G_1,B_1 being (0,0,0) and then add m to the final RGB values which results in (m,m,m) = (V,V,V). Same for HSL, result will be (m,m,m) = (L,L,L).
EDIT: OK, just figured out the above is not the complete answer, although it's a good starting point. RGB values will be all the same, either L or V, but it still depends on how L and V were originally calculated, again, see Wikipedia. Seems the program/formulas you've used for converting used the 1/3 * R + 1/3 * G + 1/3 * B solution or one of the other two (hexcone/bi-hexcone).
So after all, using HSL/HSV just means you'll have to decide which formula to use earlier and conversion to RGB grayscale values later is just isolating the last component.

Sorting a list of colors in one dimension?

I would like to sort a one-dimensional list of colors so that colors that a typical human would perceive as "like" each other are near each other.
Obviously this is a difficult or perhaps impossible problem to get "perfectly", since colors are typically described with three dimensions, but that doesn't mean that there aren't some sorting methods that look obviously more natural than others.
For example, sorting by RGB doesn't work very well, as it will sort in the following order, for example:
(1) R=254 G=0 B=0
(2) R=254 G=255 B=0
(3) R=255 G=0 B=0
(4) R=255 G=255 B=0
That is, it will alternate those colors red, yellow, red, yellow, with the two "reds" being essentially imperceivably different than each other, and the two yellows also being imperceivably different from each other.
But sorting by HLS works much better, generally speaking, and I think HSL even better than that; with either, the reds will be next to each other, and the yellows will be next to each other.
But HLS/HSL has some problems, too; things that people would perceive as "black" could be split far apart from each other, as could things that people would perceive as "white".
Again, I understand that I pretty much have to accept that there will be some splits like this; I'm just wondering if anyone has found a better way than HLS/HSL. And I'm aware that "better" is somewhat arbitrary; I mean "more natural to a typical human".
For example, a vague thought I've had, but have not yet tried, is perhaps "L is the most important thing if it is very high or very low", but otherwise it is the least important. Has anyone tried this? Has it worked well? What specifically did you decide "very low" and "very high" meant? And so on. Or has anyone found anything else that would improve upon HSL?
I should also note that I am aware that I can define a space-filling curve through the cube of colors, and order them one-dimensionally as they would be encountered while travelling along that curve. That would eliminate perceived discontinuities. However, it's not really what I want; I want decent overall large-scale groupings more than I want perfect small-scale groupings.
Thanks in advance for any help.
If you want to sort a list of colors in one dimension you first have to decide by what metrics you are going to sort them. The most sense to me is the perceived brightness (related question).
I have came across 4 algorithms to sort colors by brightness and compared them. Here is the result.
I generated colors in cycle where only about every 400th color was used. Each color is represented by 2x2 pixels, colors are sorted from darkest to lightest (left to right, top to bottom).
1st picture - Luminance (relative)
0.2126 * R + 0.7152 * G + 0.0722 * B
2nd picture - http://www.w3.org/TR/AERT#color-contrast
0.299 * R + 0.587 * G + 0.114 * B
3rd picture - HSP Color Model
sqrt(0.299 * R^2 + 0.587 * G^2 + 0.114 * B^2)
4td picture - WCAG 2.0 SC 1.4.3 relative luminance and contrast ratio formula
Pattern can be sometimes spotted on 1st and 2nd picture depending on the number of colors in one row. I never spotted any pattern on picture from 3rd or 4th algorithm.
If i had to choose i would go with algorithm number 3 since its much easier to implement and its about 33% faster than the 4th
You cannot do this without reducing the 3 color dimensions to a single measurement. There are many (infinite) ways of reducing this information, but it is not mathematically possible to do this in a way that ensures that two data points near each other on the reduced continuum will also be near each other in all three of their component color values. As a result, any formula of this type will potentially end up grouping dissimilar colors.
As you mentioned in your question, one way to sort of do this would be to fit a complex curve through the three-dimensional color space occupied by the data points you're trying to sort, and then reduce each data point to its nearest location on the curve and then to that point's distance along the curve. This would work, but in each case it would be a solution custom-tailored to a particular set of data points (rather than a generally applicable solution). It would also be relatively expensive (maybe), and simply wouldn't work on a data set that was not nicely distributed in a curved-line sort of way.
A simpler alternative (that would not work perfectly) would be to choose two "endpoint" colors, preferably on opposite sides of the color wheel. So, for example, you could choose Red as one endpoint color and Blue as the other. You would then convert each color data point to a value on a scale from 0 to 1, where a color that is highly Reddish would get a score near 0 and a color that is highly Bluish would get a score near 1. A score of .5 would indicate a color that either has no Red or Blue in it (a.k.a. Green) or else has equal amounts of Red and Blue (a.k.a. Purple). This approach isn't perfect, but it's the best you can do with this problem.
There are several standard techniques for reducing multiple dimensions to a single dimension with some notion of "proximity".
I think you should in particular check out the z-order transform.
You can implement a quick version of this by interleaving the bits of your three colour components, and sorting the colours based on this transformed value.
The following Java code should help you get started:
public static int zValue(int r, int g, int b) {
return split(r) + (split(g)<<1) + (split(b)<<2);
}
public static int split(int a) {
// split out the lowest 10 bits to lowest 30 bits
a=(a|(a<<12))&00014000377;
a=(a|(a<<8)) &00014170017;
a=(a|(a<<4)) &00303030303;
a=(a|(a<<2)) &01111111111;
return a;
}
There are two approaches you could take. The simple approach is to distil each colour into a single value, and the list of values can then be sorted. The complex approach would depend on all of the colours you have to sort; perhaps it would be an iterative solution that repeatedly shuffles the colours around trying to minimise the "energy" of the entire sequence.
My guess is that you want something simple and fast that looks "nice enough" (rather than trying to figure out the "optimum" aesthetic colour sort), so the simple approach is enough for you.
I'd say HSL is the way to go. Something like
sortValue = L * 5 + S * 2 + H
assuming that H, S and L are each in the range [0, 1].
Here's an idea I came up with after a couple of minutes' thought. It might be crap, or it might not even work at all, but I'll spit it out anyway.
Define a distance function on the space of colours, d(x, y) (where the inputs x and y are colours and the output is perhaps a floating-point number). The distance function you choose may not be terribly important. It might be the sum of the squares of the differences in R, G and B components, say, or it might be a polynomial in the differences in H, L and S components (with the components differently weighted according to how important you feel they are).
Then you calculate the "distance" of each colour in your list from each other, which effectively gives you a graph. Next you calculate the minimum spanning tree of your graph. Then you identify the longest path (with no backtracking) that exists in your MST. The endpoints of this path will be the endpoints of the final list. Next you try to "flatten" the tree into a line by bringing points in the "branches" off your path into the path itself.
Hmm. This might not work all that well if your MST ends up in the shape of a near-loop in colour space. But maybe any approach would have that problem.

Choosing colors that convert nicely to greyscale

If I'm designing af tool that must "screenshot" well for printed documentation, can I easily choose colors that look different even when printed in greyscale?
EDIT: I was hoping for some easy-to-use palette or tool, but the inputs given already is very insightfull for sure
Yes. Your best choice would be to choose colors that have a high level of relative contrast. Frankly, it might even be easiest for you to design your UI in greyscale in the first place. Basically, you're going to want to choose colors that are either lighter or darker than the colors around them by a decent amount.
You could calculate the luminance from the RGB values:
Y = 0.2126 R + 0.7152 G + 0.0722 B
And make sure your Y values for your selected colors are as distributed as evenly as possible.

RGB to monochrome conversion

How do I convert the RGB values of a pixel to a single monochrome value?
I found one possible solution in the Color FAQ. The luminance component Y (from the CIE XYZ system) captures what is most perceived by humans as color in one channel. So, use those coefficients:
mono = (0.2125 * color.r) + (0.7154 * color.g) + (0.0721 * color.b);
This MSDN article uses (0.299 * color.R + 0.587 * color.G + 0.114 * color.B);
This Wikipedia article uses (0.3* color.R + 0.59 * color.G + 0.11 * color.B);
This depends on what your motivations are. If you just want to turn an arbitrary image to grayscale and have it look pretty good, the conversions in other answers to this question will do.
If you are converting color photographs to black and white, the process can be both very complicated and subjective, requiring specific tweaking for each image. For an idea what might be involved, take a look at this tutorial from Adobe for Photoshop.
Replicating this in code would be fairly involved, and would still require user intervention to get the resulting image aesthetically "perfect" (whatever that means!).
As mentioned also, a grayscale translation (note that monochromatic images need not to be in grayscale) from an RGB-triplet is subject to taste.
For example, you could cheat, extract only the blue component, by simply throwing the red and green components away, and copying the blue value in their stead. Another simple and generally ok solution would be to take the average of the pixel's RGB-triplet and use that value in all three components.
The fact that there's a considerable market for professional and not-very-cheap-at-all-no-sirree grayscale/monochrome converter plugins for Photoshop alone, tells that the conversion is just as simple or complex as you wish.
The logic behind converting any RGB based picture to monochrome can is not a trivial linear transformation. In my opinion such a problem is better addressed by "Color Segmentation" techniques. You could achieve "Color segmentation" by k-means clustering.
See reference example from MathWorks site.
https://www.mathworks.com/examples/image/mw/images-ex71219044-color-based-segmentation-using-k-means-clustering
Original picture in colours.
After converting to monochrome using k-means clustering
How does this work?
Collect all pixel values from entire image. From an image which is W pixels wide and H pixels high, you will get W *H color values. Now, using k-means algorithm create 2 clusters (or bins) and throw the colours into the appropriate "bins". The 2 clusters represent your black and white shades.
Youtube video demonstrating image segmentation using k-means?
https://www.youtube.com/watch?v=yR7k19YBqiw
Challenges with this method
The k-means clustering algorithm is susceptible to outliers. A few random pixels with a color whose RGB distance is far away from the rest of the crowd could easily skew the centroids to produce unexpected results.
Just to point out in the self-selected answer, you have to LINEARIZE the sRGB values before you can apply the coefficients. This means removing the transfer curve.
To remove the power curve, divide the 8 bit R G and B channels by 255.0, then either use the sRGB piecewise transform, which is recommended for image procesing, OR you can cheat and raise each channel to the power of 2.2.
Only after linearizing can you apply the coefficients shown, (which also are not exactly correct in the selected answer).
The standard is 0.2126 0.7152 and 0.0722. Multiply each channel by its coefficient and sum them together for Y, the luminance. Then re-apply the gamma to Y and multiply by 255, then copy to all three channels, and boom you have a greyscale (monochrome) image.
Here it is all at once in one simple line:
// Andy's Easy Greyscale in one line.
// Send it sR sG sB channels as 8 bit ints, and
// it returns three channels sRgrey sGgrey sBgrey
// as 8 bit ints that display glorious grey.
sRgrey = sGgrey = sBgrey = Math.min(Math.pow((Math.pow(sR/255.0,2.2)*0.2126+Math.pow(sG/255.0,2.2)*0.7152+Math.pow(sB/255.0,2.2)*0.0722),0.454545)*255),255);
And that's it. Unless you have to parse hex strings....

Resources