Preventing pixelshader overdraw for a single ERG - direct3d

Background
Using gluTess to build a triangle list in Direct3D9 from a GDI+ DrawString(..) path:
A pixel shader (v3.0) is then used to fill in the shape. When painting with opaque values, everything looks fine:
The problem
At certain font sizes, if the color has an alpha component (ie Argb #55FFFFFF) we begin to see these nasty tessellation artifacts where triangles may overlap ever so slightly:
At larger font sizes the problem is sometimes not present:
Using Intel's excellent GPA Frame Analyzer Pixel History tool, we can see in areas where the artifacts occur, the pixel has been "touched" 3 times from the single Erg.
I'm trying to figure out how I can stop my pixel shader from touching the same pixel more than once.
Other solutions relating to overdraw prevention seem to be all about zbuffer strategies, however this problem is more to do with painting of a single 2D triangle list within a single pixel shader pass.
I'm at a bit of a loss trying to come up with a solution on this one. I was hoping that HLSL might have some sort of "touch each pixel only once" flag, but I've been unable to find anything like that. The closest I've found was to set the BLENDOP to MAX instead of ADD. But the output is not correct when blending over other colors in the scene.
I also have SRCBLEND = ONE, DSTBLEND = INVSRCALPHA. The only combination of flags which produce correct output (albeit with overdraw artifacts.)
I have played with SEPARATEALPHABLENDENABLE in the GPA frame analyzer, which sounded like almost exactly what I need here -- set blending to MAX but only on the "alpha" channel, however from what I can determine, that setting (and corresponding BLENDOPALPHA) affects nothing at all.
One final thing I thought of was to bake text as opaque onto a texture, and then repaint that texture into the scene with the appropriate alpha value applied, however this doesn't actually work in this project because I also support gradient brushes, where stop values may contain alpha, meaning either the artifacts would still be seen, or the final output just plain wrong if we stripped the alpha away from the stop values prior to baking to a texture. Also the whole endeavor would be hideously expensive.
Any hints or pointers would be appreciated. Thanks for reading.

The problem you're seeing shouldn't happen.
If two of your triangles are overlapping it's because you've placed the vertices in such a way that when the adjacent triangles are drawn, they overlap. What's probably happening is that these two adjacent triangles share two vertices, but each triangle has its own copy of each vertex that's been calculated to be in a very, very slightly different position.
The solution to the problem isn't to try and make the pixel shader touch the pixel only once it's to use an index buffer (if you aren't already) and have the shared vertices between each triangle actually share the same vertex and not use one that's ever-so-slightly not in the same place as the one used by the adjacent triangle.
If you aren't in control of the tessellation algorithm being used you may have to run a pass over the vertex buffer after its been generated to detect and merge vertices that are within some very small tolerance of one another. Even without an index buffer, a naive solution would be this:
For each vertex in the vertex buffer, compare its position to every other vertex in the rest of the vertex buffer.
If two vertices are within some small tolerance of another, replace the second vertex's position with the position of the one you are comparing it against.
This should have the effect of pairing up the positions of two vertices if they are close enough that you deem them to be the same.
You now shouldn't have any problem with overlapping triangles. In everyday rendering two triangles share edges with each other all the time and you won't ever get the effect where they appear to every-so-slightly overlap. The hardware guarantees that a sample point is either on one side of the line or the other, but never both at the same time, no matter how close the point is to the line (even if it's mathematically on the line, it still fails on one side or the other).

Related

How to draw shapes in the proper order when rendering?

I am trying my hand at writing a 3d graphics engine, but I am having some trouble with drawing the shapes in the correct order.
When I translate the points of triangles into window space, i.e. the 2-dimensional space that directly correlates to position on the screen, in addition to an x and y position of each point, I also assign them a depth variable that stores how far away from the viewer that point was in 3d space.
At the moment, the only shapes I am rendering are triangles. My current render order algorithm sorts the triangles by the average depth of their 3 points. I knew when I started it that it would not be perfect, but I wanted a placeholder for testing.
For testing purposes, I constructed a square box with an open top, each side being a different color and made from 2 triangles, as shown below:
As you can see from the image above, the algorithm I am using works most of the time. However, at certain angles and positions, the triangles will be rendered in the wrong order, as show below:
As you can see, one of the cyan triangles on the bottom of the box is being drawn before one of the yellow triangles on the side. Clearly, sorting the triangles by the average depth of their points is not satisfactory.
Is there a better method of ordering shapes so that they are rendered in the correct order?
The standard method to draw 3D in correct depth order is to use a Z-buffer.
Basically, the idea is that for each pixel you set in the color buffer, you also set it's interpolated depth in the z (depth..) buffer. Whenever you're about to paint the next pixel, you first check that z-buffer to validate the new pixel if in front of the already painted pixel.
On top of that you can add various sorts of optimizations, such as sorting triangles in order to minimize the number of times you actually paint the color buffer.
On the other hand, it's sometimes required to do the exact opposite in order to properly handle transparency or other "advanced" effects.

How to create holes in objects without modifying the mesh structure in WebGL?

I'm new to WebGL and for an assignment I'm trying to write a function which takes as argument an object, let's say "objectA". ObjectA will not be rendered but if it overlaps with another object in the scene, let’s say “objectB”, the part of objectB which is inside objectA will disappear. So the effect is that there is a hole in ObjectB without modifying its mesh structure.
I've managed to let it work on my own render engine, based on ray tracing, which gives the following effect:
image initial scene:
image with objectA removed:
In the first image, the green sphere is "objectA" and the blue cube is "objectB".
So now I'm trying to program it in WebGL, but I'm a bit stuck. Because WebGL is based on rasterization rather than ray tracing, it has to be calculated in another way. A possibility could be to modify the Z-buffer algorithm, where the fragments with a z-value lying inside objectA will be ignored.
The algorithm that I have in mind works as follows: normally only the fragment with the smallest z-value will be stored at a particular pixel containing the colour and z-value. A first modification is that at a particular pixel, a list of all fragments belonging to that pixel is maintained. No fragments will be discarded. Secondly per fragment an extra parameter is stored containing the object where it belongs to. Next the fragments are sorted in increasing order according to their z-value.
Then, if the first fragment belongs to objectA, it will be ignored. If the next one belongs to objectB, it will be ignored as well. If the third one belongs to objectA and the fourth one to objectB, the fourth one will be chosen because it lies outside objectA.
So the first fragment belonging to objectB will be chosen with the constraint that the amount of previous fragments belonging to objectA is even. If it is uneven, the fragment will lie inside objectA and will be ignored.
Is this somehow possible in WebGL? I've also tried to implement it via a stencil buffer, based on this blog:
WebGL : How do make part of an object transparent?
But this is written for OpenGL. I transformed the code instructions to WebGL code instructions, but it didn't work at all. But I'm not sure whether it will work with a 3D object instead of a 2D triangle.
Thanks a lot in advance!
Why wouldn't you write raytracer inside the fragment shader (aka pixel shader)?
So you would need to render a fullscreen quad (two triangles) and then the fragment shader would be responsible for raytracing. There are plenty of resources to read/learn from.
This links might be useful:
Distance functions - by iq
How shadertoy works
Simple webgl raytracer
EDIT:
Raytracing and SDFs (signed distance functions aka constructive solid geometry (CSGs)) are good way to handle what you need and how is generally achieved to intersect objects. Intersections, and boolean operators in general, for mesh geometry (i.e. made of polygons) is not done during the rendering, rahter it uses special algorithms that do all the processing ahead of rendering, so the resulting mesh actually exists in the memory and its topology is actually calculated and then just rendered.
Depending on the specific scenario that you have, you might be able to achieve the effect under some requirements and restrictions.
There are few important things to take into account: depth peeling (i.e. storing depth values of multiple fragments per single pixel, triangle orientation (CW or CCW) and polygon face orientation (front-facing or back-facing).
Say, for example, that both of your polygons are convex, then rendering backfacing polygons of ObjectA, then of ObjectB, then frontfacing polygons of A, then of B might achieve the desired effect (I'm not including full calculations for all cases of overlaps that can exist).
Under some other sets of restrictions you might be able to achieve the effect.
In your specific example in question, you have shown frontfacing faces of the cube, then in the second image you can see the backface of the cube. That already implies that you have at least two depth values per pixel stored somehow.
There is also a distinction between intersecting in screen-space, or volumes, or faces. Your example works with faces and is the hardest (there are two cases: the one you've shown where mesh A's pixels who are inside mesh B are simply discarded (i.e. you drilled a hole inside its surface), and there is a case where you do boolean operation where you never put a hole in the surface, but in the volume) and is usually done with algorithm that computes output mesh. SDFs are great for volumes. Screen-space is achieved by simply using depth test to discard some fragments.
Again, too many scenarios and depends on what you're trying to achieve and what are the constraints that you're working with.

Three.js ParticleSystem flickering with large data

Back story: I'm creating a Three.js based 3D graphing library. Similar to sigma.js, but 3D. It's called graphosaurus and the source can be found here. I'm using Three.js and using a single particle representing a single node in the graph.
This was the first task I had to deal with: given an arbitrary set of points (that each contain X,Y,Z coordinates), determine the optimal camera position (X,Y,Z) that can view all the points in the graph.
My initial solution (which we'll call Solution 1) involved calculating the bounding sphere of all the points and then scale the sphere to be a sphere of radius 5 around the point 0,0,0. Since the points will be guaranteed to always fall in that area, I can set a static position for the camera (assuming the FOV is static) and the data will always be visible. This works well, but it either requires changing the point coordinates the user specified, or duplicating all the points, neither of which are great.
My new solution (which we'll call Solution 2) involves not touching the coordinates of the inputted data, but instead just positioning the camera to match the data. I encountered a problem with this solution. For some reason, when dealing with really large data, the particles seem to flicker when positioned in front/behind of other particles.
Here are examples of both solutions. Make sure to move the graph around to see the effects:
Solution 1
Solution 2
You can see the diff for the code here
Let me know if you have any insight on how to get rid of the flickering. Thanks!
It turns out that my near value for the camera was too low and the far value was too high, resulting in "z-fighting". By narrowing these values on my dataset, the problem went away. Since my dataset is user dependent, I need to determine an algorithm to generate these values dynamically.
I noticed that in the sol#2 the flickering only occurs when the camera is moving. One possible reason can be that, when the camera position is changing rapidly, different transforms get applied to different particles. So if a camera moves from X to X + DELTAX during a time step, one set of particles get the camera transform for X while the others get the transform for X + DELTAX.
If you separate your rendering from the user interaction, that should fix the issue, assuming this is the issue. That means that you should apply the same transform to all the particles and the edges connecting them, by locking (not updating ) the transform matrix until the rendering loop is done.

How to use a single shadow map for multiple point light sources?

As I understand it, shadow-mapping is done by rendering the scene from the perspective of the light to create a depth map. Then you re-render the scene from the POV of the camera, and for each point (fragment in GLSL) in the scene you calculate the distance from there to the light source; if it matches what you have in your shadow map, then it's in the light, otherwise it's in the shadow.
I was just reading through this tutorial to get an idea of how how to do shadow mapping with a point/omnidirectional light.
Under section 12.2.2 it says:
We use a single shadow map for all light sources
And then under 12.3.6 it says:
1) Calculate the squared distance from the current pixel to the light source.
...
4) Compare the calculated distance value with the fetched shadow map value to determine whether or not we're in shadow.
Which is roughly what I stated above.
What I don't get is if we've baked all our lights into one shadow map, then which light do we need to compare the distance to? The distance baked into the map shouldn't correspond to anything, because it's a blend of all the lights, isn't it?
I'm sure I'm missing something, but hopefully someone can explain this to me.
Also, if we are using a single shadow map, how do we blend it for all the light sources?
For a single light source the shadow map just stores the distance of the closest object to the light (i.e., a depth map), but for multiple light sources, what would it contain?
You've cut the sentence short prematurely:
We use a single shadow map for all light sources, creating an image
with multipass rendering and performing one pass for each light
source.
So the shadow map contains the data for a single light source at a time but they use only one map because they render only one light at a time.
I think this flows into your second question — light is additive so you combine the results from multiple lights simply by adding them together. In GPU Gems' case, they add together directly in the frame buffer, no doubt because of the relatively limited number of storage texture samplers available on GPUs at the time. Nowadays you probably want to do a combination of combining in the frame buffer and directly in the fragment shader.
You also generally apply the test of "pixel is lit if it's less than or equal to the distance in the shadow buffer plus a little bit" rather than exactly equal, due to floating point rounding error accumulation.

Direct3D: Wireframe without Diagonals

When using wireframe fill mode in Direct3D, all rectangular faces display a diagonal running across due to the face being split in to two triangles. How do I eliminate this line? I also want to remove hidden surfaces. Wireframe mode doesn't do this.
I need to display a Direct3D model in isometric wireframe view. The rendered scene must display the boundaries of the model's faces but must exclude the diagonals.
Getting rid of the diagonals is tricky as the hardware is likely to only draw triangles and it would be difficult to determine which edge is the diagonal. Alternatively, you could apply a wireframe texture (or a shader that generates a suitable texture). That would solve the hidden line issues, but would look odd as the thickness of the lines would be dependant on z distance.
Using line primitives is not trivial, although surfaces facing away from the camera can be easily removed, partially obscured surfaces would require manual clipping. As a final thought, do a two pass approach - the first pass draws the filled polygons but only drawing to the z buffer, then draw the lines over the top with suitable z bias. That would handle the partially obscured surface problem.
The built-in wireframe mode renders edges of the primitives. As in D3D the primitives are triangles (or lines, or points - but not arbitrary polygons), that means the built-in way won't cut it.
I guess you have to look up some sort of "edge detection" algorithms. These could operate in image space, where you render the model into a texture, assigning unique color for each logical polygon, and then do a postprocessing pass using pixel shader and detect any changes in color (color changes = output black, otherwise output something else).
Alternatively, you could construct a line list that only has the edges you need and just render them.
Yet another alternative could be using geometry shaders in Direct3D 10. Somehow, lots of different options here.
I think you'll need to draw those line manually, as wireframe mode is a built in mode, so I don't think you can modify that. You can get the list of vertex in your mesh, and process them into a list of lines that you need to draw.

Resources