NoSQL optimization strategy - node.js

Looking for some input on the following. Hopefully this isn't too subjective for the moderators.
Just started playing with deployd.com BaaS API and have the following scenario.
If an mobile app was to have a Group object and a User, where a User could belong to many Groups and Groups have many Users (many-to-many relationship) I could design this several ways with two that I'm considering:
A)
Users [{
id: 1,
groups : {1,2,3,4}
}]
Groups [{
id: 1,
users : {1,2,3,4}
}]
And
B)
Users [{
id: 1
}]
Groups [{
id: 1
}]
UserGroups [{
id: 1,
group: 1,
user: 1,
},{
id: 2
group: 1,
user: 2,
}]
I'm leaning towards B as I can store meta-data (date a user joined the group, etc) but this seems to be more a RDBMS method and I'm wondering if I will lose any of the benefits of NoSQL by trying to create such relations.
Hypothetically speaking this mobile app would be used by thousands of mobile users simultaneously and hence choosing NoSQL versus RDBMS in the first place.

B) is not a good idea. MongoDB doesn't do joins, so any operation which needs multiple collections means multiple subsequent queries, which is much slower than a database-internal JOIN in a relational database. That means you should store relations in the documents themself.
When you want to store meta-information, keep in mind that arrays can't just store primitive values. They can also store objects. Example:
{
id:1,
name:"Bob",
groups: [
{ name: "nice people",
position: "member",
joined: ISODate(2013, 12, 3)
} ,
{ name: "evil people",
position: "admin",
joined: ISODate(2012, 11, 22)
}
]
}
It might be a good idea to store enough meta-information so that many common queries can be fulfilled without querying the referenced objects. When you want to show a list of groups when someone looks up a users profile, and you store all the group information you need in that overview in the users-document, you avoid having to do a second query to retrieve the group-documents.

Related

Best practices for structuring hierarchical/classified data in mongodb

Summary:
I am building my first large scale full stack application(MERN stack) that is trying to mimic a large scale clothing store. Each article of clothing has many 'tags' that represent its features, top/bottom/accessory/shoes/ect, and subcategories, for example on top there is shirt/outerwear/sweatshirt/etc, and sub-sub-categories within it, for example on shirt there is blouse/t-shirt/etc. Each article has tags for primary colors, hemline, pockets, technical features, the list goes on.
Main question:
how should I best organize the data in mongodb with mongoose schemas in order for it to be quickly searchable when I plan on having 50,000 or more articles? And genuinely curious, how do large clothing retailers typically design databases to be easily searchable by customers when items have so many identifying features?
Things I have tried or thought of:
On the mongoDB website there is a recommendation to use a tree structure with child references. here is the link: https://docs.mongodb.com/manual/tutorial/model-tree-structures-with-child-references/ I like this idea but I read here: https://developer.mongodb.com/article/mongodb-schema-design-best-practices/ that when storing over a few thousand pieces of data, using object ID references is no longer sufficient, and could create issues because of datalimits.
Further, each clothing item would fall into many different parts of the tree. For example it could be a blouse so it would be in the blouse "leaf" of the tree, and then if its blue, it would be in the blue "leaf" of the tree, and if it is sustainably sourced, it would fall into that "leaf" of the tree as well. Considering this, a tree like data structure seems not the right way to go. It would be storing the same ObjectID in many different leaves.
My other idea was to store the article information (description, price, and picture) seperate from the tagging/hierarchical information. Then each tagging object would have a ObjectID reference to the item. This way I could take advantage of the propogate method of mongoose if I wanted to collect that information.
I also created part of the large tree structure as a proof of concept for a design idea I had, and this is only for the front end right now, but this also creates bad searches cause they would look like taxonomy[0].options[0].options[0].options[0].title to get to 'blouse'. Which from my classes doesnt seem like a good way to make the code readable. This is only a snippet of a long long branching object. I was going to try to make this a mongoose schema. But its a lot of work and I wanna make sure that I do it well.
const taxonomy = [
{
title: 'Category',
selected: false,
options: [
{
title: 'top',
selected: false,
options: [
{
title: 'Shirt',
selected: false,
options: [
{
title: 'Blouse',
selected: false,
},
{
title: 'polo',
selected: false,
},
{
title: 'button down',
selected: false,
},
],
},
{
title: 'T-Shirt',
selected: false,
},
{
title: 'Sweater',
selected: false,
},
{
title: 'Sweatshirt and hoodie',
selected: false,
},
],
},
Moving forward:
I am not looking for a perfect answer, but I am sure that someone has tackled this issue before (all big businesses that sell lots of categorized products have) If someone could just point me in the right direction, for example, give me some terms to google, some articles to read, or some videos to watch, that would be great.
thank you for any direction you can provide.
MongoDB is a document based database. Each record in a collection is a document, and every document should be self-contained (it should contain all information that you need inside it).
The best practice would be to create one collection for each logical whole that you can think of. This is the best practice when you have documents with a lot of data, because it is scalable.
For example, you should create Collections for: Products, Subproducts, Categories, Items, Providers, Discounts...
Now, when you creating Schemas, instead of creating nested structure, you can just store a reference of one collection document as a property of another collection document.
NOTE: The maximum document size is 16 megabytes.
BAD PRACTICE
Let us first see what would be the bad practice. Consider this structure:
Product = {
"name": "Product_name",
"sub_products": [{
"sub_product_name": "Subpoduct_name_1",
"sub_product_description": "Description",
"items": [{
"item_name": "item_name_1",
"item_desciption": "Description",
"discounts": [{
"discount_name": "Discount_1",
"percentage": 25
}]
},
{
"item_name": "item_name_2",
"item_desciption": "Description",
"discounts": [{
"discount_name": "Discount_1",
"percentage": 25
},
{
"discount_name": "Discount_2",
"percentage": 50
}]
},
]
},
...
]
}
Here product document has sub_products property which is an array of sub_products. Each sub_product has items, and each item has discounts. As you can see, because of this nested structure, the maximum document size would be quickly exceeded.
GOOD PRACTICE
Consider this structure:
Product = {
"name": "Product_name",
"sub_products": [
'sub_product_1_id',
'sub_product_2_id',
'sub_product_3_id',
'sub_product_4_id',
'sub_product_5_id',
...
]
}
Subproduct = {
"id": "sub_product_1_id",
"sub_product_name": "Subroduct_name",
"sub_product_description": "Description",
"items": [
'item_1_id',
'item_2_id',
'item_3_id',
'item_4_id',
'item_5_id',
...
]
}
Item = {
"id": "item_1_id",
"item_name": "item_name_1",
"item_desciption": "Description",
"items": [
'discount_1_id',
'discount_2_id',
'discount_3_id',
'discount_4_id',
'discount_5_id',
...
]
}
Discount = {
"id": "discount_1_id",
"discount_name": "Discount_1",
"percentage": 25
}
Now, you have collection for each logical whole and you are just storing a reference of one collection document as a property of another collection document.
Now you can use one of the best features of the Mongoose that is called population. If you store a reference of one collection document as a property of another collection document, when performing querying of the database, Mongoose will replace references with the actual documents.

Adding value to already declared MongoDB object with mongoose Schema

I am new to MongoDB and mongoose. I am trying to create a Node & MongoDB auction app. So since it is actually an online auction, users should be able to bid for items. I successfully completed the user registration, sign in page and authentication process, however, I am a bit stuck in the bidding page.
I created a Schema using mongoose and each item for auction is saved in the database. I want to add name and price of each user who bid for the item in the same object in MongoDB, like this:
{
name: "valuable vase from 1700s",
owner: "John Doe",
itemId: 100029,
bids: {
100032: 30000,
100084: 34000
}
}
So each user will have ids like 100032: 30000, and when they bid, their "account id: price" will be added under bids in the database object of the item.
I made some research and found some ways to solve the problem but I want to know if what I want to do is possible and if it is the right solution to do.
Thanks for giving me your time!
There are indeed couple of ways to achieve what you want.
In my opinion, a collection called ItemBids, where each document includes this data structure, will benefit you the most.
{
itemId: ObjectId # reference to the item document
accountId: ObjectId # reference to the account
bid: Number # the bid value
}
This pattern is suitable for your case because you can easily query the bids by whatever you want -
You can get all the account bids, you can get all the item bids, and you can sort them with native Mongo by the bid price.
Every time there's a bid, you insert a new document to this collection.
Another option is embedding an array of Bids objects in the item Object.
Each Bid object should include:
bids: [{
account: ObjectId("") # This is the account
price: Number
}]
The cons here are that querying it and accessing it will require more complex queries.
You can read more about the considerations
here:
https://docs.mongodb.com/manual/core/data-model-design
https://coderwall.com/p/px3c7g/mongodb-schema-design-embedded-vs-references
The way you decided to implement your functionality is a little bit complicated.
It is not impossible to do that but, the better way is to use array of objects instead of a single object like this:
{
name: '',
..
..
bids: [{
user: 100032,
price: 30000
}, {
user: 100084,
price: 34000
}]
}

How do you optimally structure a MongoDB database to fetch all properties of a user?

I'm building an app where a user object has multiple game objects. What would be the proper strategy for fetching all of a user's games from a mongoDB database?
As far as I can tell I have 2 options:
Give users a game property that is an array of ids of games that the user has and then fetch each game individually
e.g.
example user
{
_id: '1342',
name: 'Dave',
games: [
'12345678',
'fgnhe45rnd',
],
}
example game
{
_id: '12345678',
name: 'Fluxx',
}
The opposite. Give each game a users property that is an array of ids of users that own that game. Then fetch all games that have a specific user's id.
e.g.
example user
{
_id: '1342',
name: 'Dave',
}
example game
{
_id: '12345678',
name: 'Fluxx',
users: [
'1342',
'5783',
],
}
Any advice is appreciated.
Thank you.
Use Case
A user object has multiple game objects
To fetching all of a user's games
I will suggest you use the first option.
Example user
{
_id: '1342',
name: 'Dave',
games: [
'12345678',
'fgnhe45rnd',
],
}
Example game
{
_id: '12345678',
name: 'Fluxx',
}
Reason
As you mentioned in the use case, you are fetching all of a user's games.
First Option
So if you are fetching all of Dave's game, you only need to get Dave's list of games then refer each game to its data. This is 1+n fetch where n is number of game Dave has.
Second Option
If you use the second option, you will need to go through every single game to check if users list in the game contains Dave. And then you have to record the data only if Dave is in the list. This is N fetch where N is total number of games in the database.
In general, N is larger than n+1.
If you need user's games,you should use 1.For example i need kevin's games: you can get kevin's games with 2.?

MongoDB Relational Data Structures with array of _id's

We have been using MongoDB for some time now and there is one thing I just cant wrap my head around. Lets say I have a a collection of Users that have a Watch List or Favorite Items List like this:
usersCollection = [
{
_id: 1,
name: "Rob",
itemWatchList:[
"111111",
"222222",
"333333"
]
}
];
and a separate Collection of Items
itemsCollection = [
{
_id:"111111",
name: "Laptop",
price:1000.00
},
{
_id:"222222",
name: "Bike",
price:123.00
},
{
_id:"333333",
name: "House",
price:500000.00
}
];
Obviously we would not want to insert the whole item obj inside the itemWatchList array because the items data could change i.e. price.
Lets say we pull that user to the GUI and want to diplay a grid of the user itemWatchList. We cant because all we have is a list of ID's. Is the only option to do a second collection.find([itemWatchList]) and then in the results callback manipulate the user record to display the current items? The problem with that is what if I return an array of multiple Users each with an array of itemWatchList's, that would be a callback nightmare to try and keep the results straight. I know Map Reduce or Aggregation framework cant traverse multiple collections.
What is the best practice here and is there a better data structure that should be used to avoid this issue all together?
You have 3 different options with how to display relational data. None of them are perfect, but the one you've chosen may not be the best option for your use case.
Option 1 - Reference the IDs
This is the option you've chosen. Keep a list of Ids, generally in an array of the objects you want to reference. Later to display them, you do a second round-trip with an $in query.
Option 2 - Subdocuments
This is probably a bad solution for your situation. It means putting the entire array of documents that are stored in the items collection into your user collection as a sub-document. This is great if only one user can own an item at a time. (For example, different shipping and billing addresses.)
Option 3 - A combination
This may be the best option for you, but it'll mean changing your schema. For example, lets say that your items have 20 properties, but you really only care about the name and price for the majority of your screens. You then have a schema like this:
usersCollection = [
{
_id: 1,
name: "Rob",
itemWatchList:[
{
_id:"111111",
name: "Laptop",
price:1000.00
},
{
_id:"222222",
name: "Bike",
price:123.00
},
{
_id:"333333",
name: "House",
price:500000.00
}
]
}
];
itemsCollection = [
{
_id:"111111",
name: "Laptop",
price:1000.00,
otherAttributes: ...
},
{
_id:"222222",
name: "Bike",
price:123.00
otherAttributes: ...
},
{
_id:"333333",
name: "House",
price:500000.00,
otherAttributes: ...
}
];
The difficulty is that you then have to keep these items in sync with each other. (This is what is meant by eventual consistency.) If you have a low-stakes application (not banking, health care etc) this isn't a big deal. You can have the two update queries happen successively, updating the users that have that item to the new price. You'll notice this sort of latency on some websites if you pay attention. Ebay for example often has different prices on the search results pages than the actual price once you open the actual page, even if you return and refresh the search results.
Good luck!

How should I model my MongoDB collection for nested documents?

I'm managing a MongoDB database for a building products store. The most immediate collection is products, right?
There are quite several products, however they all belong to one among a set of 5-8 categories and then to one subcatefory among a small set of subcategories.
For example:
-Electrical
*Wires
p1
p2
..
*Tools
p5
pn
..
*Sockets
p11
p23
..
-Plumber
*Pipes
..
*Tools
..
PVC
..
I will use Angular at web site client side to show whole products catalog, I think about AJAX for querying the right subset of products I want.
Then, I wonder whether I should manage one only collection like:
{
MainCategory1: {
SubCategory1: {
{},{},{},{},{},{},{}
}
SubCategory2: {
{},{},{},{},{},{},{}
}
SubCategoryn: {
{},{},{},{},{},{},{}
}
},
MainCategory2: {
SubCategory1: {
{},{},{},{},{},{},{}
}
SubCategory2: {
{},{},{},{},{},{},{}
}
SubCategoryn: {
{},{},{},{},{},{},{}
}
},
MainCategoryn: {
SubCategory1: {
{},{},{},{},{},{},{}
}
SubCategory2: {
{},{},{},{},{},{},{}
}
SubCategoryn: {
{},{},{},{},{},{},{}
}
}
}
Or a single collection per each category. The number of documents might not be higher than 500. However I care about a balance for:
quick DB answer,
easy server side DB querying, and
client-side Angular code for rendering results to html.
I'm using mongodb node.js module, not Mongoose now.
What CRUD operations will I do?
Inserts of products, I'd also like to have a way to obtain autogenerated ids (maybe sequential) per each new register. However, as it might seem natural I wouldn't offer the _id to the user.
Querying the whole documents set of a subcategory. Maybe just obtaining a few attributes at first.
Querying whole or a specific subset of attributes of a document (product) in particular.
Modifying a product's attributes values.
I agree client side should get the easiest result to render. However, to nest categories into products is still a bad idea. The trade off is once you want to change, for example, the name of a category, it will be a disaster. And if you think about the possible usecases, for example:
list all categories
find all subcategories of a certain category
find all products in a certain category
You'll find it hard to do these stuff with your data structure.
I had same situation in my current project. So here's what I do for your reference.
First, categories should be in a separate collection. DON'T nest categories into each other, as it will complicate the procedure to find all subcategories. The traditional way for finding all subcategories is to maintain an idPath property. For example, your categories are divided into 3 levels:
{
_id: 100,
name: "level1 category"
parentId: 0, // means it's the top category
idPath: "0-100"
}
{
_id: 101,
name: "level2 category"
parentId: 100,
idPath: "0-100-101"
}
{
_id: 102,
name: "level3 category"
parentId: 101,
idPath: "0-100-101-102"
}
Note with idPath, parentId is not necessary anymore. It's for you to understand the structure easier.
Once you need to find all subcategories of category 100, simply do the query:
db.collection("category").find({_id: /^0-100-/}, function(err, doc) {
// whatever you want to do
})
With category stored in a separate collection, in your product you'll need to reference them by _id, just like when we use RDBMS. For example:
{
... // other fields of product
categories: [100, 101, 102, ...]
}
Now if you want to find all products in a certain category:
db.collection("category").find({_id: new RegExp("/^" + idPath + "-/"}, function(err, categories) {
var cateIds = _.pluck(categories, "_id"); // I'm using underscore to pluck category ids
db.collection("product").find({categories: { $in: cateIds }}, function(err, products) {
// products are here
}
})
Fortunately, category collection is usually very small, with only hundreds of records inside (or thousands). And it doesn't varies a lot. So you can always store a live copy of categories inside memory, and it can be constructed as nested objects like:
[{
id: 100,
name: "level 1 category",
... // other fields
subcategories: [{
id: 101,
... // other fields
subcategories: [...]
}, {
id: 103,
... // other fields
subcategories: [...]
},
...]
}, {
// another top1 category
}, ...]
You may want to refresh this copy every several hours, so:
setTimeout(3600000, function() {
// refresh your memory copy of categories.
});
That's all I get in mind right now. Hope it helps.
EDIT:
to provide int ID for each user, $inc and findAndModify is very useful. you may have a idSeed collection:
{
_id: ...,
seedValue: 1,
forCollection: "user"
}
When you want to get an unique ID:
db.collection("idSeed").findAndModify({forCollection: "user"}, {}, {$inc: {seedValue: 1}}, {}, function(err, doc) {
var newId = doc.seedValue;
});
The findAndModify is an atomic operator provided by mongodb. It will guarantee thread safety. and the find and modify actually happens in a "transaction".
2nd question is in my answer already.
query subsets of properties is described with mongodb Manual. NodeJS API is almost the same. Read the document of projection parameter.
update subsets is also supported by $set of mongodb operator.

Resources