How does the following function work:
mapEithers :: (a -> Either b c) -> [a] -> Either b [c]
mapEithers f (x:xs) = case mapEithers f xs of
Left err -> Left err
Right ys -> case f x of
Left err -> Left err
Right y -> Right (y:ys)
mapEithers _ _ = Right []
In the first case expression (case mapEithers f xs), how does it pattern match with Left and Right values when the function f has not be applied to the elements of the list yet.
This is classic recursion, we apply mapEithers to a sublist yielding something of the type Either b [c], if it's Left b, the we just propagate that through.
If it's Right cs. Then we apply f to the head of the list. If this yields an error, we drop everything and propagate that up, if it's Right c, then the result is Right (c : cs).
And because we need a recusive base case, an empty list is Right [].
For the record, this can be written more idiomatically with a fold. In real Haskell code, you rarely see explicit recursion. Rather, we have a bunch of functions (among other fold, replicateM, map, filter) which do the "heavy lifting" for us, and we only need to provide some parameters that customize them a little when we use them.
In your case, you have two Either values – the result from the rest of the list and the result from the current value. If both are Right you want them together in a list, and if they are Left you want to only keep the error message.
What I described can in Haskell be written as
(:) <$> f elem <*> rest
This will return the Left value if either f elem is a Left or if rest is a Left. If both are Right, it will extract the list from rest and the value from f elem and create a new list of both.
Put into a fold call, this means that mapEithers would in the real world be more likely to be written as
mapEithers f = foldr (\elem rest -> (:) <$> f elem <*> rest) (Right [])
Edit: I just realised it can be even simpler with a few additioal transformations. (My Haskell-fu isn't strong enough to be able to read this fluently though...)
mapEithers f = foldr (liftA2 (:) . f) (Right [])
Related
I have started to solve the 99 problems in Haskell, and for the second question, it is given the following solution:
myButLast' :: [a] -> a
myButLast' = last . init
and if we give the empty list to this function, we get and error, however, I would like to print a specific error as
myButLast' [] = error "The list has to have at least 2 elements!"
myButLast' [x] = error "The list has to have at least 2 elements!"
but when I add these line to the code, I get
Equations for ‘myButLast'’ have different numbers of arguments
, so is there a way to use the composition type of defining my new function while also adding some specific behaviour ?
The best you can do is probably something like the following, where the error checking is moved into an auxiliary function (which I've named go for lack of a better name) defined in a where clause:
myButLast :: [a] -> a
myButLast = go (last . init)
where
go _ [] = bad
go _ [x] = bad
go f xs = f xs
bad = error "The list has to have at least 2 elements!"
It might help make it clearer what's going on if we define go separately with a type signature. Also, in case you find the underscores confusing, I've replaced them with f:
myButLast :: [a] -> a
myButLast = go (last . init)
go :: ([a] -> a) -> [a] -> a
go f [] = bad
go f [x] = bad
go f xs = f xs
bad = error "The list has to have at least 2 elements!"
Here, you can see that go is a function that takes two arguments, the first being itself a function of type [a] -> a and the second being a list of type [a].
The above definition of go pattern matches on the second argument (the list). If the list is empty or a singleton, then the result of go is just bad (the error message), regardless of the function f. Otherwise (if the list is at least two elements), the result of go f xs is simply to apply the first argument (that function f) to the list xs.
How does this work? Well, let's see what happens if we apply myButLast to a list. I've used the symbol "≡" here to show equivalence of Haskell expressions with comments explaining why they are equivalent:
myButLast [1,2,3]
-- by the definition of "myButLast"
≡ go (last . init) [1,2,3]
-- by the definition of "go", third pattern w/
-- f ≡ last . init
-- xs = [1,2,3]
≡ (last . init) [1,2,3] -- this is just f xs w/ the pattern substitutions
-- because of your original, correct answer
≡ 2
If we apply it to a "bad" list, the only difference is the pattern matched from the definition of go:
myButLast [1]
-- by the definition of "myButLast"
≡ go (last . init) [1]
-- by the definition of "go", second pattern w/
-- f ≡ last . init
-- x = 1
≡ bad
-- gives an error message by definition of "bad"
As an interesting aside, another way to look at go is that it's a function:
go :: ([a] -> a) -> ([a] -> a)
Because the function application arrow -> is right associative, this type signature is exactly the same as ([a] -> a) -> [a] -> a. The neat thing about this is that now it's clear that go takes a function of type [a] -> a (such as last . init) and returns another function of type [a] -> a (such as myButLast). That is, go is a transformer that adds additional behavior to an existing function to create a new function, which is exactly what you were asking for in your original question.
In fact, if you slightly generalize the type signature so that go can operate on a function taking a list, regardless of what it returns:
go :: ([a] -> b) -> [a] -> b
go _ [] = bad
go _ [x] = bad
go f xs = f xs
this still works. Then, you could use this same go on anything that needed a list of length two, whatever it returned. For example, if you had an original implementation to return the last two elements of a list:
lastTwoElements :: [a] -> [a]
lastTwoElements = (!! 2) . reverse . tails -- tails from Data.List
you could re-write it as:
lastTwoElements :: [a] -> [a]
lastTwoElements = go ((!! 2) . reverse . tails)
to add error handling for the empty and singleton list cases.
In this case, you'd probably want to rename go to usingTwoElements or withList2 or something...
Use an explicit argument in the solution:
myButLast' x = last (init x)
Now you can add your special cases just above that line.
The original solution used a pointfree style last . init to avoid mentioning the x argument. However, if you have to add further equations, you need to make the argument explicit.
Moving from
fun :: A -> B
fun = something
to
fun :: A -> B
fun a = something a
is called eta-expansion, and is a common transformation of Haskell code. The first style is usually called point-free (or, jokingly, point-less), while the second one is called pointful. Here "point" refers to the variable a.
Somewhat sidestepping the original question, but you may be interested in the safe package for tasks like this. In general, you should strive to use total functions that don't raise errors. In this case, that means using something like lastMay :: [a] -> Maybe a and initMay :: [a] -> Maybe a, which simply return Nothing if given an empty list. They can be composed using <=<, found in Control.Monad.
import Safe
myButLast :: [a] -> Maybe a
myButLast = lastMay <=< initMay
Then
> myButLast []
Nothing
> myButLast [1]
Nothing
> myButLast [1,2]
Just 1
If you really want an error message, Safe provides lastNote and initNote as well.
myButLast = let msg = "Need at least 2 elements" in (lastNote msg . initNote msg)
You could often simply compose an additional function that has the additional behaviour:
myButLast' :: [a] -> a
myButLast' = last . init . assertAtLeastTwo
where assertAtLeastTwo xs#(_:_:_) = xs
assertAtLeastTwo _ = error "The list has to have at least 2 elements!"
Here we've added a function that checks for the conditions we want to raise an error, and otherwise simply returns its input so that the other functions can act on it exactly as if assertAtLeastTwo wasn't there.
Another alternative that allows you to clearly highlight the error conditions is:
myButLast' :: [a] -> a
myButLast' [] = error "The list has to have at least 2 elements!"
myButLast' [x] = error "The list has to have at least 2 elements!"
myButLast' xs = go xs
where go = last . init
Where you do the error checking as you originally wrote, but have the main definition simply defer to an implementation function go, which can then be defined point-free using composition.
Or you can of course inline go from above, and have:
myButLast' xs = (last . init) xs
Sine a composition of functions is itself an expression, and can simply be used in a larger expression directly as the function. In fact a fairly common style is in fact to write code of the form "compose a bunch of functions then apply to this argument" this way, using the $ operator:
myButLast' xs = last . init $ xs
If you would use wrappers you can have the best of both worlds and a clear separation between the two. Robust error checking and reporting and a vanilla function to use however you wish, with or without the wrapper.
Interesting, the vanilla function reports 'last' cannot process an empty list given a one element list and 'init' cannot process an empty list when given an empty list.
mbl2 = last . init
mbl xs = if length xs < 2 then error errmsg else mbl2 xs
where errmsg = "Input list must contain at least two members."
I did a self-defined data type called Queue and trying to enqueue Integers at the end of the "list".
data Queue = Ele Int Queue | Nil
-- [..] some other Functions
enqueue :: Int -> Queue -> Queue
enqueue x Nil = (Ele x Nil)
enqueue x (Ele _ restEles) = reverse (Ele x reverse restEles)
I get the error:
"Couldn't match expected type Queue' with actual type[a0]'".
I think that is, because the function doesn't know how to handle my datatype. Am I right here? How can I fix this? Do I have to write my own reverse function? And if could you help me with that, because I am still learning Haskell and don't understand this:
reverse = foldl (flip (:)) []
Yes, you have defined a new datatype. Even though it's structurally similar to lists, Haskell will treat it as completely different. So you have to define a new reverse function indeed, or alternatively, define a function converting your type into a standard list and back.
But for enqueue you do not necessarily need reverse. You can just recursively invoke enqueue on restEles in the case for Ele and put the first element back in front of the result.
Here's a pattern for the directly recursive definition for you to complete:
enqueue :: Int -> Queue -> Queue
enqueue x Nil = Ele x Nil
enqueue x (Ele firstEle restEles) = ...
For ..., you have to do what I said above: call enqueue recursively on the rest of the
elements and put the first elements back on top.
The type of reverse is:
reverse :: [a] -> [a]
Queue is not a [a]. You need to implement your own reverseQueue function that understands your data type.
As for the second part of your question:
reverse :: [a] -> [a]
reverse = foldl (flip (:)) []
First, make sure you understand foldl. It's a powerful high-order function, which means it can be used to implement a lot of other functions (sum,map,filter and of course reverse). You can read about it here.
Now, let's take a look at a simpler version:
reverse :: [a] -> [a]
reverse xs = foldl (\ys y -> y:ys) [] xs
\ys y -> y:ys is a very simple function: it takes a list (ys) and a value (y) and insert the value before the list (y:ys). So our course of plan is: start with the empty list ([]), insert the first item in xs to its left, take the result and insert the second item to its left and so on.
Let's simulate it with a simple list - [1,2,3]:
We start with the empty list - []
Add the first item (1) to it's left: [1]
Add the second item (2) to the left of [1]: [2,1]
Add the third item (3) to the left of [2,1]: [3,2,1]
And we've successfully reversed [1,2,3].
Now, flip is a function that takes a function and "flips" it's arguments. so if subtract a b is a-b, then (flip subtract) a b is equal to subtract b a - b-a. So if (:) is a function that takes an item y and a list ys and adds the item to the beginning of the list, then flip (:) is the same function with flipped arguments - it takes a list and an item, much like our function - \ys y -> y:ys. So we can replace the two of them:
reverse :: [a] -> [a]
reverse xs = foldl (flip (:)) [] xs
And now we write in pointfree style and eliminate xs from both sides of the equation and get the final version:
reverse :: [a] -> [a]
reverse = foldl (flip (:)) []
isTogether' :: String -> Bool
isTogether' (x:xs) = isTogether (head xs) (head (tail xs))
For the above code, I want to go through every character in the string. I am not allowed to use recursion.
isTogether' (x:xs) = isTogether (head xs) (head (tail xs))
If I've got it right, you are interested in getting consequential char pairs from some string. So, for example, for abcd you need to test (a,b), (b,c), (c,d) with some (Char,Char) -> Bool or Char -> Char -> Bool function.
Zip could be helpful here:
> let x = "abcd"
> let pairs = zip x (tail x)
it :: [(Char, Char)]
And for some f :: Char -> Char -> Bool function we can get uncurry f :: (Char, Char) -> Bool.
And then it's easy to get [Bool] value of results with map (uncurry f) pairs :: [Bool].
In Haskell, a String is just a list of characters ([Char]). Thus, all of the normal higher-order list functions like map work on strings. So you can use whichever higher-order function is most applicable to your problem.
Note that these functions themselves are defined recursively; in fact, there is no way to go through the entire list in Haskell without either recursing explicitly or using a function that directly or indirectly recurses.
To do this without recursion, you will need to use a higher order function or a list comprehension. I don't understand what you're trying to accomplish so I can only give generic advice. You probably will want one of these:
map :: (a -> b) -> [a] -> [b]
Map converts a list of one type into another. Using map lets you perform the same action on every element of the list, given a function that operates on the kinds of things you have in the list.
filter :: (a -> Bool) -> [a] -> [a]
Filter takes a list and a predicate, and gives you a new list with only the elements that satisfy the predicate. Just with these two tools, you can do some pretty interesting things:
import Data.Char
map toUpper (filter isLower "A quick test") -- => "QUICKTEST"
Then you have folds of various sorts. A fold is really a generic higher order function for doing recursion on some type, so using it takes a bit of getting used to, but you can accomplish pretty much any recursive function on a list with a fold instead. The basic type of foldr looks like this:
foldr :: (a -> b -> b) -> b -> [a] -> b
It takes three arguments: an inductive step, a base case and a value you want to fold. Or, in less mathematical terms, you could think of it as taking an initial state, a function to take the next item and the previous state to produce the next state, and the list of values. It then returns the final state it arrived at. You can do some pretty surprising things with fold, but let's say you want to detect if a list has a run of two or more of the same item. This would be hard to express with map and filter (impossible?), but it's easy with recursion:
hasTwins :: (Eq a) => [a] -> Bool
hasTwins (x:y:xs) | x == y = True
hasTwins (x:y:xs) | otherwise = hasTwins (y:xs)
hasTwins _ = False
Well, you can express this with a fold like so:
hasTwins :: (Eq a) => [a] -> Bool
hasTwins (x:xs) = snd $ foldr step (x, False) xs
where
step x (prev, seenTwins) = (x, prev == x || seenTwins)
So my "state" in this fold is the previous value and whether we've already seen a pair of identical values. The function has no explicit recursion, but my step function passes the current x value along to the next invocation through the state as the previous value. But you don't have to be happy with the last state you have; this function takes the second value out of the state and returns that as the overall return value—which is the boolean whether or not we've seen two identical values next to each other.
How to write a function that takes a predicate f and a list xx and reutrns true if fx is true for some x∈xs?
For example:
ghci>exists (>2) [1,2,3]
True
This is the function I wrote:
exists :: (t->Bool)->[t]->Bool
exists f a []=error
exists f a (x:xs)
|if x∈f a =True
|otherwise= x:f a xs
I know this is not right, but I don't know why. Do I need to write this predicate function f first, then used it inside the function exists. Because I really don't know how to compare one element of list xs with the function.
Your desired example usage is this
ghci>exists (>2) [1,2,3]
True
Stop. Hoogle time. ( <------ This should be the Haskell motto imho)
You want a function ("exists") that takes two parameters. The first is a unary function (a -> Bool) and the second is a list [a]. The desired result is a Bool
Hoogling that type signature, (a -> Bool) -> [a] -> Bool, the top hits are any, all, and find. As Andrew has noted, any is the one that behaves like the "exists" function.
As a side note, my first thought was to use find, which returns a Maybe a, and then pattern match. If it returns Nothing, then the result would be False, otherwise True.
As another side note, the actual implementation is simply any p = or . map p.
The third side note is probably the answer to your actual question. How is map defined? Hoogle is once again your friend. Search for the method's name and you can find a page that links to the source. I suggest you do this for map and or, but will only show map here.
map _ [] = []
map f (x:xs) = f x : map f xs
That's the basic way to recurse over a list. recursiveCall f (x:xs) = f x : recursiveCall f xs But if it can be written with map, filter, or foldl/foldr, then you should do it with these recursive methods. (Stop. Hoogle time. Search for those method names and check out the source; it's pretty straightforward.)
If we take a look at your definition,
exists :: (t -> Bool) -> [t] -> Bool
exists f a []=error
exists f a (x:xs)
|if x∈f a =True
|otherwise= x:f a xs
We see that your type is
exists :: (t -> Bool) -> [t] -> Bool
So exists must take two parameters, one predicate function of type (t -> Bool) and one list of type [t]. It returns a Bool. This seem okay as per our intention of the specification.
Let us look at the first line of your terms:
exists f a [] = error
This function suddenly takes three parameters. The f and the empty list constructor [] looks okay, but the a is not mentioned in the type specification. Hence, we prune it out:
exists f [] = error
Now, the error returned is not of boolean value. But the spec says it must be. Let us suppose we are asking exists (<2) []. Then would a natural answer to the question be True or False? Or paraphrased, is there any element x in [] satisfying the predicate f x ?
On to the next line,
exists f a (x:xs)
|if x∈f a =True
|otherwise= x:f a xs
We learned that the a has to go by the type specification, so let us prune it. Since we have now grown a natural dislike for the a, why not prune it everywhere it occur. Also, since the if will produce a syntax error, lets rid ourselves of that too:
exists f (x:xs)
| x∈f = True
| otherwise = x:f xs
The x∈f does not make much sense, but f x does. The guard variant will be taken if f x returns true. Now, the True which is returned here sounds about right. It signifies that we have found an element in the list matching the predicate - and lo n' behold, x might be it!
So we turn our attention to the final line. The otherwise means that the guard f x did not return True. As a consequence, the x is not satisfying the predicate, so we must search the rest of the list.
The Right-hand-side x : f xs is peculiar. The : means that we will try to return a list, but the return type of the function is something of type Bool. The type checker won't like us if we try this. Furthermore, we have no reason to look at the x anymore since we just determined it does not satisfy the predicate.
The key thing you are missing is that we need recursion at this point. We need to search the tail xs of the list somehow - and recursion means to invoke the exists function on the tail.
Your general track is right, but ask again if something is unclear. One trick might be to go by the types for the recursion case: "What do i have to supply exists for it to return a Bool value?".
I think the function you want already exists -- any:
Prelude> :t any
any :: (a -> Bool) -> [a] -> Bool
Prelude> any (<3) [1, 2, 3, 4]
True
Prelude> any (<3) [3, 4, 5, 6]
False
And then, in the spirit of your question -- not just getting a working function but working out how it's done -- we can look up the definition in the prelude:
any p xs = or (map p xs)
We map the function over the list to get a new [Bool] list, and then check with or to see if any of them are True, which by the way thanks to lazy evaluation short circuits as needed:
Prelude> any (<3) [1, 2..]
True
Actually your original version wasn't too far from working. To fix it, write:
exists :: (t -> Bool) -> [t] -> Bool
exists _ [] = False
exists f (x:xs)
| f x = True
| otherwise = exists f xs
Instead of using x in f, just apply f to x using f x as the predicate in the if statement. Your otherwise clause should also return a Bool: the result of exists on the rest of the list.
I am reading a tutorial that uses the following example (that I'll generalize somewhat):
f :: Foo -> (Int, Foo)
...
fList :: Foo -> [Int]
fList foo = x : fList bar
where
(x, bar) = f foo
My question lies in the fact that it seems you can refer to x and bar, by name, outside of the tuple where they are obtained. This would seem to act like destructuring parameter lists in other languages, if my guess is correct. (In other words, I didn't have to do the following:)
fList foo = (fst tuple) : fList (snd tuple)
where
tuple = f foo
Am I right about this behavior? I've never seen it mentioned yet in the tutorials/books I've been reading. Can someone point me to more info on the subject?
Edit: Can anything (lists, arrays, etc.) be destructured in a similar way, or can you only do this with tuples?
Seeing your edit, I think what your asking about is Pattern matching.
And to answer your question: Yes, anything you can construct, you can also 'deconstruct' using the constructors. For example, you're probably familiar with this form of pattern matching:
head :: [a] -> a
head (x:xs) = x
head [] = error "Can't take head of empty list"
However, there are more places where you can use pattern matching, other valid notations are:
head xs = case xs of
(y:ys) -> y
[] -> error "Can't take head of empty list"
head xs = let (y:ys) = xs
in y
head xs = y
where
(y:ys) = xs
Note that the last two examples are a bit different from the first to because they give different error messages when you call them with an empty list.
Although these examples are specific to lists, you can do the same with other data types, like so:
first :: (a, b) -> a
first tuple = x
where
(x, y) = tuple
second :: (a, b) -> b
second tuple = let (x, y) = tuple
in y
fromJust :: Maybe a -> a
fromJust ma = x
where
(Just x) = ma
Again, the last function will also crash if you call it with Nothing.
To sum up; if you can create something using constructors (like (:) and [] for lists, or (,) for tuples, or Nothing and Just for Maybe), you can use those same constructors to do pattern matching in a variety of ways.
Am I right about this behavior?
Yes. The names exist only in the block where you have defined them, though. In your case, this means the logical unit that your where clause is applied to, i.e. the expression inside fList.
Another way to look at it is that code like this
x where x = 3
is roughly equivalent to
let x = 3 in x
Yes, you're right. Names bound in a where clause are visible to the full declaration preceding the where clause. In your case those names are f and bar.
(One of the hard things about learning Haskell is that it is not just permitted but common to use variables in the source code in locations that precede the locations where those variables are defined.)
The place to read more about where clauses is in the Haskell 98 Report or in one of the many fine tutorials to be found at haskell.org.