How does increasing the Cassandra Replication Factor give more consistency - cassandra

I was reading "Cassandra The Definitive Guide" and page 46 has this to say about Replication Factor:
"The replication factor essentially allows you to decide how much you
want to pay in performance to gain more consistency. That is, your
consistency level for reading and writing data is based on the
replication factor"
Now to me that's news. If replication is increased, it is kind of intuitive that it improves availability and depending on topology of the cluster its partition tolerance as well. However why does the author say that it increases consistency. I will think its quite the opposite. You have to take extra effort to ensure consistent state of your persistent data by propagating updates to every replica on different nodes. So more the replica, harder it is to maintain consistency. Why does the author say the exact opposite?
All inputs appreciated.

The consistency level specifies how many replicas must respond before a result is returned. See the documentation.
So, if you're using a consistency level of Quorum or higher, the higher the replication factor, the more nodes need to respond before a result can be returned.

Replication factor describes how many copies of your data exist. Consistency level describes the behavior seen by the client. Perhaps there's a better way to categorize these.
As an example, you can have a replication factor of 2. When you write, two copies will always be stored, assuming enough nodes are up. When a node is down, writes for that node are stashed away and written when it comes back up, unless it's down long enough that Cassandra decides it's gone for good.
For example with 2 nodes, a replication factor of 1, read consistency = 1, and write consistency = 1:
Your reads are consistent
You can survive the loss of no nodes.
You are really reading from 1 node every time.
You are really writing to 1 node every time.
Each node holds 50% of your data.
For More Info: Configuring data consistency

Related

What is correct understandanding of Cassandra tunable consistency?

It is said consistency level N defines number of replicas needed to acknowledge every read and write operation.The bigger that number, the more consistent result we have.
If we define that parameter as N (N < M/2), where M is cluster size, does it mean the following situation is possible :
1 data center. two concurrent writes happened successfully(they updated the same key with different values)?
And consequently, two subsequent concurrent reads return different values for the same key? Am i correct?
Yes, we can tune consistency based on requirements for read and writes. Quorum is recommended consistency level for Cassandra for single DC. we can calculate from below Quorum =N/2+1 where N is number of replica. Consistency we can set from below command
CONSISTENCY [level]
For more details on tunable consistency please refer below.
https://medium.com/dugglabs/data-consistency-in-apache-cassandra-part-1-7aee6b472fb4
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlAboutDataConsistency.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/cqlshConsistency.html
In Cassandra it is highly possible that different client applications are updating value of same key on different nodes. You can restrict this always by tuning your consistency level.
Consistency Level always depends on Replication Factor decided by you.
If RF=3 from 5 nodes DC, then Consistency level QUORUM or LOCAL_QUORUM means 2 nodes out of 3 which are having replica.
Any of the below combination should give you correct data, after tuning:
WRITE=ALL READ=ONE
WRITE=ONE READ=ALL
WRITE=LOCAL_QUORUM READ=LOCAL_QUORUM
You can tune consistency level in your application, as per load of the application.
According to me, Number 3 LOCAL_QUORUM should work better, As sometimes a node can be under high load or maybe is down. Your application will not get affected.
In case, you have more writes than READ; WRITE CL=ALL will make your application slow.

How does Cassandra partitioning work when replication factor == cluster size?

Background:
I'm new to Cassandra and still trying to wrap my mind around the internal workings.
I'm thinking of using Cassandra in an application that will only ever have a limited number of nodes (less than 10, most commonly 3). Ideally each node in my cluster would have a complete copy of all of the application data. So, I'm considering setting replication factor to cluster size. When additional nodes are added, I would alter the keyspace to increment the replication factor setting (nodetool repair to ensure that it gets the necessary data).
I would be using the NetworkTopologyStrategy for replication to take advantage of knowledge about datacenters.
In this situation, how does partitioning actually work? I've read about a combination of nodes and partition keys forming a ring in Cassandra. If all of my nodes are "responsible" for each piece of data regardless of the hash value calculated by the partitioner, do I just have a ring of one partition key?
Are there tremendous downfalls to this type of Cassandra deployment? I'm guessing there would be lots of asynchronous replication going on in the background as data was propagated to every node, but this is one of the design goals so I'm okay with it.
The consistency level on reads would probably generally be "one" or "local_one".
The consistency level on writes would generally be "two".
Actual questions to answer:
Is replication factor == cluster size a common (or even a reasonable) deployment strategy aside from the obvious case of a cluster of one?
Do I actually have a ring of one partition where all possible values generated by the partitioner go to the one partition?
Is each node considered "responsible" for every row of data?
If I were to use a write consistency of "one" does Cassandra always write the data to the node contacted by the client?
Are there other downfalls to this strategy that I don't know about?
Do I actually have a ring of one partition where all possible values
generated by the partitioner go to the one partition?
Is each node considered "responsible" for every row of data?
If all of my nodes are "responsible" for each piece of data regardless
of the hash value calculated by the partitioner, do I just have a ring
of one partition key?
Not exactly, C* nodes still have token ranges and c* still assigns a primary replica to the "responsible" node. But all nodes will also have a replica with RF = N (where N is number of nodes). So in essence the implication is the same as what you described.
Are there tremendous downfalls to this type of Cassandra deployment?
Are there other downfalls to this strategy that I don't know about?
Not that I can think of, I guess you might be more susceptible than average to inconsistent data so use C*'s anti-entropy mechanisms to counter this (repair, read repair, hinted handoff).
Consistency level quorum or all would start to get expensive but I see you don't intend to use them.
Is replication factor == cluster size a common (or even a reasonable)
deployment strategy aside from the obvious case of a cluster of one?
It's not common, I guess you are looking for super high availability and all your data fits on one box. I don't think I've ever seen a c* deployment with RF > 5. Far and wide RF = 3.
If I were to use a write consistency of "one" does Cassandra always
write the data to the node contacted by the client?
This depends on your load balancing policies at the driver. Often we select token aware policies (assuming you're using one of the Datastax drivers), in which case requests are routed to the primary replica automatically. You could use round robin in your case and have the same effect.
The primary downfall will be increased write costs at the coordinator level as you add nodes. The maximum number of replicas written to I've seen is around 8 (5 for other data centers and 3 for local replicas).
In practice this will mean a reduced stability while performing large or batched writes (greater than 1mb) or a lower per node write TPS.
The primary advantage is you can do a lot of things that'd normally be awful and impossible to do. Want to use secondary indexes? probably will work reasonably well (assuming cardinality and partition size doesn't become your bottleneck there). Want to add a custom UDF that does GroupBy or use very large IN queries it'll probably work.
It is as #Phact mentions not a common usage pattern and I primarily saw it used with DSE Search on low write throughput use cases that had requirements for 'single node' features from Solr, but for those same use cases with pure Cassandra you'd get some benefits on the read side and be able to do expensive queries that are normally impossible in a more distributed cluster.

maintaining dynamic consistency level in datastax

I have a 5 node cluster and keyspace with replication factor of 3. The nature of operations are such that writes are much more important than read, but frequency of read operations are about 10 times higher than write. To achieve consistency while improving overall performance, I chose to set consistency level for writes as ALL, and ONE for read. But this causes operations to fail if even one node is down.
Is there a method by which I can simultaneously change consistency level for (Write,Read) from (ALL,ONE) to (QUORUM, QUORUM) if one node is detected down, or if there is a query-execution-exception; plus this be done in a manner that no operations pass through a temporary phase where it sees a temporary (QUORUM, ONE) setting.
We also plan to expand to twice the capacity, 3 datacenter with 4 nodes each. Is it possible to define custom consistency levels, like, (a level of ALL in any one datacenter and ONE in others). I'm thinking that a level of (EACH_ONE) for read, coupled with above level for write will insure consistency but will allow the cluster to remain available even if a node goes down.
The flexibility is there since you can set your consistency level at a per request basis. Depending on the client you are using, there are some nice capabilities. For example, the java driver has something called a DowngradingConsistencyRetryPolicy such that if a request fails, it will be retried with the next lowest consistency level until the request succeeds. This pushes the complexity of retrying into the client so you don't have to write a bunch of code for it, it's really nice!
The java driver also allows you to configure consistency level per request with Statement#setConsistencyLevel()
As far as custom consistency levels, this is not an option available to you (without changing the cassandra source code), however I think what is made available should be sufficient.
For reads, I don't find much value in ensuring consistency between Data Centers on read. I think LOCAL_QUORUM is more than sufficient, but if you really care, you can use something like EACH_QUORUM for to ensure all datacenters agree, but that will severely impact your response time and availability. For example, if one of your datacenters goes down completely, you won't be able to do reads at all (unless downgrading).
For writes, I'd strongly recommend not using ALL in a multi datacenter set up if you care about response time and availability. Depending on your requirements, LOCAL_QUORUM should likely be more than sufficient.
While one of the benefits of Cassandra is that consistency is tunable, you can have as much strong consistency as you like, but keep in mind that Cassandra is at its best as a Highly Available, Partition Tolerant system.
A really good presentation on consistency that I think really nails a lot of these points is Christos Kalazantis' talk 'Eventual Consistency != Hopeful Consistency' which suggests that a consistency level of ONE is sufficient for a lot of use cases.

Effects of increasing the replication factor on the performance of cassandra

I'm carrying some experiments on the performance of Cassandra. I have a single cluster of 8 nodes. While increasing the replication factor from 1 to 8, i noticed that the overall throughput decreases. I'm using consistency level ONE for both reads and writes. I found that these are not the expected results. Anyone explain why this is happening?
This should be completely expected. Consistency level one will keep the performance of your reads as basically the same (if not improved since their are more possible machines to serve each read) but your writes will be doing significantly more work.
Every write to the cluster, regardless of consistency level, will end up causing a write to every replica node for that data. The consistency level only determines when the write will be acknowledged to the client as having been completed. This does not mean you can avoid the performance penalty of having done all those additional writes. So you can imagine that by increasing your replication factor to 8 causes every write to now do 8 times the work which explains your performance changes.

When would Cassandra not provide C, A, and P with W/R set to QUORUM?

When both read and write are set to quorum, I can be guaranteed the client will always get the latest value when reading.
I realize this may be a novice question, but I'm not understanding how this setup doesn't provide consistency, availability, and partitioning.
With a quorum, you are unavailable (i.e. won't accept reads or writes) if there aren't enough replicas available. You can choose to relax and read / write on lower consistency levels granting you availability, but then you won't be consistent.
There's also the case where a quorum on reads and writes guarantees you the latest "written" data is retrieved. However, if a coordinator doesn't know about required partitions being down (i.e. gossip hasn't propagated after 2 of 3 nodes fail), it will issue a write to 3 replicas [assuming quorum consistency on a replication factor of 3.] The one live node will write, and the other 2 won't (they're down). The write times out (it doesn't fail). A write timeout where even one node has writte IS NOT a write failure. It's a write "in progress". Let's say the down nodes come up now. If a client next requests that data with quorum consistency, one of two things happen:
Request goes to one of the two downed nodes, and to the "was live" node. Client gets latest data, read repair triggers, all is good.
Request goes to the two nodes that were down. OLD data is returned (assuming repair hasn't happened). Coordinator gets digest from third, read repair kicks in. This is when the original write is considered "complete" and subsequent reads will get the fresh data. All is good, but one client will have received the old data as the write was "in progress" but not "complete". There is a very small rare scenario where this would happen. One thing to note is that write to cassandra are upserts on keys. So usually retries are ok to get around this problem, however in case nodes genuinely go down, the initial read may be a problem.
Typically you balance your consistency and availability requirements. That's where the term tunable consistency comes from.
Said that on the web it's full of links that disprove (or at least try to) the Brewer's CAP theorem ... from the theorem's point of view the C say that
all nodes see the same data at the same time
Which is quite different from the guarantee that a client will always retrieve fresh information. Strictly following the theorem, in your situation, the C it's not respected.
The DataStax documentation contains a section on Configuring Data Consistency. In looking through all of the available consistency configurations, For QUORUM it states:
Returns the record with the most recent timestamp after a quorum of replicas has responded regardless of data center. Ensures strong consistency if you can tolerate some level of failure.
Note that last part "tolerate some level of failure." Right there it's indicating that by using QUORUM consistency you are sacrificing availability (A).
The document referenced above also further defines the QUORUM level, stating that your replication factor comes into play as well:
If consistency is top priority, you can ensure that a read always
reflects the most recent write by using the following formula:
(nodes_written + nodes_read) > replication_factor
For example, if your application is using the QUORUM consistency level
for both write and read operations and you are using a replication
factor of 3, then this ensures that 2 nodes are always written and 2
nodes are always read. The combination of nodes written and read (4)
being greater than the replication factor (3) ensures strong read
consistency.
In the end, it all depends on your application requirements. If your application needs to be highly-available, ONE is probably your best choice. On the other hand, if you need strong-consistency, then QUORUM (or even ALL) would be the better option.

Resources