Learning NASM Assembly on 32-bit Ubuntu. I'm now trying to learn about recursive functions, starting with factorial (note: here I am assuming that the parameter will always be non-negative).
Assuming that I have
push 3
call factorial
I want to end up with 6 in EAX.
Here is my attempt:
SECTION .text
global main
main:
; -----------------------------------------------------------
; Main
; -----------------------------------------------------------
push 3
call factorial
; -----------------------------------------------------------
; Exit
; -----------------------------------------------------------
mov EAX,1
int 0x80
; -----------------------------------------------------------
; Recursive Factorial: n! = n * (n - 1)!
; -----------------------------------------------------------
factorial:
push EBP ; Retrieve parameter and put it
mov EBP,ESP ; into EBX register
add EBP,8 ;
mov EBX,[EBP] ; EBX = Param
cmp EBX,0 ; Check for base case
je base ; It is base if (n == 0)
dec EBX ; Decrement EBX to put it in the stack
push EBX ; Put (EBX - 1) in stack
inc EBX ; Restore EBX
call factorial ; Calculate factorial for (EBX - 1)
mul EBX ; EAX = (EAX * EBX) = (EBX - 1)! * EBX
pop EBX ; Retrieve EBX from the stack
jmp end
base: ; Base case
mov EAX,1 ; The result would be 1
end:
pop EBP ; Release EBP
ret
At least it works for the base case, ha... But for any other value I push, it always returns 0. I had the suspicion that maybe since EAX is 0, MUL would always result in 0, explaining this. To test, I decided to give EAX a value of 2, expecting some non-zero value, but it kept resulting in 0.
Can you advice me on how to do a recursive factorial function that takes its parameter from the stack? I believe having seen some examples, but either they were not recursive or they took their parameters from other places, or they used a bunch of variables (when I think it can be done with just registers).
Note that factorial(n-1) will overwrite factorial(n)'s value of EBX the first thing it does, thereby rendering the inc EBX after the push pointless. After you've reached the base case you'll have the situation where EBX is 0 when you do the mul, and of course anything * 0 == 0.
The easiest fix would be to change the prologue to:
push EBP ; Retrieve parameter and put it
push EBX ; save previous param
mov EBP,ESP ; into EBX register
add EBP,12 ;
mov EBX,[EBP] ; EBX = Param
And the epilogue to:
pop EBX ; restore previous param
pop EBP ; Release EBP
ret
Related
I`m trying to make a while loop that prints from 0 through 10 but have some errors...
Compile with these:
nasm -f elf myprog.asm
gcc -m32 -o myprog myprog.o
Errors:
at output you can see 134513690.. lots of....
and at the last line a segmentation fault
This is the code:
SECTION .text
global main
extern printf
main:
xor eax,eax ; eax = 0
myloop:
cmp eax,10 ; eax = 10?
je finish ; If true finish
push eax ; Save eax value
push number ; push number value on stack
call printf
pop eax
inc eax ; eax + 1
add esp,80 ; Im not sure what is this
jmp myloop ; jump to myloop
number db "%d",10,0 ; This is how i print the numbers
finish:
mov eax,1
mov ebx,0
int 0x80
There's one real error in this code; the function call cleanup isn't quite right. I would change the myloop section to be like this:
myloop:
cmp eax,10 ; eax = 10?
je finish ; If true finish
push eax ; Save eax value
push number ; push number value on stack
call printf
add esp, 4 ; move past the `push number` line
pop eax
inc eax ; eax + 1
jmp myloop ; jump to myloop
The biggest difference is that instead of adding 80 to esp (and I'm not sure why you were doing that), you're only adding the size of the argument pushed. Also, previously the wrong value was getting popped as eax, but switching the order of the add and the pop fixes this.
A few problems, you need to push the "number" not as address, but as numeral.
push dword number
After you call printf, you need to restore the stack, ESP.
Basically when you "push" a register, it gets stored in the stack. Since you push twice (two arguments), you need to restore 8 bytes.
When you "pop eax", you're retrieving the top of the stack, which is "number", not the counter. Therefore, you just need to do
pop eax
pop eax
then there is no need to restore the ESP by adding since it is done by popping.
Basically, after the first iteration, eax points at an address, so it will never be equal to 10.
Further reading about Stack Pointer and Base Pointer:
Ebp, esp and stack frame in assembly with nasm
Hi every one I am trying to do a tower of Hanoi in assembly x86 but I am trying to use arrays. So this code gets a number from user as a parameter in Linux, then error checks a bunch of stuff. So now I just want to make the algorithm which use the three arrays i made (start, end, temp) and output them step by step. If someone can help it would be greatly appreciated. `
%include "asm_io.inc"
segment .data ; where all the predefined variables are stored
aofr: db "Argument out of Range", 0 ; define aofr as a String "Argument out of Range"
ia: db "Incorrect Argument", 0 ; define ia as a String "Incorrect Argument"
tma: db "Too many Arguments", 0 ; define tma as a String "Too many Arguments"
hantowNumber dd 0 ; define hantowNumber this is what the size of the tower will be stored in
start: dd 0,0,0,0,0,0,0,0,9 ; this array is where all the rings start at
end: dd 0,0,0,0,0,0,0,0,9 ; this array is where all the rings end up at
temp: dd 0,0,0,0,0,0,0,0,9 ; this array is used to help move the rings
test: dd 0,0,0,0,0,0,0,0,9
; The next couple lines define the strings to show the pegs and what they look like
towerName: db " Tower 1 Tower 2 Tower 3 ", 10, 0
lastLineRow: db "XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX ", 10, 0
buffer: db " ", 0
fmt:db "%d",10,0
segment .bss ; where all the input variables are stored
segment .text
global asm_main ; run the main function
extern printf
asm_main:
enter 0,0 ; setup routine
pusha
mov edx, dword 0 ; set edx to zero this is where the hantowNumber is saved for now
mov ecx, dword[ebp+8] ; ecx has how many arguments are given
mov eax, dword[ebp+12] ; save the first argument in eax
add eax, 4 ; move the pointer to the main argument
mov ebx, dword[eax] ; save the number into ebx
push ebx ; reserve ebx
push ecx ; reserve ecx
cmp ecx, dword 2 ; compare if there are more the one argument given
jg TmA ; if more then one argument is given then jump Too many Argument (TmA)
mov ecx, 0 ; ecx = 0
movzx eax, byte[ebx+ecx] ; eax is the first character number from the inputed number
sub eax, 48 ; subtract 48 to get the actual number/letter/symbol
cmp eax, 10 ; check if eax is less then 10
jg IA ; if eax is greater then 10 then it is a letter or symbol
string_To_int: ; change String to int procedure
add edx, eax ; put the number in edx
inc ecx ; increase counter (ecx)
movzx eax, byte[ebx+ecx] ; move the next number in eax
cmp eax, 0 ; if eax = 0 then there are no more numbers
mov [hantowNumber], edx ; change hantowNumber to what ever is in edx
je rangeCheck ; go to rangeCheck to check if between 2-8
sub eax, 48 ; subtract 48 to get the actual number/letter/symbol
cmp eax, 10 ; check if eax is less then 10
jg IA ; if eax is greater then 10 then it is a letter or symbol
imul edx, 10 ; multiply edx by 10 so the next number can be added to the end
jmp string_To_int ; jump back to string_To_int if not done
rangeCheck: ; check the range of the number
cmp edx, dword 2 ; compare edx with 2
jl AofR ; if hantowNumber (edx) < 2 then go to Argument out of Range (AofR)
cmp edx, dword 8 ; compare edx with 8
jg AofR ; if hantowNumber (edx) > 8 then go to Argument out of Range (AofR)
mov ecx, [hantowNumber] ; move the number enterd by user in ecx
mov esi, 28 ; esi == 28 for stack pointer counter
setStart: ; set the first array the starting peg
mov [start+esi], ecx ; put ecx into the array
sub esi, 4 ; take one away from stack pointer conter
dec ecx ; take one away from ecx so the next number can go in to the array
cmp ecx, 0 ; compare ecx with 0
jne setStart ; if ecx != 0 then go to setStart loop
; This is the section where the algoritham should go for tower of hanoi
mov ecx, [hantowNumber]
towerAlgorithm:
cmp ecx, 0
jg Exit ; jump to Exit at the end of the program
dec ecx
IA:
mov eax, ia ; put the string in eax
push eax ; reserve eax
call print_string ; output the string that is in eax
call print_nl ; print a new line after the output
pop eax ; put eax back to normal
add esp, 4 ; takes 4 from stack
jmp Exit ; jump to Exit at the end of the program
AofR:
mov eax, aofr ; put the string in eax
push eax ; reserve eax
call print_string ; output the string that is in eax
call print_nl ; print a new line after the output
pop eax ; put eax back to normal
add esp, 4 ; takes 4 from stack
jmp Exit ; jump to Exit at the end of the program
TmA:
mov eax, tma ; put the string in eax
push eax ; reserve eax
call print_string ; output the string that is in eax
call print_nl ; print a new line after the output
pop eax ; put eax back to normal
add esp, 4 ; takes 4 from stack
jmp Exit ; jump to Exit at the end of the program
Exit: ; ends the program when it jumps to here
add esp, 9 ; takes 8 from stack
popa
mov eax, 0 ; return back to C
leave
ret
haha I'm doing the exact same assignment and stuck on the algorithm however though when running your code it seems to identify "too many arguments" even though only one argument is provided, consider this algorithm when dealing with arguments(don't forget ./ is considered the "first argument" since it is the zeroth argument provided):
enter 0,0
pusha
; address of 1st argument is on stack at address ebp+12
; address of 2nd arg = address of 1st arg + 4
mov eax, dword [ebp+12] ;eax = address of 1st arg
add eax, 4 ;eax = address of 2nd arg
mov ebx, dword [eax] ;ebx = 2nd arg, it is pointer to string
mov eax, 0 ;clear the register
mov al, [ebx] ;it moves only 1 byte
sub eax, '0' ;now eax contains the numeric value of the firstcharacter of string
I'm reading a book(Assembly Language Step by Step, Programming with Linux by Jeff Duntemann) and I'm trying to change this program that show's arguments to instead show the environment variables. I'm trying to only use what was taught thus far(no C) and I've gotten the program to print environment variables but only after I counted how many I had and used an immediate, obviously not satisfying. Here's what I have:
global _start ; Linker needs this to find the entry point!
_start:
nop ; This no-op keeps gdb happy...
mov ebp,esp ; Save the initial stack pointer in EBP
; Copy the command line argument count from the stack and validate it:
cmp dword [ebp],MAXARGS ; See if the arg count exceeds MAXARGS
ja Error ; If so, exit with an error message
; Here we calculate argument lengths and store lengths in table ArgLens:
xor eax,eax ; Searching for 0, so clear AL to 0
xor ebx,ebx ; Stack address offset starts at 0
ScanOne:
mov ecx,0000ffffh ; Limit search to 65535 bytes max
mov edi,dword [ebp+16+ebx*4] ; Put address of string to search in EDI
mov edx,edi ; Copy starting address into EDX
cld ; Set search direction to up-memory
repne scasb ; Search for null (0 char) in string at edi
jnz Error ; REPNE SCASB ended without finding AL
mov byte [edi-1],10 ; Store an EOL where the null used to be
sub edi,edx ; Subtract position of 0 from start address
mov dword [ArgLens+ebx*4],edi ; Put length of arg into table
inc ebx ; Add 1 to argument counter
cmp ebx,44; See if arg counter exceeds argument count
jb ScanOne ; If not, loop back and do another one
; Display all arguments to stdout:
xor esi,esi ; Start (for table addressing reasons) at 0
Showem:
mov ecx,[ebp+16+esi*4] ; Pass offset of the message
mov eax,4 ; Specify sys_write call
mov ebx,1 ; Specify File Descriptor 1: Standard Output
mov edx,[ArgLens+esi*4] ; Pass the length of the message
int 80H ; Make kernel call
inc esi ; Increment the argument counter
cmp esi,44 ; See if we've displayed all the arguments
jb Showem ; If not, loop back and do another
jmp Exit ; We're done! Let's pack it in!
I moved the displacement up past the first null pointer to the first environment variable([ebp+4+ebx*4] > [ebp+16+ebx*4]) in both ScanOne and Showem. When I compare to the number of environment variables I have(44) it will print them just fine without a segfault, comparing to 45 only gives me a segfault.
I've tried using the pointers to compare to zero(in search of null pointer): cmp dword [ebp+16+ebx*4],0h but that just returns a segfault. I'm sure that the null pointer comes after the last environment variable in the stack but it's like it won't do anything up to and beyond that.
Where am I going wrong?
What if your program has 2, 3, or 0 args, would your code still work? Each section is separated by a NULL pointer (4 bytes of 0) You could just get the count of parameters and use that as your array index and skip over the args until you get to the NULL bytes. Now you have your Environment Block:
extern printf, exit
section .data
fmtstr db "%s", 10, 0
fmtint db "%d", 10, 0
global main
section .text
main:
push ebp
mov ebp, esp
mov ebx, [ebp + 4]
.SkipArgs:
mov edi, dword [ebp + 4 * ebx]
inc ebx
test edi, edi
jnz .SkipArgs
.ShowEnvBlock:
mov edi, dword [ebp + 4 * ebx]
test edi, edi
jz .NoMore
push edi
push fmtstr
call printf
add esp, 4 * 2
inc ebx
jmp .ShowEnvBlock
.NoMore:
push 0
call exit
Yes I use printf here, but you just swap that with your system call.
Want to go ahead and apologize, this always happens to me(fix it myself after asking question on stackoverflow). I think when I tried comparing pointer to 0h I typed something wrong. Here's what I did:
inc ebx
cmp dword [ebp+16+ebx*4],0h
jnz ScanOne
and
inc esi
cmp dword [ebp+16+esi*4],0h
jnz Showem
This worked.
Learning NASM Assembly on 32-bit Ubuntu.
I've been learning about recursive functions. I just did factorial, with your help here: Understanding recursive factorial function in NASM Assembly
Watching the code, I thought that maybe I could quickly implement fibonacci as well, using almost the same code. Here is the code, assuming that the parameter is always greater than 0:
SECTION .text
global main
main:
; -----------------------------------------------------------
; Main
; -----------------------------------------------------------
push 6
call fibonacci
mov [ECX],EAX
add byte [ECX],'0'
mov EDX,1
call print
; -----------------------------------------------------------
; Exit
; -----------------------------------------------------------
mov EAX,1
int 0x80
; -----------------------------------------------------------
; Fibonacci recursivo: f(n) = f(n - 1) + f(n - 2)
; -----------------------------------------------------------
fibonacci:
push EBP ; Retrieve parameter and put it
push EBX ; Save previous parameter
mov EBP,ESP ; into EBX register
add EBP,12 ;
mov EBX,[EBP] ; EBX = Param
cmp EBX,1 ; Check for base case
jle base ; It is base if (n <= 1)
dec EBX ; Decrement EBX to put it in the stack
push EBX ; Put (EBX - 1) in stack
inc EBX ; Restore EBX
call fibonacci ; Calculate fibonacci for (EBX - 1)
mov ESI,EAX ; EAX = (EAX + EBX)
pop EBX ; Retrieve EBX from the stack
sub EBX,2 ; Decrement EBX to put it in the stack
push EBX ; Put (EBX - 2) in stack
add EBX,2 ; Restore EBX
call fibonacci ; Calculate fibonacci for (EBX - 2)
mov EDX,EAX ; EAX = (EAX + EBX)
pop EBX ; Retrieve EBX from the stack
add ESI,EDX
mov EAX,ESI
jmp end
base: ; Base case
mov EAX,1 ; The result would be 1
end:
pop EBX ; Restore previous parameter
pop EBP ; Release EBP
ret
It is a bit crude. I calculate fibonacci for (parameter - 1), then I do it again for (parameter - 2), and just add them up and put them into EAX.
It doesn't work:
2 => 2
3 => 3
4 => 4
5 => 4
Fortunately I fixed the segmentation fault errors, but I probably broke something else doing that. Now I don't see what's the problem. Can you tell me why am I getting the wrong values?
One particular observation is that, for some reason, doing mov ECX,EAX gave me a segmentation fault error. That's why I used ESI instead. I'm not sure why, but I guess that it is related.
Whenever you're dealing with recursion, you have to be very careful about what the next layer in the recursive chain will do to the state of the current layer (e.g. register values). I'd suggest rewriting the function as follows:
fibonacci:
push EBP ; Retrieve parameter and put it
push EBX ; Save previous parameter
mov EBP,ESP ; into EBX register
add EBP,12 ;
mov EBX,[EBP] ; EBX = Param
cmp EBX,1 ; Check for base case
jle base ; It is base if (n <= 1)
lea ecx,[ebx-1]
push ecx ; push N-1
call fibonacci ; Calculate fibonacci for (EBX - 1)
pop ecx ; remove N-1 off the stack
push eax ; save the result of fibonacci(N-1)
lea ecx,[ebx-2]
push ecx ; push N-2
call fibonacci ; Calculate fibonacci for (EBX - 2)
pop ecx ; remove N-2 off the stack
pop ecx ; ecx = fibonacci(N-1)
add eax,ecx ; eax = fibonacci(N-2) + fibonacci(N-1)
jmp end
base: ; Base case
mov EAX,1 ; The result would be 1
end:
pop EBX ; Restore previous parameter
pop EBP ; Release EBP
ret
Suppose that I have an integer number in a register, how can I print it? Can you show a simple example code?
I already know how to print a string such as "hello, world".
I'm developing on Linux.
If you're already on Linux, there's no need to do the conversion yourself. Just use printf instead:
;
; assemble and link with:
; nasm -f elf printf-test.asm && gcc -m32 -o printf-test printf-test.o
;
section .text
global main
extern printf
main:
mov eax, 0xDEADBEEF
push eax
push message
call printf
add esp, 8
ret
message db "Register = %08X", 10, 0
Note that printf uses the cdecl calling convention so we need to restore the stack pointer afterwards, i.e. add 4 bytes per parameter passed to the function.
You have to convert it in a string; if you're talking about hex numbers it's pretty easy. Any number can be represented this way:
0xa31f = 0xf * 16^0 + 0x1 * 16^1 + 3 * 16^2 + 0xa * 16^3
So when you have this number you have to split it like I've shown then convert every "section" to its ASCII equivalent.
Getting the four parts is easily done with some bit magic, in particular with a right shift to move the part we're interested in in the first four bits then AND the result with 0xf to isolate it from the rest. Here's what I mean (soppose we want to take the 3):
0xa31f -> shift right by 8 = 0x00a3 -> AND with 0xf = 0x0003
Now that we have a single number we have to convert it into its ASCII value. If the number is smaller or equal than 9 we can just add 0's ASCII value (0x30), if it's greater than 9 we have to use a's ASCII value (0x61).
Here it is, now we just have to code it:
mov si, ??? ; si points to the target buffer
mov ax, 0a31fh ; ax contains the number we want to convert
mov bx, ax ; store a copy in bx
xor dx, dx ; dx will contain the result
mov cx, 3 ; cx's our counter
convert_loop:
mov ax, bx ; load the number into ax
and ax, 0fh ; we want the first 4 bits
cmp ax, 9h ; check what we should add
ja greater_than_9
add ax, 30h ; 0x30 ('0')
jmp converted
greater_than_9:
add ax, 61h ; or 0x61 ('a')
converted:
xchg al, ah ; put a null terminator after it
mov [si], ax ; (will be overwritten unless this
inc si ; is the last one)
shr bx, 4 ; get the next part
dec cx ; one less to do
jnz convert_loop
sub di, 4 ; di still points to the target buffer
PS: I know this is 16 bit code but I still use the old TASM :P
PPS: this is Intel syntax, converting to AT&T syntax isn't difficult though, look here.
Linux x86-64 with printf
main.asm
default rel ; make [rel format] the default, you always want this.
extern printf, exit ; NASM requires declarations of external symbols, unlike GAS
section .rodata
format db "%#x", 10, 0 ; C 0-terminated string: "%#x\n"
section .text
global main
main:
sub rsp, 8 ; re-align the stack to 16 before calling another function
; Call printf.
mov esi, 0x12345678 ; "%x" takes a 32-bit unsigned int
lea rdi, [rel format]
xor eax, eax ; AL=0 no FP args in XMM regs
call printf
; Return from main.
xor eax, eax
add rsp, 8
ret
GitHub upstream.
Then:
nasm -f elf64 -o main.o main.asm
gcc -no-pie -o main.out main.o
./main.out
Output:
0x12345678
Notes:
sub rsp, 8: How to write assembly language hello world program for 64 bit Mac OS X using printf?
xor eax, eax: Why is %eax zeroed before a call to printf?
-no-pie: plain call printf doesn't work in a PIE executable (-pie), the linker only automatically generates a PLT stub for old-style executables. Your options are:
call printf wrt ..plt to call through the PLT like traditional call printf
call [rel printf wrt ..got] to not use a PLT at all, like gcc -fno-plt.
Like GAS syntax call *printf#GOTPCREL(%rip).
Either of these are fine in a non-PIE executable as well, and don't cause any inefficiency unless you're statically linking libc. In which case call printf can resolve to a call rel32 directly to libc, because the offset from your code to the libc function would be known at static linking time.
See also: Can't call C standard library function on 64-bit Linux from assembly (yasm) code
If you want hex without the C library: Printing Hexadecimal Digits with Assembly
Tested on Ubuntu 18.10, NASM 2.13.03.
It depends on the architecture/environment you are using.
For instance, if I want to display a number on linux, the ASM code will be different from the one I would use on windows.
Edit:
You can refer to THIS for an example of conversion.
I'm relatively new to assembly, and this obviously is not the best solution,
but it's working. The main function is _iprint, it first checks whether the
number in eax is negative, and prints a minus sign if so, than it proceeds
by printing the individual numbers by calling the function _dprint for
every digit. The idea is the following, if we have 512 than it is equal to: 512 = (5 * 10 + 1) * 10 + 2 = Q * 10 + R, so we can found the last digit of a number by dividing it by 10, and
getting the reminder R, but if we do it in a loop than digits will be in a
reverse order, so we use the stack for pushing them, and after that when
writing them to stdout they are popped out in right order.
; Build : nasm -f elf -o baz.o baz.asm
; ld -m elf_i386 -o baz baz.o
section .bss
c: resb 1 ; character buffer
section .data
section .text
; writes an ascii character from eax to stdout
_cprint:
pushad ; push registers
mov [c], eax ; store ascii value at c
mov eax, 0x04 ; sys_write
mov ebx, 1 ; stdout
mov ecx, c ; copy c to ecx
mov edx, 1 ; one character
int 0x80 ; syscall
popad ; pop registers
ret ; bye
; writes a digit stored in eax to stdout
_dprint:
pushad ; push registers
add eax, '0' ; get digit's ascii code
mov [c], eax ; store it at c
mov eax, 0x04 ; sys_write
mov ebx, 1 ; stdout
mov ecx, c ; pass the address of c to ecx
mov edx, 1 ; one character
int 0x80 ; syscall
popad ; pop registers
ret ; bye
; now lets try to write a function which will write an integer
; number stored in eax in decimal at stdout
_iprint:
pushad ; push registers
cmp eax, 0 ; check if eax is negative
jge Pos ; if not proceed in the usual manner
push eax ; store eax
mov eax, '-' ; print minus sign
call _cprint ; call character printing function
pop eax ; restore eax
neg eax ; make eax positive
Pos:
mov ebx, 10 ; base
mov ecx, 1 ; number of digits counter
Cycle1:
mov edx, 0 ; set edx to zero before dividing otherwise the
; program gives an error: SIGFPE arithmetic exception
div ebx ; divide eax with ebx now eax holds the
; quotent and edx the reminder
push edx ; digits we have to write are in reverse order
cmp eax, 0 ; exit loop condition
jz EndLoop1 ; we are done
inc ecx ; increment number of digits counter
jmp Cycle1 ; loop back
EndLoop1:
; write the integer digits by poping them out from the stack
Cycle2:
pop eax ; pop up the digits we have stored
call _dprint ; and print them to stdout
dec ecx ; decrement number of digits counter
jz EndLoop2 ; if it's zero we are done
jmp Cycle2 ; loop back
EndLoop2:
popad ; pop registers
ret ; bye
global _start
_start:
nop ; gdb break point
mov eax, -345 ;
call _iprint ;
mov eax, 0x01 ; sys_exit
mov ebx, 0 ; error code
int 0x80 ; край
Because you didn't say about number representation I wrote the following code for unsigned number with any base(of course not too big), so you could use it:
BITS 32
global _start
section .text
_start:
mov eax, 762002099 ; unsigned number to print
mov ebx, 36 ; base to represent the number, do not set it too big
call print
;exit
mov eax, 1
xor ebx, ebx
int 0x80
print:
mov ecx, esp
sub esp, 36 ; reserve space for the number string, for base-2 it takes 33 bytes with new line, aligned by 4 bytes it takes 36 bytes.
mov edi, 1
dec ecx
mov [ecx], byte 10
print_loop:
xor edx, edx
div ebx
cmp dl, 9 ; if reminder>9 go to use_letter
jg use_letter
add dl, '0'
jmp after_use_letter
use_letter:
add dl, 'W' ; letters from 'a' to ... in ascii code
after_use_letter:
dec ecx
inc edi
mov [ecx],dl
test eax, eax
jnz print_loop
; system call to print, ecx is a pointer on the string
mov eax, 4 ; system call number (sys_write)
mov ebx, 1 ; file descriptor (stdout)
mov edx, edi ; length of the string
int 0x80
add esp, 36 ; release space for the number string
ret
It's not optimised for numbers with base of power of two and doesn't use printf from libc.
The function print outputs the number with a new line. The number string is formed on stack. Compile by nasm.
Output:
clockz
https://github.com/tigertv/stackoverflow-answers/tree/master/8194141-how-to-print-a-number-in-assembly-nasm