I want to iterate 2 (or 3) infinite lists and find the "smallest" pair that satisfies a condition, like so:
until pred [(a,b,c) | a<-as, b<-bs, c<-cs]
where pred (a,b,c) = a*a + b*b == c*c
as = [1..]
bs = [1..]
cs = [1..]
The above wouldn't get very far, as a == b == 1 throughout the run of the program.
Is there a nice way to dovetail the problem, e.g. build the infinite sequence [(1,1,1),(1,2,1),(2,1,1),(2,1,2),(2,2,1),(2,2,2),(2,2,3),(2,3,2),..] ?
Bonus: is it possible to generalize to n-tuples?
There's a monad for that, Omega.
Prelude> let as = each [1..]
Prelude> let x = liftA3 (,,) as as as
Prelude> let x' = mfilter (\(a,b,c) -> a*a + b*b == c*c) x
Prelude> take 10 $ runOmega x'
[(3,4,5),(4,3,5),(6,8,10),(8,6,10),(5,12,13),(12,5,13),(9,12,15),(12,9,15),(8,15,17),(15,8,17)]
Using it's applicative features, you can generalize to arbitrary tuples:
quadrupels = (,,,) <$> as <*> as <*> as <*> as -- or call it liftA4
But: this alone does not eliminate duplication, of course. It only gives you proper diagonalization. Maybe you could use monad comprehensions together with an approach like Thomas's, or just another mfilter pass (restricting to b /= c, in this case).
List comprehensions are great (and concise) ways to solve such problems. First, you know you want all combinations of (a,b,c) that might satisfy a^2 + b^2 = c^2 - a helpful observation is that (considering only positive numbers) it will always be the case that a <= c && b <= c.
To generate our list of candidates we can thus say c ranges from 1 to infinity while a and b range from one to c.
[(a,b,c) | c <- [1..], a <- [1..c], b <- [1..c]]
To get to the solution we just need to add your desired equation as a guard:
[(a,b,c) | c <- [1..], a <- [1..c], b <- [1..c], a*a+b*b == c*c]
This is inefficient, but the output is correct:
[(3,4,5),(4,3,5),(6,8,10),(8,6,10),(5,12,13),(12,5,13),(9,12,15)...
There are more principled methods than blind testing that can solve this problem.
{- It depends on what is "smallest". But here is a solution for a concept of "smallest" if tuples were compared first by their max. number and then by their total sum. (You can just copy and paste my whole answer into a file as I write the text in comments.)
We will need nub later. -}
import Data.List (nub)
{- Just for illustration: the easy case with 2-tuples. -}
-- all the two-tuples where 'snd' is 'n'
tuples n = [(i, n) | i <- [1..n]]
-- all the two-tuples where 'snd' is in '1..n'
tuplesUpTo n = concat [tuples i | i <- [1..n]]
{-
To get all results, you will need to insert the flip of each tuple into the stream. But let's do that later and generalize first.
Building tuples of arbitrary length is somewhat difficult, so we will work on lists. I call them 'kList's, if they have a length 'k'.
-}
-- just copied from the tuples case, only we need a base case for k=1 and
-- we can combine all results utilizing the list monad.
kLists 1 n = [[n]]
kLists k n = do
rest <- kLists (k-1) n
add <- [1..head rest]
return (add:rest)
-- same as above. all the klists with length k and max number of n
kListsUpTo k n = concat [kLists k i | i <- [1..n]]
-- we can do that unbounded as well, creating an infinite list.
kListsInf k = concat [kLists k i | i <- [1..]]
{-
The next step is rotating these lists around, because until now the largest number is always in the last place. So we just look at all rotations to get all the results. Using nub here is admittedly awkward, you can improve that. But without it, lists where all elements are the same are repeated k times.
-}
rotate n l = let (init, end) = splitAt n l
in end ++ init
rotations k l = nub [rotate i l | i <- [0..k-1]]
rotatedKListsInf k = concatMap (rotations k) $ kListsInf k
{- What remains is to convert these lists into tuples. This is a bit awkward, because every n-tuple is a separate type. But it's straightforward, of course. -}
kListToTuple2 [x,y] = (x,y)
kListToTuple3 [x,y,z] = (x,y,z)
kListToTuple4 [x,y,z,t] = (x,y,z,t)
kListToTuple5 [x,y,z,t,u] = (x,y,z,t,u)
kListToTuple6 [x,y,z,t,u,v] = (x,y,z,t,u,v)
{- Some tests:
*Main> take 30 . map kListToTuple2 $ rotatedKListsInf 2
[(1,1),(1,2),(2,1),(2,2),(1,3),(3,1),(2,3),(3,2),(3,3),(1,4),(4,1),(2,4),(4,2),(3,4),
(4,3),(4,4),(1,5),(5,1),(2,5),(5,2),(3,5),(5,3),(4,5),(5,4),(5,5),(1,6),(6,1),
(2,6), (6,2), (3,6)]
*Main> take 30 . map kListToTuple3 $ rotatedKListsInf 3
[(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,2),(2,2,1),(2,1,2),(2,2,2),(1,1,3),(1,3,1),
(3,1,1),(1,2,3),(2,3,1),(3,1,2),(2,2,3),(2,3,2),(3,2,2),(1,3,3),(3,3,1),(3,1,3),
(2,3,3),(3,3,2),(3,2,3),(3,3,3),(1,1,4),(1,4,1),(4,1,1),(1,2,4),(2,4,1),(4,1,2)]
Edit:
I realized there is a bug: Just rotating the ordered lists isn't enough of course. The solution must be somewhere along the lines of having
rest <- concat . map (rotations (k-1)) $ kLists (k-1) n
in kLists, but then some issues with repeated outputs arise. You can figure that out, I guess. ;-)
-}
It really depends on what you mean by "smallest", but I assume you want to find a tuple of numbers with respect to its maximal element - so (2,2) is less than (1,3) (while standard Haskell ordering is lexicographic).
There is package data-ordlist, which is aimed precisely at working with ordered lists. It's function mergeAll (and mergeAllBy) allows you to combine a 2-dimensional matrix ordered in each direction into an ordered list.
First let's create a desired comparing function on tuples:
import Data.List (find)
import Data.List.Ordered
compare2 :: (Ord a) => (a, a) -> (a, a) -> Ordering
compare2 x y = compare (max2 x, x) (max2 y, y)
where
max2 :: Ord a => (a, a) -> a
max2 (x, y) = max x y
Then using mergeAll we create a function that takes a comparator, a combining function (which must be monotonic in both arguments) and two sorted lists. It combines all possible elements from the two lists using the function and produces a result sorted list:
mergeWith :: (b -> b -> Ordering) -> (a -> a -> b) -> [a] -> [a] -> [b]
mergeWith cmp f xs ys = mergeAllBy cmp $ map (\x -> map (f x) xs) ys
With this function, it's very simple to produce tuples ordered according to their maximum:
incPairs :: [(Int,Int)]
incPairs = mergeWith compare2 (,) [1..] [1..]
Its first 10 elements are:
> take 10 incPairs
[(1,1),(1,2),(2,1),(2,2),(1,3),(2,3),(3,1),(3,2),(3,3),(1,4)]
and when we (for example) look for the first pair whose sum of squares is equal to 65:
find (\(x,y) -> x^2+y^2 == 65) incPairs
we get the correct result (4,7) (as opposed to (1,8) if lexicographic ordering were used).
This answer is for a more general problem for a unknown predicate. If the predicate is known, more efficient solutions are possible, like others have listed solutions based on knowledge that you don't need to iterate for all Ints for a given c.
When dealing with infinite lists, you need to perform breadth-first search for solution. The list comprehension only affords depth-first search, that is why you never arrive at a solution in your original code.
counters 0 xs = [[]]
counters n xs = concat $ foldr f [] gens where
gens = [[x:t | t <- counters (n-1) xs] | x <- xs]
f ys n = cat ys ([]:n)
cat (y:ys) (x:xs) = (y:x): cat ys xs
cat [] xs = xs
cat xs [] = [xs]
main = print $ take 10 $ filter p $ counters 3 [1..] where
p [a,b,c] = a*a + b*b == c*c
counters generates all possible counters for values from the specified range of digits, including a infinite range.
First, we obtain a list of generators of valid combinations of counters - for each permitted digit, combine it with all permitted combinations for counters of smaller size. This may result in a generator that produces a infinite number of combinations. So, we need to borrow from each generator evenly.
So gens is a list of generators. Think of this as a list of all counters starting with one digit: gens !! 0 is a list of all counters starting with 1, gens !! 1 is a list of all counters starting with 2, etc.
In order to borrow from each generator evenly, we could transpose the list of generators - that way we would get a list of first elements of the generators, followed by a list of second elements of the generators, etc.
Since the list of generators may be infinite, we cannot afford to transpose the list of generators, because we may never get to look at the second element of any generator (for a infinite number of digits we'd have a infinite number of generators). So, we enumerate the elements from the generators "diagonally" - take first element from the first generator; then take the second element from the first generator and the first from the second generator; then take the third element from the first generator, the second from the second, and the first element from the third generator, etc. This can be done by folding the list of generators with a function f, which zips together two lists - one list is the generator, the other is the already-zipped generators -, the beginning of one of them being offset by one step by adding []: to the head. This is almost zipWith (:) ys ([]:n) - the difference is that if n or ys is shorter than the other one, we don't drop the remainder of the other list. Note that folding with zipWith (:) ys n would be a transpose.
For this answer I will take "smallest" to refer to the sum of the numbers in the tuple.
To list all possible pairs in order, you can first list all of the pairs with a sum of 2, then all pairs with a sum of 3 and so on. In code
pairsWithSum n = [(i, n-i) | i <- [1..n-1]]
xs = concatMap pairsWithSum [2..]
Haskell doesn't have facilities for dealing with n-tuples without using Template Haskell, so to generalize this you will have to switch to lists.
ntuplesWithSum 1 s = [[s]]
ntuplesWithSum n s = concatMap (\i -> map (i:) (ntuplesWithSum (n-1) (s-i))) [1..s-n+1]
nums n = concatMap (ntuplesWithSum n) [n..]
Here's another solution, with probably another slightly different idea of "smallest". My order is just "all tuples with max element N come before all tuples with max element N+1". I wrote the versions for pairs and triples:
gen2_step :: Int -> [(Int, Int)]
gen2_step s = [(x, y) | x <- [1..s], y <- [1..s], (x == s || y == s)]
gen2 :: Int -> [(Int, Int)]
gen2 n = concatMap gen2_step [1..n]
gen2inf :: [(Int, Int)]
gen2inf = concatMap gen2_step [1..]
gen3_step :: Int -> [(Int, Int, Int)]
gen3_step s = [(x, y, z) | x <- [1..s], y <- [1..s], z <- [1..s], (x == s || y == s || z == s)]
gen3 :: Int -> [(Int, Int, Int)]
gen3 n = concatMap gen3_step [1..n]
gen3inf :: [(Int, Int, Int)]
gen3inf = concatMap gen3_step [1..]
You can't really generalize it to N-tuples, though as long as you stay homogeneous, you may be able to generalize it if you use arrays. But I don't want to tie my brain into that knot.
I think this is the simplest solution if "smallest" is defined as x+y+z because after you find your first solution in the space of Integral valued pythagorean triangles, your next solutions from the infinite list are bigger.
take 1 [(x,y,z) | y <- [1..], x <- [1..y], z <- [1..x], z*z + x*x == y*y]
-> [(4,5,3)]
It has the nice property that it returns each symmetrically unique solution only once. x and z are also infinite, because y is infinite.
This does not work, because the sequence for x never finishes, and thus you never get a value for y, not to mention z. The rightmost generator is the innermost loop.
take 1 [(z,y,x)|z <- [1..],y <- [1..],x <- [1..],x*x + y*y == z*z]
Sry, it's quite a while since I did haskell, so I'm going to describe it with words.
As I pointed out in my comment. It is not possible to find the smallest anything in an infinite list, since there could always be a smaller one.
What you can do is, have a stream based approach that takes the lists and returns a list with only 'valid' elements, i. e. where the condition is met. Lets call this function triangle
You can then compute the triangle list to some extent with take n (triangle ...) and from this n elements you can find the minium.
Related
I have a Haskell problem and I came up with a solution but I just can't put pen to paper.
Basically I have a function calc that takes in an Int and returns a Float.
calc :: Int -> Int -> Float
In my function g I want to apply this function on an array
g :: [Int] -> [Float]
Since calc takes two Int parameters I want to consume two Ints (
x being the first index of the array and x+1 being second index). This will keep repeating the function on (index of array) [1][2], [2][3], [3][4] etc.
g :: [Int] -> [Float]
g [] = ""
g (x:xs) = map calc x x+1
calc :: Int -> Int -> Float
calc current last = (current - last / last) * 100
I've tried to research online on how to use map and it basically said like this? Any idea why the code doesn't want to compile and if x+1 is even a viable?
Unary map is map but binary map is zipWith. So what's to zip together? The two copies of the same list, shifted by one position one against the other:
calc :: Int -> Int -> Float
g :: [Int] -> [Float]
g xs = zipWith calc xs (drop 1 xs)
This is all. The zipping automatically stops when the shorter sequence runs out.
zipWith foo applies foo to each pair of arguments, each argument coming from the corresponding list, one element after the other. It could be implemented using zip as
zipWith foo xs ys = map (\ (x,y) -> foo x y) $ zip xs ys
= [ foo x y | (x,y) <- zip xs ys ]
but it already does this by itself.
As an illustration, drop 1 [1,2,3] == [2,3] and this means that
zipWith calc [1, 2, 3] (drop 1 [1, 2, 3]) ==
zipWith calc [1, 2, 3]
[2, 3 ] ==
[calc 1
2,
calc 2
3]
You wanted to use indices. Indices are practically never used in Haskell with lists. We instead achieve the same effect by structural jiggling, and then when we advance along the two lists one element at a time, each operation is O(1) because the next element is already at the top of the advanced list. Whereas with the indices we'd have to traverse the same list from the top anew each time, leading to O(k) time per each one (kth) element, i.e. quadratic behavior overall.
update: taking the zipping approach leads to a possibility of code fusion,
g2 xs = zipWith calc xs (drop 1 xs)
= [calc x y | (x,y) <- zip xs (drop 1 xs)]
= [calc x y | (x:y:_) <- tails xs] -- tails ~= iterate (drop 1)
because why build a new structure to house the two consecutive elements when they already appear in a structure ... the original list structure.
Interestingly, Common Lisp has this special kind of map, a map on tails, as part of the language. While the regular map is known there as mapcar, the map on tails is known there as maplist (it's a map on non-empty tails, to be precise).
I think the best a solution is
-- Returns the empty list on empty list due to laziness of zip
g xs = uncurry calc `map` zip xs (tail xs)
-- | |- this is the list of pairs with indeces: [(1,2), (2,3), (3,4) ...]
-- |- this converts a two arguments functions on a function with single 2-tuple argument
EDIT: #Will Ness solution is actually better.
I'm trying to learn haskell and implemented a function conseq that would return a list of consecutive elements of size n.
conseq :: Int -> [Int] -> [[Int]]
conseq n x
| n == length(x) = [x]
| n > length(x) = [x]
| otherwise = [take n x] ++ (conseq n (drop 1 x))
This works correctly.
> take 5 $ conseq 2 [1..10]
[[1,2],[2,3],[3,4],[4,5],[5,6]]
However, if I pass [1..] instead of [1..10], the program gets stuck in an infinite loop.
As I understood it, haskell has lazy evaluation so I should still be able to get the same result right? Is it length? Shouldn't the first two conditions evaluate to false as soon as the length becomes greater than n?
What did I misunderstand?
One of the main reasons why using length is not a good idea is because when it has to be evaluated on an infinite list, it will get stuck in an infinite loop.
The good news is however, we don't need length. It would also make the time complexity worse. We can work with two enumerators, one is n-1 places ahead of the other. If this enumerator reaches the end of the list, then we know that the first enumerator still has n-1 elements, and thus we can stop yielding values:
conseq :: Int -> [a] -> [[a]]
conseq n ys = go (drop (n-1) ys) ys
where go [] _ = []
go (_:as) ba#(~(_:bs)) = take n ba : go as bs
This gives us thus:
Prelude> conseq 3 [1 ..]
[[1,2,3],[2,3,4],[3,4,5],[4,5,6],[5,6,7],[6,7,8],[7,8,9],[8,9,10],[9,10,11],[10,11,12],[11,12,13],[12,13,14],[13,14,15],[14,15,16],[15,16,17],[16,17,18],[17,18,19],[18,19,20],[19,20,21],[20,21,22],[21,22,23],[22,23,24],[23,24,25],[24,25,26],[25,26,27],…
Prelude> conseq 3 [1 .. 4]
[[1,2,3],[2,3,4]]
The first thing your function does is calculate length(x), so it knows whether it should return [x], [x], or [take n x] ++ (conseq n (drop 1 x))
length counts the number of elements in the list - all the elements. If you ask for the length of an infinite list, it never finishes counting.
In Haskell I need to perform a function, whose declaration of types is as follows:
split ::[Integer] -> Maybe ([Integer],[Integer])
Let it work as follows:
split [1,2,3,4,5,15] = Just ([1,2,3,4,5],[15])
Because, 1 + 2 + 3 + 4 + 5 = 15
split [1,3,3,4,3] = Just ([1,3,3],[4,3])
Because, 1 + 3 + 3 = 7 = 4 + 3
split [1,5,7,8,0] = Nothing
I have tried this, but it doesn't work:
split :: [Integer] -> ([Integer], [Integer])
split xs = (ys, zs)
where
ys <- subsequences xs, ys isInfixOf xs, sum ys == sum zs
zs == xs \\ ys
Determines whether the list of positive integers xs can be divided into two parts (without rearranging its elements) with the same sum. If possible, its value is the pair formed by the two parts. If it's not, its value is Nothing.
How can I do it?
Not a complete answer, since this is a learning exercise and you want hints, but if you want to use subsequences from Data.List, you could then remove each element of the subsequence you are checking from the original list with \\, to get the difference, and compare the sums. You were on the right track, but you need to either find the first subsequence that works and return Just (ys, zs), or else Nothing.
You can make the test for some given subsequence a predicate and search with find.
What you could also do is create a function that gives all possible splittings of a list:
splits :: [a] -> [([a], [a])]
splits xs = zipWith splitAt [1..(length xs)-1] $ repeat xs
Which works as follows:
*Main> splits [1,2,3,4,5,15]
[([1],[2,3,4,5,15]),([1,2],[3,4,5,15]),([1,2,3],[4,5,15]),([1,2,3,4],[5,15]),([1,2,3,4,5],[15])]
Then you could just use find from Data.List to find the first pair of splitted lists that have equal sums:
import Data.List
splitSum :: [Integer] -> Maybe ([Integer], [Integer])
splitSum xs = find (\(x, y) -> sum x == sum y) $ splits xs
Which works as intended:
*Main> splitSum [1,2,3,4,5,15]
Just ([1,2,3,4,5],[15])
Since find returns Maybe a, the types automatically match up.
I'm really new to programming and Haskell in particular (so new that I actually don't know if this is a stupid question or not). But I was watching the lecture given by Eric Meijer (http://channel9.msdn.com/Series/C9-Lectures-Erik-Meijer-Functional-Programming-Fundamentals) and i was fascinated by the program written by Dr. Graham Hutton in lecture 11; The countdown problem.
My question is:
Is there a way of "filtering" the list of solutions by the length (number of elements), so that the list of solutions are restricted to the solutions that only uses (for example) three of the source numbers? In other words, I would like to change the question from "given the numbers [1,2,3,4,5,6,8,9] construct 18 using the operators..." to "given the numbers [..] which three numbers can be used to construct..."
In my futile attempts, I've been trying to put a kind restriction on his function subbags (which returns all permutations and subsequences of a list)
subbags :: [a] -> [[a]]
subbags xs = [zs | ys <- subs xs, zs <- perms ys]
So that I get all the permutations and subsequences that only contain three of the source numbers. Is this possible? If so, how?
Like I said, I have no idea if this is even a legitimate question - but I have gone from curious to obsessed, so any form of help or hint would be greatly appreciated!
The simplest way would be to just select from the candidates three times
[ (x, y, z) | x <- xs, y <- xs, z <- xs ]
although this assumes that repeat use of a single number is OK.
If it's not, we'll have to get smarter. In a simpler scenario we'd like to pick just two candidates:
[ (x, y) | x <- xs, y <- ys, aboveDiagonal (x, y) ]
in other words, if we think of this as a cartesian product turning a list into a grid of possibilities, we'd like to only consider the values "above the diagonal", where repeats don't happen. We can express this by zipping the coordinates along with the values
[ (x, y) | (i, x) <- zip [1..] xs
, (j, y) <- zip [1..] xs
, i < j
]
which can be extended back out to the n=3 scenario
[ (x, y, z) | (i, x) <- zip [1..] xs
, (j, y) <- zip [1..] xs
, (k, z) <- zip [1..] xs
, i < j
, j < k
]
Ultimately, however, this method is inefficient since it still has to scan through all of the possible pairs and then prune the repeats. We can be a bit smarter by only enumerating the above diagonal values to begin with. Returning to n=2 we'll write this as
choose2 :: [a] -> [(a, a)]
choose2 [] = []
choose2 (a:as) = map (a,) as ++ choose2 as
In other words, we pick first all of the pairs where the head of the list comes first and a value in the tail of the list comes second—this captures one edge of the upper triangle—and then we recurse by adding all of the upper diagonal values of the list of candidates sans the head.
This method can be straightforwardly extended to the n=3 case by using the n=2 case as a building block
choose3 :: [a] -> [(a, a, a)]
choose3 [] = []
choose3 (a:as) = map (\(y, z) -> (a, y, z)) (choose2 as) ++ choose3 as
which also provides a direct generalization to the fully general n dimensional solution
choose :: Int -> [a] -> [[a]]
choose 0 as = [[]] -- there's one way to choose 0 elements
choose _ [] = [] -- there are 0 ways to choose (n>0) elements of none
choose 1 as = map (:[]) as -- there are n ways to choose 1 element of n
choose n (a:as) = map (a:) (choose (n-1) as) ++ choose n as
I like this solution, which does not require the list elements to be an instance of Eq:
import Data.List (tails)
triples ls = [[x,y,z] | (x:xs) <- tails ls,
(y:ys) <- tails xs,
z <- ys]
This returns only subsequences, not permutations, though.
At university my task is the following :
define the following function:
primepowers :: Integer -> [Integer]
that calculates the infinite list of the first n powers of the prime numbers for a given parameter n, sorted asc.
That is,
primepowers n contains in ascending order the elements of
{p^i | p is prime, 1≤i≤n}.
After working on this task I came to a dead end. I have the following four functions:
merge :: Ord t => [t] -> [t] -> [t]
merge [] b = b
merge a [] = a
merge (a:ax) (b:bx)
| a <= b = a : merge ax (b:bx)
| otherwise = b : merge (a:ax) bx
primes :: [Integer]
primes = sieve [2..]
where sieve [] = []
sieve (p:xs) = p : sieve (filter (not . multipleOf p) xs)
where multipleOf p x = x `mod` p == 0
powers :: Integer -> Integer -> [Integer]
powers n num = map (\a -> num ^ a) [1..n]
primepowers :: Integer -> [Integer]
primepowers n = foldr merge [] (map (powers n) primes)
I think that they work independently, as I have tested with some sample inputs.
merge merges two ordered lists to one ordered list
primes returns infinite list of prime numbers
powers calculates n powers of num (that is num^1 , num^2 ... num^n)
I try to merge everything in primepowers, but functions are not evaluated nothing happens respectively theres some kind of infinite loop.
I am not interested in optimization of primes or powers. Just I don't understand why that does not work. Or is my approach not good, not functional, not haskell?
I suspect the problem is: primes is an infinite list. Therefore, map (powers n) primes is an infinite list of (finite) lists. When you try to foldr merge [] them all together, merge must evaluate the head of each list...
Since there are an infinite number of lists, this is an infinite loop.
I would suggest transposing the structure, something like:
primepowers n = foldr merge [] [map (^i) primes | i <- [1..n]]
While you can probably not use this for your assignment, this can be solved quite elegantly using the primes and data-ordlist packages from Hackage.
import Data.List.Ordered
import Data.Numbers.Primes
primePowers n = mergeAll [[p^k | k <- [1..n]] | p <- primes]
Note that mergeAll is able to merge an infinite number of lists because it assumes that the heads of the lists are ordered in addition to the lists themselves being ordered. Thus, we can easily make this work for infinite powers as well:
allPrimePowers = mergeAll [[p^k | k <- [1..]] | p <- primes]
The reason why your program runs into an infinite loop is that you are trying to merge infinitely many lists only by using the invariant that each list is sorted in the ascending order. Before the program can output “2,” it has to know that none of the lists contains anything smaller than 2. This is impossible because there are infinitely many lists.
You need the following function:
mergePrio (h : l) r = h : merge l r