Checking for delayed asynchronous code in NodeJS - node.js

A little ticky question, First, I have a plugin:
exports.action = function(){
// Running synchronous code
runMyRequest("path/to/url", function(){
// My code is asynchronous
});
}
Then I call this plugin from a require:
var plugin = require('myplugin')
plugin.action();
// continue stuff
Question: Is there any ways at "continue stuff" to check if "My code is asynchronous" is running or finished ? And so wait for it ?
Note: In my real code plugins must call a callback(). The purpose of this question is to do something if plugin's code forget to call my callback()

I don't believe so but you can use setTimeout to call a function if the plugin doesn't call the callback in a specific period of time. If the callback is called you clear the timeout.

Question: ... And so wait for it ?
I've recently created a simple abstraction named WaitFor to call async functions in sync mode (based on Fibers): https://github.com/luciotato/waitfor
First, "action" should have a callback as parameter, because as it is written in your example, it is an async function (returns immediately) but it doesn't have a callback.
your code with wait.for:
exports.action = function(callback){
// Running synchronous code
runMyRequest("path/to/url", function(){
// My code is asynchronous
...
callback(err,data);
});
}
Then call this plugin from a require:
var wait = require('wait.for')
var plugin = require('myplugin')
...in a fiber...
wait.for(plugin.action); // waits until callback is called (WITHOUT BLOCKING NODE)
// continue stuff
Wait.for will give you other advantages, like sequential try-catch programming, when needed.

Related

Can I write a real async callback in Nodejs?

This is a normal example to read a file:
var fs = require('fs');
fs.readFile('./gparted-live-0.18.0-2-i486.iso', function (err, data) {
console.log(data.length);
});
console.log('All done.');
the code above outputs:
All done.
187695104
whereas this is my own version of a callback, I hope it could be async like the file reading code above, but it is not:
var f = function(cb) {
cb();
};
f(function() {
var i = 0;
// Do some very long job.
while(++i < (1<<30)) {}
console.log('Cb comes back.')
});
console.log('All done.');
the code above outputs:
Cb comes back.
All done.
Up till now, it's clear that in the first version of the file reading code, All done. is always printed before the file is read. However, in the second my home brewed version of code, All done. is always waiting until the very long job is done.
So what on earth is the magic that makes fs.readFile's callback an async call back while mine is not?
var f = function(cb) {
cb();
};
Is not async because it invokes cb immediately.
I think you want
var f = function(cb) {
setImmediate(function(){ cb(); });
};
In your example the while-loop is occupying the event-loop therefore the function call to console.log('All done.') is queued on the stack. When the event-loop becomes unblocked the subsequent function calls will be called in sequence.
In Mastering Node.js by Sandro Pasquali - Chapter 2, he discusses deferred execution and the event-loop in order to avoid the issue of the event-loop taking hold and blocking execution. I recommend reading that chapter in order to better understand this non-intuitive way of working in Node.js.
From Mastering Node.js...
Node processes JavaScript instructions using a single thread. Within
your JavaScript program no two operations will ever execute at exactly
the same moment, as might happen in a multithreaded environment.
Understanding this fact is essential to understanding how a Node
program, or process, is designed and runs.
The use of setImmediate() can remedy this issue.
You can use setImmediate() to defer the execution of code until the next cycle of the event loop, which I think accomplishes what you want:
var f = function(cb) {
cb();
};
f(function() {
setImmediate(function() {
var i = 0;
// Do some very long job.
while(++i < (1<<30)) {}
console.log('Cb comes back.')
});
});
console.log('All done.');
The documentation for setImmediate explains the difference between process.nextTick and setImmediate thusly:
Immediates are queued in the order created, and are popped off the queue once per loop iteration. This is different from process.nextTick which will execute process.maxTickDepth queued callbacks per iteration. setImmediate will yield to the event loop after firing a queued callback to make sure I/O is not being starved. While order is preserved for execution, other I/O events may fire between any two scheduled immediate callbacks.
Edit: Update answer based on #generalhenry's comment.

Understanding try and catch in node.js

I'm new to coding. Trying to understand why try...catch isn't supposed to work in node.js. I've created an example, but contrary to expectations, try...catch seems to be working. Where am I going wrong in my understanding ? Please help.
function callback(error) { console.log(error); }
function A() {
var errorForCallback;
var y = parseInt("hardnut");
if (!y) {
throw new Error("boycott parsley");
errorForCallback = "boycott parsley for callback";
}
setTimeout(callback(errorForCallback),1000);
}
try {
A();
}
catch (e) {
console.log(e.message);
}
// Output: boycott parsley
// Synchronous behaviour, try...catch works
-----------Example re-framed to reflect my understanding after reading answer below----------
function callback(error) { console.log(error); }
function A() {
var errorForCallback;
setTimeout(function(){
var y = parseInt("hardnut");
if (!y) {
// throw new Error("boycott parsley");
errorForCallback = "boycott parsley for callback";
}
callback(errorForCallback);
}, 1000);
}
try {
A();
}
catch (e) {
console.log(e.message);
}
// Output: boycott parsley for callback
// Asynchronous behaviour
// And if "throw new Error" is uncommented,
// then node.js stops
The try-catch approach is something that works perfectly with synchronous code. Not all the programming that you do in Node.js is asynchronous and so in those pieces of synchronous code that you write you can perfectly use a try-catch approach. Asynchronous code, on the other hand, does not work that way.
For instance, if you had two function executions like this
var x = fooSync();
var y = barSync();
You would expect three things, first that barSync() would be executed only after fooSync() has finished, and you would expect that x would contain whatever value is returned by the execution of fooSync before barSync() is executed. Also you would expect that if fooSync throws an exception, barSync is never executed.
If you would use a try-catch around fooSync() you could guarantee that if fooSync() fails you can catch that exception.
Now, the conditions completely change if you would have a code like this:
var x = fooAsync();
var y = barSync();
Now imagine that when fooAsync() is invoked in this scenario, it is not actually executed. It's just scheduled for execution later on. It is as if node would have a todo list, and at this moment it is too busy running your current module, and when it finds this function invocation, instead of running it, it simply adds it to the end of its todo list.
So, now you cannot guarantee that barSync() will run before fooAsync(), as a matter of fact, it probably won't. Now you don't control the context in which fooAsync() is executed.
So, after scheduling the fooAsync() function, it immediately moves to execution of barSync(). So, what can fooAsync() return? At this point nothing, because it has not run yet. So x above is probably undefined. If you would put try-catch around this piece of code it would be pointless, because the function will not be executed in the context of this code. It will be executed later on, when Node.js checks if there are any pending tasks in its todo list. It will be executed in the context of another routine that is constantly checking this todo list, and this only thread of execution is called an event loop.
If your function fooAsync() gets to fail, it will fail in the context of execution of this thread running the event loop and therefore it would not be caught by your try-catch statement, at that point, that module above may have probably finished execution.
So, that is why in asynchronous programing you cannot either get a return value, neither can you expect to do a try-catch, because you code is evaluated somewhere else, in another context different from the one where you think you invoked it. It is as if you could would have done something like this instead:
scheduleForExecutionLaterWhenYouHaveTime(foo);
var y = barSync();
And that's the reason why asynchronous programming requires other techniques to determine what happened to your code when it finally runs. Typically this is notified through a callback. You define a callback function which is called back with the details of what failed (if anything) or what your function produced and then you can react to that.

How to execute an async task with socket.io and node.js?

When I receive an "on" event on the server side, I want to start a task in parallel so it does not block the current event loop thread. Is it possible to do so? How?
I don't want to block the server side loop and I want to be able to send back a message to the client once the task is done, something such as:
client.on('execute-parallel-task', function(msg) {
setTimeout(function() {
// do something that takes a while
client.emit('finished-that-task');
},0);
// this block should return asap, not waiting for the previous call
});
I am not sure if setTimeout will do the job.
It depends what the takes a while is. If it takes a while asynchronously (you can tell because you'll have to register a callback or complete handler), and takes a while because it's blocked on something like IO, rather than CPU bound, it'll inherently be parallel.
If however, its something synchronous or CPU bound, whilst you can use setTimeout, setImmediate etc. to send back a message immediately, once the handler for setTimeout or setImmediate executes, your single thread of execution will be stuck handling that; you're not really fixing the problem, merely deferring it.
To exhibit true parallel behaviour, you'll need to launch a child process. You can use the message passing functionality to notify your worker what work to do, and to notify the parent process once the work is complete.
var cp = require('child_process');
var child = cp.fork(__dirname + '/my-child-worker.js');
n.on('message', function(m) {
if (m === "done") {
// Whey!
}
});
n.send(/* Job id, or something */);
Then in my-child-worker.js;
process.on('message', function (m) {
switch (m) {
case 'get-x':
// blah
break;
// other jobs
}
process.send('done');
});
you do not need the setTimeout.
Your function(msg) will be called once the execute parallel task finishes.
if you are designing a task to run in an async manner, you can look at something like the async lib for node.js
Async Node JS Link

Convert asynchronous/callback method to blocking/synchronous method

Is is possible to convert an asynchronous/callback based method in node to blocking/synchronous method?
I'm curious, more from a theoretical POV, than a "I have a problem to solve" POV.
I see how callback methods can be converted to values, via Q and the like, but calling Q.done() doesn't block execution.
The node-sync module can help you do that. But please be careful, this is not node.js way.
To turn asynchronous functions to synchronous in 'multi-threaded environment', we need to set up a loop checking the result, therefore cause blocking.
Here’s the example code in JS:
function somethingSync(args){
var ret; //the result-holding variable
//doing something async here...
somethingAsync(args,function(result){
ret = result;
});
while(ret === undefined){} //wait for the result until it's available,cause the blocking
return ret;
}
OR
synchronize.js also helps.
While I would not recommend it, this can easy be done using some sort of busy wait. For instance:
var flag = false;
asyncFunction( function () { //This is a callback
flag = true;
})
while (!flag) {}
The while loop will continuously loop until the callback has executed, thus blocking execution.
As you can imagine this would make your code very messy, so if you are going to do this (which I wouldn't recommend) you should make some sort of helper function to wrap your async function; similar to Underscore.js's Function functions, such as throttle. You can see exactly how these work by looking at the annotated source.

NodeJS - Can't implement asynchronous function

I'm newbie in NodeJs. This is my code for learning asynchronous function.
//--------------------- MAIN ---------------
console.log("Endpoint 1\r\n");
testThread(1000000000,function (result){
console.log(">>>>"+result+"\r\n");
});
console.log("Endpoint 2\r\n");
//------------------------------------------
function testThread(data,callback) {
//take a long time
for(j=0;j<data;j++) {
a = 122342342342424242431*3543652636364;
}
//
callback(a);
}
Run it:
node testthread.js
Always the result is:
Endpoint 1
>>>>4.335387639806787e+32
Endpoint 2
System prints "Endpoint 1", take 2 seconds, it prints ">>>>4.335387639806787e+32" after then it prints "Endpoint 2"
I'm not found the asynchronous here.
It should be:
Endpoint 1
Endpoint 2
>>>>4.335387639806787e+32
Please explain me.
Asynchronous functions are functions that call other functions that are asynchronous. There is not other way to implement asynchronous functions in javascript/node.js. Which at first looks like a chicken and egg problem doesn't it? How can one write an asynchronous function if the requirement is that it must call another asynchronous function in order to be asynchronous?
The answer is that the lowest level asynchronous function must be implemented in C.
Fortunately, javascript/node.js has several built-in asynchronous functions implemented in C that we can use as building blocks in javascript to build our own asynchronous functions. Examples of such functions include the http.request() method, the socket.listen() method and probably the simplest setTimeout() and setInterval().
Here's an example of how one could rewrite your code to achieve asynchronous processing;
function long_task (repeat_number, callback) {
// setTimeout is asynchronous, so keep calling it until we're done
function loop () {
if (repeat_number > 0) {
repeat_number --;
setTimeout(loop,1);
}
else {
callback("I'm done!");
}
}
loop();
}
console.log("calling long task");
long_task(10000,function(x){console.log(x)});
console.log("long task started");
This is a total synchronous code and as node.js is single threaded it wont start a second thread this way.
There are several asynchronous tasks like network requests or database calls, but this one is not.
You would have to spawn a child process to have this asynchronous.
See http://nodejs.org/api/child_process.html for more information

Resources