How to partition a list in Haskell? - haskell

I want to take a list (or a string) and split it into sub-lists of N elements. How do I do it in Haskell?
Example:
mysteryFunction 2 "abcdefgh"
["ab", "cd", "ef", "gh"]

cabal update
cabal install split
And then use chunksOf from Data.List.Split

Here's one option:
partition :: Int -> [a] -> [[a]]
partition _ [] = []
partition n xs = (take n xs) : (partition n (drop n xs))
And here's a tail recursive version of that function:
partition :: Int -> [a] -> [[a]]
partition n xs = partition' n xs []
where
partition' _ [] acc = reverse acc
partition' n xs acc = partition' n (drop n xs) ((take n xs) : acc)

You could use:
mysteryFunction :: Int -> [a] -> [[a]]
mysteryFunction n list = unfoldr takeList list
where takeList [] = Nothing
takeList l = Just $ splitAt n l
or alternatively:
mysteryFunction :: Int -> [a] -> [[a]]
mysteryFunction n list = unfoldr (\l -> if null l then Nothing else Just $ splitAt n l) list
Note this puts any remaining elements in the last list, for example
mysteryFunction 2 "abcdefg" = ["ab", "cd", "ef", "g"]

import Data.List
import Data.Function
mysteryFunction n = map (map snd) . groupBy ((==) `on` fst) . zip ([0..] >>= replicate n)
... just kidding...

mysteryFunction x "" = []
mysteryFunction x s = take x s : mysteryFunction x (drop x s)
Probably not the elegant solution you had in mind.

There's already
Prelude Data.List> :t either
either :: (a -> c) -> (b -> c) -> Either a b -> c
and
Prelude Data.List> :t maybe
maybe :: b -> (a -> b) -> Maybe a -> b
so there really should be
list :: t -> ([a] -> t) -> [a] -> t
list n _ [] = n
list _ c xs = c xs
as well. With it,
import Data.List (unfoldr)
g n = unfoldr $ list Nothing (Just . splitAt n)
without it,
g n = takeWhile (not.null) . unfoldr (Just . splitAt n)

A fancy answer.
In the answers above you have to use splitAt, which is recursive, too. Let's see how we can build a recursive solution from scratch.
Functor L(X)=1+A*X can map X into a 1 or split it into a pair of A and X, and has List(A) as its minimal fixed point: List(A) can be mapped into 1+A*List(A) and back using a isomorphism; in other words, we have one way to decompose a non-empty list, and only one way to represent a empty list.
Functor F(X)=List(A)+A*X is similar, but the tail of the list is no longer a empty list - "1" - so the functor is able to extract a value A or turn X into a list of As. Then List(A) is its fixed point (but no longer the minimal fixed point), the functor can represent any given list as a List, or as a pair of a element and a list. In effect, any coalgebra can "stop" decomposing the list "at will".
{-# LANGUAGE DeriveFunctor #-}
import Data.Functor.Foldable
data N a x = Z [a] | S a x deriving (Functor)
(which is the same as adding the following trivial instance):
instance Functor (N a) where
fmap f (Z xs) = Z xs
fmap f (S x y) = S x $ f y
Consider the definition of hylomorphism:
hylo :: (f b -> b) -> (c -> f c) -> c -> b
hylo psi phi = psi . fmap (hylo psi phi) . phi
Given a seed value, it uses phi to produce f c, to which fmap applies hylo psi phi recursively, and psi then extracts b from the fmapped structure f b.
A hylomorphism for the pair of (co)algebras for this functor is a splitAt:
splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = hylo psi phi (n, xs) where
phi (n, []) = Z []
phi (0, xs) = Z xs
phi (n, (x:xs)) = S x (n-1, xs)
This coalgebra extracts a head, as long as there is a head to extract and the counter of extracted elements is not zero. This is because of how the functor was defined: as long as phi produces S x y, hylo will feed y into phi as the next seed; once Z xs is produced, functor no longer applies hylo psi phi to it, and the recursion stops.
At the same time hylo will re-map the structure into a pair of lists:
psi (Z ys) = ([], ys)
psi (S h (t, b)) = (h:t, b)
So now we know how splitAt works. We can extend that to splitList using apomorphism:
splitList :: Int -> [a] -> [[a]]
splitList n xs = apo (hylo psi phi) (n, xs) where
phi (n, []) = Z []
phi (0, xs) = Z xs
phi (n, (x:xs)) = S x (n-1, xs)
psi (Z []) = Cons [] $ Left []
psi (Z ys) = Cons [] $ Right (n, ys)
psi (S h (Cons t b)) = Cons (h:t) b
This time the re-mapping is fitted for use with apomorphism: as long as it is Right, apomorphism will keep using hylo psi phi to produce the next element of the list; if it is Left, it produces the rest of the list in one step (in this case, just finishes off the list with []).

Related

create a function ved that will only remove the last occurrence of the largest item in the list using recursion

You must use recursion to define rmax2 and you must do so from “scratch”. That is, other than the cons operator, head, tail, and comparisons, you should not use any functions from the Haskell library.
I created a function that removes all instances of the largest item, using list comprehension. How do I remove the last instance of the largest number using recursion?
ved :: Ord a => [a] -> [a]
ved [] =[]
ved as = [ a | a <- as, m /= a ]
where m= maximum as
An easy way to split the problem into two easier subproblems consists in:
get the position index of the rightmost maximum value
write a general purpose function del that eliminates the element of a list at a given position. This does not require an Ord constraint.
If we were permitted to use regular library functions, ved could be written like this:
ved0 :: Ord a => [a] -> [a]
ved0 [] = []
ved0 (x:xs) =
let
(maxVal,maxPos) = maximum (zip (x:xs) [0..])
del k ys = let (ys0,ys1) = splitAt k ys in (ys0 ++ tail ys1)
in
del maxPos (x:xs)
where the pairs produced by zip are lexicographically ordered, thus ensuring the rightmost maximum gets picked.
We need to replace the library functions by manual recursion.
Regarding step 1, that is finding the position of the rightmost maximum, as is commonly done, we can use a recursive stepping function and a wrapper above it.
The recursive step function takes as arguments the whole context of the computation, that is:
current candidate for maximum value, mxv
current rightmost position of maximum value, mxp
current depth into the original list, d
rest of original list, xs
and it returns a pair: (currentMaxValue, currentMaxPos)
-- recursive stepping function:
findMax :: Ord a => a -> Int -> Int -> [a] -> (a, Int)
findMax mxv mxp d [] = (mxv,mxp)
findMax mxv mxp d (x:xs) = if (x >= mxv) then (findMax x d (d+1) xs)
else (findMax mxv mxp (d+1) xs)
-- top wrapper:
lastMaxPos :: Ord a => [a] -> Int
lastMaxPos [] = (-1)
lastMaxPos (x:xs) = snd (findMax x 0 1 xs)
Step 2, eliminating the list element at position k, can be handled in very similar fashion:
-- recursive stepping function:
del1 :: Int -> Int -> [a] -> [a]
del1 k d [] = []
del1 k d (x:xs) = if (d==k) then xs else x : del1 k (d+1) xs
-- top wrapper:
del :: Int -> [a] -> [a]
del k xs = del1 k 0 xs
Putting it all together:
We are now able to write our final recursion-based version of ved. For simplicity, we inline the content of wrapper functions instead of calling them.
-- ensure we're only using authorized functionality:
{-# LANGUAGE NoImplicitPrelude #-}
import Prelude (Ord, Eq, (==), (>=), (+), ($), head, tail,
IO, putStrLn, show, (++)) -- for testing only
ved :: Ord a => [a] -> [a]
ved [] = []
ved (x:xs) =
let
findMax mxv mxp d [] = (mxv,mxp)
findMax mxv mxp d (y:ys) = if (y >= mxv) then (findMax y d (d+1) ys)
else (findMax mxv mxp (d+1) ys)
(maxVal,maxPos) = findMax x 0 1 xs
del1 k d (y:ys) = if (d==k) then ys else y : del1 k (d+1) ys
del1 k d [] = []
in
del1 maxPos 0 (x:xs)
main :: IO ()
main = do
let xs = [1,2,3,7,3,2,1,7,3,5,7,5,4,3]
res = ved xs
putStrLn $ "input=" ++ (show xs) ++ "\n" ++ " res=" ++ (show res)
If you are strictly required to use recursion, you can use 2 helper functions: One to reverse the list and the second to remove the first largest while reversing the reversed list.
This result in a list where the last occurrence of the largest element is removed.
We also use a boolean flag to make sure we don't remove more than one element.
This is ugly code and I really don't like it. A way to make things cleaner would be to move the reversal of the list to a helper function outside of the current function so that there is only one helper function to the main function. Another way is to use the built-in reverse function and use recursion only for the removal.
removeLastLargest :: Ord a => [a] -> [a]
removeLastLargest xs = go (maximum xs) [] xs where
go n xs [] = go' n True [] xs
go n xs (y:ys) = go n (y:xs) ys
go' n f xs [] = xs
go' n f xs (y:ys)
| f && y == n = go' n False xs ys
| otherwise = go' n f (y:xs) ys
Borrowing the implementation of dropWhileEnd from Hackage, we can implement a helper function splitWhileEnd:
splitWhileEnd :: (a -> Bool) -> [a] -> ([a], [a])
splitWhileEnd p = foldr (\x (xs, ys) -> if p x && null xs then ([], x:ys) else (x:xs, ys)) ([],[])
splitWhileEnd splits a list according to a predictor from the end. For example:
ghci> xs = [1,2,3,4,3,2,4,3,2]
ghci> splitWhileEnd (< maximum xs) xs
([1,2,3,4,3,2,4],[3,2])
With this helper function, you can write ven as:
ven :: Ord a => [a] -> [a]
ven xs =
let (x, y) = splitWhileEnd (< maximum xs) xs
in init x ++ y
ghci> ven xs
[1,2,3,4,3,2,3,2]
For your case, you can refactor splitWhileEnd as:
fun p = \x (xs, ys) -> if p x && null xs then ([], x:ys) else (x:xs, ys)
splitWhileEnd' p [] = ([], [])
splitWhileEnd' p (x : xs) = fun p x (splitWhileEnd' p xs)
ven' xs = let (x, y) = splitWhileEnd' (< maximum xs) xs in init x ++ y
If init and ++ are not allowed, you can implement them manually. It's easy!
BTW, I guess this may be your homework for Haskell course. I think it's ridiculous if your teacher gives the limitations. Who is programming from scratch nowadays?
Anyway, you can always work around this kind of limitations by reimplementing the built-in function manually. Good luck!

How to apply a function to a specific element of a list

How can I apply a function to only a single element of a list?
Any suggestion?
Example:
let list = [1,2,3,4,3,6]
function x = x * 2
in ...
I want to apply function only to the first occurance of 3 and stop there.
Output:
List = [1,2,6,4,3,6] -- [1, 2, function 3, 4, 3, 6]
To map or not to map, that is the question.
Better not to map.
Why? Because map id == id anyway, and you only want to map through one element, the first one found to be equal to the argument given.
Thus, split the list in two, change the found element, and glue them all back together. Simple.
See: span :: (a -> Bool) -> [a] -> ([a], [a]).
Write: revappend (xs :: [a]) (ys :: [a]) == append (reverse xs) ys, only efficient.
Or fuse all the pieces together into one function. You can code it directly with manual recursion, or using foldr. Remember,
map f xs = foldr (\x r -> f x : r) [] xs
takeWhile p xs = foldr (\x r -> if p x then x : r else []) [] xs
takeUntil p xs = foldr (\x r -> if p x then [x] else x : r) [] xs
filter p xs = foldr (\x r -> if p x then x : r else r) [] xs
duplicate xs = foldr (\x r -> x : x : r) [] xs
mapFirstThat p f xs = -- ... your function
etc. Although, foldr won't be a direct fit, as you need the combining function of the (\x xs r -> ...) variety. That is known as paramorphism, and can be faked by feeding tails xs to the foldr, instead.
you need to maintain some type of state to indicate the first instance of the value, since map will apply the function to all values.
Perhaps something like this
map (\(b,x) -> if (b) then f x else x) $ markFirst 3 [1,2,3,4,3,6]
and
markFirst :: a -> [a] -> [(Boolean,a)]
markFirst a [] = []
markFirst a (x:xs) | x==a = (True,x): zip (repeat False) xs
| otherwise = (False,x): markFirst a xs
I'm sure there is an easier way, but that's the best I came up with at this time on the day before Thanksgiving.
Here is another approach based on the comment below
> let leftap f (x,y) = f x ++ y
leftap (map (\x -> if(x==3) then f x else x)) $ splitAt 3 [1,2,3,4,3,6]
You can just create a simple function which multiples a number by two:
times_two :: (Num a) => a -> a
times_two x = x * 2
Then simply search for the specified element in the list, and apply times_two to it. Something like this could work:
map_one_element :: (Eq a, Num a) => a -> (a -> a) -> [a] -> [a]
-- base case
map_one_element _ _ [] = []
-- recursive case
map_one_element x f (y:ys)
-- ff element is found, apply f to it and add rest of the list normally
| x == y = f y : ys
-- first occurence hasnt been found, keep recursing
| otherwise = y : map_one_element x f ys
Which works as follows:
*Main> map_one_element 3 times_two [1,2,3,4,3,6]
[1,2,6,4,3,6]

Data structure request: Lazily infinite set

Are there F :: * -> *, iterate' :: Ord a => (a -> a) -> a -> F a and elem' :: Ord a => Int -> a -> F a -> Bool with the following properties?
elem x (take n (iterate f y)) ⇒ elem' n x (iterate' f y) ⇒ elem x (iterate f y)
elem' n x (iterate' f y) runs in O(n * log n) time and O(n) space
elem' n x xs runs in O(log n) time and O(1) space
import qualified Data.Set as S
type F x = [S.Set x]
iterate' f
= map head
. evalState (traverse (state . splitAt) (iterate (*2) 1))
. scanl (flip S.insert) S.empty
. iterate f
elem' n x xs = S.member x $ xs !! (ceiling (logBase 2 (fromIntegral n)) - 1)
(Do the intermediate sets count as allocated space? Can you even do finite sets in linear space if you need to balance them?)

Recursively sort non-contiguous list to list of contiguous lists

I've been trying to learn a bit of functional programming (with Haskell & Erlang) lately and I'm always amazed at the succinct solutions people can come up with when they can think recursively and know the tools.
I want a function to convert a list of sorted, unique, non-contiguous integers into a list of contiguous lists, i.e:
[1,2,3,6,7,8,10,11]
to:
[[1,2,3], [6,7,8], [10,11]
This was the best I could come up with in Haskell (two functions)::
make_ranges :: [[Int]] -> [Int] -> [[Int]]
make_ranges ranges [] = ranges
make_ranges [] (x:xs)
| null xs = [[x]]
| otherwise = make_ranges [[x]] xs
make_ranges ranges (x:xs)
| (last (last ranges)) + 1 == x =
make_ranges ((init ranges) ++ [(last ranges ++ [x])]) xs
| otherwise = make_ranges (ranges ++ [[x]]) xs
rangify :: [Int] -> [[Int]]
rangify lst = make_ranges [] lst
It might be a bit subjective but I'd be interested to see a better, more elegant, solution to this in either Erlang or Haskell (other functional languages too but I might not understand it.) Otherwise, points for just fixing my crappy beginner's Haskell style!
Most straightforward way in my mind is a foldr:
ranges = foldr step []
where step x [] = [[x]]
step x acc#((y:ys):zs) | y == x + 1 = (x:y:ys):zs
| otherwise = [x]:acc
Or, more concisely:
ranges = foldr step []
where step x ((y:ys):zs) | y == x + 1 = (x:y:ys):zs
step x acc = [x]:acc
But wait, there's more!
abstractRanges f = foldr step []
where step x ((y:ys):zs) | f x y = (x:y:ys):zs
step x acc = [x]:acc
ranges = abstractRanges (\x y -> y == x + 1)
powerRanges = abstractRanges (\x y -> y == x*x) -- mighty morphin
By turning the guard function into a parameter, you can group more interesting things than just +1 sequences.
*Main> powerRanges [1,1,1,2,4,16,3,9,81,5,25]
[[1,1,1],[2,4,16],[3,9,81],[5,25]]
The utility of this particular function is questionable...but fun!
I can't believe I got the shortest solution. I know this is no code golf, but I think it is still quite readable:
import GHC.Exts
range xs = map (map fst) $ groupWith snd $ zipWith (\a b -> (a, a-b)) xs [0..]
or pointfree
range = map (map snd) . groupWith fst . zipWith (\a b -> (b-a, b)) [0..]
BTW, groupWith snd can be replaced with groupBy (\a b -> snd a == snd b) if you prefer Data.List over GHC.Exts
[Edit]
BTW: Is there a nicer way to get rid of the lambda (\a b -> (b-a, b)) than (curry $ (,) <$> ((-) <$> snd <*> fst) <*> snd) ?
[Edit 2]
Yeah, I forgot (,) is a functor. So here is the obfuscated version:
range = map (map fst) . groupWith snd . (flip $ zipWith $ curry $ fmap <$> (-).fst <*> id) [0..]
Suggestions are welcome...
import Data.List (groupBy)
ranges xs = (map.map) snd
. groupBy (const fst)
. zip (True : zipWith ((==) . succ) xs (tail xs))
$ xs
As to how to come up with such a thing: I started with the zipWith f xs (tail xs), which is a common idiom when you want to do something on consecutive elements of a list. Likewise is zipping up a list with information about the list, and then acting (groupBy) upon it. The rest is plumbing.
Then, of course, you can feed it through #pl and get:
import Data.List (groupBy)
import Control.Monad (ap)
import Control.Monad.Instances()
ranges = (((map.map) snd)
. groupBy (const fst))
.) =<< zip
. (True:)
. ((zipWith ((==) . succ)) `ap` tail)
, which, by my authoritative definition, is evil due to Mondad ((->) a). Twice, even. The data flow is meandering too much to lay it out in any sensible way. zipaptail is an Aztec god, and Aztec gods aren't to be messed with.
Another version in Erlang:
part(List) -> part(List,[]).
part([H1,H2|T],Acc) when H1 =:= H2 - 1 ->
part([H2|T],[H1|Acc]);
part([H1|T],Acc) ->
[lists:reverse([H1|Acc]) | part(T,[])];
part([],Acc) -> Acc.
k z = map (fst <$>) . groupBy (const snd) .
zip z . (False:) . (zipWith ((==) . succ) <*> tail) $ z
Try reusing standard functions.
import Data.List (groupBy)
rangeify :: (Num a) => [a] -> [[a]]
rangeify l = map (map fst) $ groupBy (const snd) $ zip l contigPoints
where contigPoints = False : zipWith (==) (map (+1) l) (drop 1 l)
Or, following (mixed) advice to use unfoldr, stop abusing groupBy, and be happy using partial functions when it doesn't matter:
import Control.Arrow ((***))
import Data.List (unfoldr)
spanContig :: (Num a) => [a] -> [[a]]
spanContig l =
map fst *** map fst $ span (\(a, b) -> a == b + 1) $ zip l (head l - 1 : l)
rangeify :: (Num a) => [a] -> [[a]]
rangeify = unfoldr $ \l -> if null l then Nothing else Just $ spanContig l
Erlang using foldr:
ranges(List) ->
lists:foldr(fun (X, [[Y | Ys], Acc]) when Y == X + 1 ->
[[X, Y | Ys], Acc];
(X, Acc) ->
[[X] | Acc]
end, [], List).
This is my v0.1 and I can probably make it better:
makeCont :: [Int] -> [[Int]]
makeCont [] = []
makeCont [a] = [[a]]
makeCont (a:b:xs) = if b - a == 1
then (a : head next) : tail next
else [a] : next
where
next :: [[Int]]
next = makeCont (b:xs)
And I will try and make it better. Edits coming I think.
As a comparison, here's an implementation in Erlang:
partition(L) -> [lists:reverse(T) || T <- lists:reverse(partition(L, {[], []}))].
partition([E|L], {R, [EL|_] = T}) when E == EL + 1 -> partition(L, {R, [E|T]});
partition([E|L], {R, []}) -> partition(L, {R, [E]});
partition([E|L], {R, T}) -> partition(L, {[T|R], [E]});
partition([], {R, []}) -> R;
partition([], {R, T}) -> [T|R].
The standard paramorphism recursion scheme isn't in Haskell's Data.List module, though I think it should be. Here's a solution using a paramorphism, because you are building a list-of-lists from a list, the cons-ing is a little tricksy:
contig :: (Eq a, Num a) => [a] -> [[a]]
contig = para phi [] where
phi x ((y:_),(a:acc)) | x + 1 == y = (x:a):acc
phi x (_, acc) = [x]:acc
Paramorphism is general recursion or a fold with lookahead:
para :: (a -> ([a], b) -> b) -> b -> [a] -> b
para phi b [] = b
para phi b (x:xs) = phi x (xs, para phi b xs)
It can be pretty clear and simple in the Erlang:
partition([]) -> [];
partition([A|T]) -> partition(T, [A]).
partition([A|T], [B|_]=R) when A =:= B+1 -> partition(T, [A|R]);
partition(L, P) -> [lists:reverse(P)|partition(L)].
Edit: Just for curiosity I have compared mine and Lukas's version and mine seems about 10% faster either in native either in bytecode version on testing set what I generated by lists:usort([random:uniform(1000000)||_<-lists:seq(1,1000000)]) on R14B01 64b version at mine notebook. (Testing set is 669462 long and has been partitioned to 232451 sublists.)
Edit2: Another test data lists:usort([random:uniform(1000000)||_<-lists:seq(1,10000000)]), length 999963 and 38 partitions makes bigger diference in native code. Mine version finish in less than half of time. Bytecode version is only about 20% faster.
Edit3: Some microoptimizations which provides additional performance but leads to more ugly and less maintainable code:
part4([]) -> [];
part4([A|T]) -> part4(T, A, []).
part4([A|T], B, R) when A =:= B+1 -> part4(T, A, [B|R]);
part4([A|T], B, []) -> [[B]|part4(T, A, [])];
part4([A|T], B, R) -> [lists:reverse(R, [B])|part4(T, A, [])];
part4([], B, R) -> [lists:reverse(R,[B])].
Here's an attempt from a haskell noob
ranges ls = let (a, r) = foldl (\(r, a#(h:t)) e -> if h + 1 == e then (r, e:a) else (a:r, [e])) ([], [head ls]) (tail ls)
in reverse . map reverse $ r : a

Zipping with padding in Haskell

A couple of times I've found myself wanting a zip in Haskell that adds padding to the shorter list instead of truncating the longer one. This is easy enough to write. (Monoid works for me here, but you could also just pass in the elements that you want to use for padding.)
zipPad :: (Monoid a, Monoid b) => [a] -> [b] -> [(a, b)]
zipPad xs [] = zip xs (repeat mempty)
zipPad [] ys = zip (repeat mempty) ys
zipPad (x:xs) (y:ys) = (x, y) : zipPad xs ys
This approach gets ugly when trying to define zipPad3. I typed up the following and then realized that of course it doesn't work:
zipPad3 :: (Monoid a, Monoid b, Monoid c) => [a] -> [b] -> [c] -> [(a, b, c)]
zipPad3 xs [] [] = zip3 xs (repeat mempty) (repeat mempty)
zipPad3 [] ys [] = zip3 (repeat mempty) ys (repeat mempty)
zipPad3 [] [] zs = zip3 (repeat mempty) (repeat mempty) zs
zipPad3 xs ys [] = zip3 xs ys (repeat mempty)
zipPad3 xs [] zs = zip3 xs (repeat mempty) zs
zipPad3 [] ys zs = zip3 (repeat mempty) ys zs
zipPad3 (x:xs) (y:ys) (z:zs) = (x, y, z) : zipPad3 xs ys zs
At this point I cheated and just used length to pick the longest list and pad the others.
Am I overlooking a more elegant way to do this, or is something like zipPad3 already defined somewhere?
How about custom head and tail functions (named next and rest in my example below)?
import Data.Monoid
zipPad :: (Monoid a, Monoid b) => [a] -> [b] -> [(a,b)]
zipPad [] [] = []
zipPad xs ys = (next xs, next ys) : zipPad (rest xs) (rest ys)
zipPad3 :: (Monoid a, Monoid b, Monoid c) => [a] -> [b] -> [c] -> [(a,b,c)]
zipPad3 [] [] [] = []
zipPad3 xs ys zs = (next xs, next ys, next zs) : zipPad3 (rest xs) (rest ys) (rest zs)
next :: (Monoid a) => [a] -> a
next [] = mempty
next xs = head xs
rest :: (Monoid a) => [a] -> [a]
rest [] = []
rest xs = tail xs
Test snippet:
instance Monoid Int where
mempty = 0
mappend = (+)
main = do
print $ zipPad [1,2,3,4 :: Int] [1,2 :: Int]
print $ zipPad3 [1,2,3,4 :: Int] [9 :: Int] [1,2 :: Int]
Its output:
[(1,1),(2,2),(3,0),(4,0)]
[(1,9,1),(2,0,2),(3,0,0),(4,0,0)]
This pattern comes up quite a lot. A solution I learned from Paul Chiusano is as follows:
data These a b = This a | That b | These a b
class Align f where
align :: (These a b -> c) -> f a -> f b -> f c
instance Align [] where
align f [] [] = []
align f (x:xs) [] = f (This x) : align f xs []
align f [] (y:ys) = f (That y) : align f [] ys
align f (x:xs) (y:ys) = f (These x y) : align f xs ys
liftAlign2 f a b = align t
where t (This l) = f l b
t (That r) = f a r
t (These l r) = f l r
zipPad a b = liftAlign2 (,) a b
liftAlign3 f a b c xs ys = align t (zipPad a b xs ys)
where t (This (x,y)) = f x y c
t (That r) = f a b r
t (These (x,y) r) = f x y r
zipPad3 a b c = liftAlign3 (,,) a b c
A little test in ghci:
*Main> zipPad3 ["foo", "bar", "baz"] [2, 4, 6, 8] [True, False] "" 0 False
[("foo",2,True),("bar",4,False),("baz",6,False),("",8,False)]
A simpler way to do this is with Maybe. I will illustrate with Edward's
more general formulation:
import Data.Maybe
import Control.Applicative
zipWithTails l r f as bs = catMaybes . takeWhile isJust $
zipWith fMaybe (extend as) (extend bs)
where
extend xs = map Just xs ++ repeat Nothing
fMaybe a b = liftA2 f a b <|> fmap l a <|> fmap r b
There are times when you want to be able to apply a different function to either tail rather than just supply mempty or manual zeroes as well:
zipWithTail :: (a -> a -> a) -> [a] -> [a] -> [a]
zipWithTail f (a:as) (b:bs) = f a b : zipWithTails f as bs
zipWithTail f [] bs = bs
zipWithTail f as _ = as
zipWithTails :: (a -> c) -> (b -> c) -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithTails l r f (a:as) (b:bs) = f a b : zipWithTails l r f as bs
zipWithTails _ r _ [] bs = fmap r bs
zipWithTails l _ _ as _ = fmap l as
I use the former when I'm doing something like zipWithTail (+)
and the former when I need to do something like zipWithTail (*b) (a*) (\da db -> a*db+b*da) since the former can be much more efficient than feeding a default into a function, and the latter a little bit so.
However, if you just wanted to make a more succinct version of what you have, you could probably turn to mapAccumL ,but its not any clearer, and the ++ can be expensive.
zipPad as bs = done $ mapAccumL go as bs
where go (a:as) b = (as,(a,b))
go [] b = ([],(mempty,b))
done (cs, both) = both ++ fmap (\x -> (x, mempty)) cs

Resources