Representing classification confidence - statistics

I am working on a simple AI program that classifies shapes using unsupervised learning method. Essentially I use the number of sides and angles between the sides and generate aggregates percentages to an ideal value of a shape. This helps me create some fuzzingness in the result.
The problem is how do I represent the degree of error or confidence in the classification? For example: a small rectangle that looks very much like a square would yield night membership values from the two categories but can I represent the degree of error?
Thanks

Your confidence is based on used model. For example, if you are simply applying some rules based on the number of angles (or sides), you have some multi dimensional representation of objects:
feature 0, feature 1, ..., feature m
Nice, statistical approach
You can define some kind of confidence intervals, baesd on your empirical results, eg. you can fit multi-dimensional gaussian distribution to your empirical observations of "rectangle objects", and once you get a new object you simply check the probability of such value in your gaussian distribution, and have your confidence (which would be quite well justified with assumption, that your "observation" errors have normal distribution).
Distance based, simple approach
Less statistical approach would be to directly take your model's decision factor and compress it to the [0,1] interaval. For example, if you simply measure distance from some perfect shape to your new object in some metric (which yields results in [0,inf)) you could map it using some sigmoid-like function, eg.
conf( object, perfect_shape ) = 1 - tanh( distance( object, perfect_shape ) )
Hyperbolic tangent will "squash" values to the [0,1] interval, and the only remaining thing to do would be to select some scaling factor (as it grows quite quickly)
Such approach would be less valid in the mathematical terms, but would be similar to the approach taken in neural networks.
Relative approach
And more probabilistic approach could be also defined using your distance metric. If you have distances to each of your "perfect shapes" you can calculate the probability of an object being classified as some class with assumption, that classification is being performed at random, with probiability proportional to the inverse of the distance to the perfect shape.
dist(object, perfect_shape1) = d_1
dist(object, perfect_shape2) = d_2
dist(object, perfect_shape3) = d_3
...
inv( d_i )
conf(object, class_i) = -------------------
sum_j inv( d_j )
where
inv( d_i ) = max( d_j ) - d_i
Conclusions
First two ideas can be also incorporated into the third one to make use of knowledge of all the classes. In your particular example, the third approach should result in confidence of around 0.5 for both rectangle and circle, while in the first example it would be something closer to 0.01 (depending on how many so small objects would you have in the "training" set), which shows the difference - first two approaches show your confidence in classifing as a particular shape itself, while the third one shows relative confidence (so it can be low iff it is high for some other class, while the first two can simply answer "no classification is confident")

Building slightly on what lejlot has put forward; my preference would be to use the Mahalanobis distance with some squashing function. The Mahalanobis distance M(V, p) allows you to measure the distance between a distribution V and a point p.
In your case, I would use "perfect" examples of each class to generate the distribution V and p is the classification you want the confidence of. You can then use something along the lines of the following to be your confidence interval.
1-tanh( M(V, p) )

Related

How can r-squared be negative when the correlation between prediction and truth is positive?

Trying to understand how the r-squared (and also explained variance) metrics can be negative (thus indicating non-existant forecasting power) when at the same time the correlation factor between prediction and truth (as well as slope in a linear-regression (regressing truth on prediction)) are positive
R Squared can be negative in a rare scenario.
R squared = 1 – (SSR/SST)
Here, SST stands for Sum of Squared Total which is nothing but how much does the predicted points get varies from the mean of the target variable. Mean is nothing but a regression line here.
SST = Sum (Square (Each data point- Mean of the target variable))
For example,
If we want to build a regression model to predict height of a student with weight as the independent variable then a possible prediction without much effort is to calculate the mean height of all current students and consider it as the prediction.
In the above diagram, red line is the regression line which is nothing but the mean of all heights. This mean calculated without much effort and can be considered as one of the worst method of prediction with poor accuracy. In the diagram itself we can see that the prediction is nowhere near to the original data points.
Now come to SSR,
SSR stands for Sum of Squared Residuals. This residual is calculated from the model which we build from our mathematical approach (Linear regression, Bayesian regression, Polynomial regression or any other approach). If we use a sophisticated approach rather than using a naive approach like mean then our accuracy will obviously increase.
SSR = Sum (Square (Each data point - Each corresponding data point in the regression line))
In the above diagram, let's consider that the blue line indicates a sophisticated model with large mathematical analysis. We can see that it has obviously higher accuracy than the red line.
Now come to the formula,
R Squared = 1- (SSR/SST)
Here,
SST will be large number because it a very poor model (red line).
SSR will be a small number because it is the best model we developed
after much mathematical analysis (blue line).
So, SSR/SST will be a very small number (It will become very small
whenever SSR decreases).
So, 1- (SSR/SST) will be large number.
So we can infer that whenever R Squared goes higher, it means the
model is too good.
This is a generic case but this cannot be applied in many cases where multiple independent variables are present. In the example, we had only one independent variable and one target variable but in real case, we will have 100's of independent variables for a single dependent variable. The actual problem is that, out of 100's of independent variables-
Some variables will have very high correlation with target variable.
Some variables will have very small correlation with target variable.
Also some independent variables will have no correlation at all.
So, RSquared is calculated on an assumption that the average line of the target which is perpendicular line of y axis is the worst fit a model can have at a maximum riskiest case. SST is the squared difference between this average line and original data points. Similarly, SSR is the squared difference between the predicted data points (by the model plane) and original data points.
SSR/SST gives a ratio how SSR is worst with respect to SST. If your model can somewhat build a plane which is a comparatively good than the worst, then in 99% cases SSR<SST. It eventually makes R squared as positive if you substitute it in the equation.
But what if SSR>SST ? This means that your regression plane is worse than the mean line (SST). In this case, R squared will be obviously negative. But it happens only at 1% of cases or smaller.
Answer was originally written in quora by me -
https://qr.ae/pNsLU8
https://qr.ae/pNsLUr

Average and Measure of Spread of 3D Rotations

I've seen several similar questions, and have some ideas of what I might try, but I don't remember seeing anything about spread.
So: I am working on a measurement system, ultimately computer vision based.
I take N captures, and process them using a library which outputs pose estimations in the form of 4x4 affine transformation matrices of translation and rotation.
There's some noise in these pose estimations. The standard deviation in Euler angles for each axis of rotation is less than 2.5 degrees, so all orientations are pretty close to each other (for a case where all Euler angles are close to 0 or 180). Standard errors of less than 0.25 degrees are important to me. But I have already run into the problems endemic to Euler angles.
I want to average all these pretty-close-together pose estimates to get a single final pose estimate. And I also want to find some measure of spread so that I can estimate accuracy.
I'm aware that "average" isn't actually well defined for rotations.
(For the record, my code is in Numpy-heavy Python.)
I also may want to weight this average, since some captures (and some axes) are known to be more accurate than others.
My impression is that I can just take the mean and standard deviation of the translation vector, and that for the rotation I can convert to quaternions, take the mean, and re-normalize with OK accuracy since these quaternions are pretty close together.
I've also heard mentions of least-squares across all the quaternions, but most of my research into how this would be implemented has been a dismal failure.
Is this workable? Is there a reasonably well-defined measure of spread in this context?
Without more info about your geometry setup is hard to answer. Anyway for rotations I would:
create 3 unit vectors
x=(1,0,0),y=(0,1,0),z=(0,0,1)
and apply the rotation on them and call the output
x(i),y(i),z(i)
it is just applying the matrix(i) with position at (0,0,0)
do this for all measurements you have
now average all vectors
X=avg(x(1),x(2),...x(n))
Y=avg(y(1),y(2),...y(n))
Z=avg(z(1),z(2),...z(n))
correct the vector values
so make each of the X,Y,Z unit vectors again and take the axis which is more closest to the rotation axis as main axis. It will stay as is and recompute the remaining two axises as cross product of main axis and the other vector to ensure orthogonality. Beware of the multiplication order (wrong order of operands will negate the output)
construct averaged transform matrix
see transform matrix anatomy as origin you can use averaged origin of the measurement matrices
Moakher wrote a paper that explains there are basically two ways to take an average of Rotation matrices. The first is a weighted average followed by a projection back to SO(3) using the SVD. The second is the Riemannian center of mass. That one is a closer notion to the geometric mean, and its more complicated to compute.

How to scale input DBSCAN in scikit-learn

Should the input to sklearn.clustering.DBSCAN be pre-processeed?
In the example http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#example-cluster-plot-dbscan-py the distances between the input samples X are calculated and normalized:
D = distance.squareform(distance.pdist(X))
S = 1 - (D / np.max(D))
db = DBSCAN(eps=0.95, min_samples=10).fit(S)
In another example for v0.14 (http://jaquesgrobler.github.io/online-sklearn-build/auto_examples/cluster/plot_dbscan.html) some scaling is done:
X = StandardScaler().fit_transform(X)
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
I base my code on the latter example and have the impression clustering works better with this scaling. However, this scaling "Standardizes features by removing the mean and scaling to unit variance". I try to find 2d clusters. If I have my clusters distributed in a squared area - let's say 100x100 I see no problem in the scaling. However, if the are distributed in an rectangled area e.g. 800x200 the scaling 'squeezes' my samples and changes the relative distances between them in one dimension. This deteriorates the clustering, doesn't it? Or am I understanding sth. wrong?
Do I need to apply some preprocessing at all, or can I simply input my 'raw' data?
It depends on what you are trying to do.
If you run DBSCAN on geographic data, and distances are in meters, you probably don't want to normalize anything, but set your epsilon threshold in meters, too.
And yes, in particular a non-uniform scaling does distort distances. While a non-distorting scaling is equivalent to just using a different epsilon value!
Note that in the first example, apparently a similarity and not a distance matrix is processed. S = (1 - D / np.max(D)) is a heuristic to convert a similarity matrix into a dissimilarity matrix. Epsilon 0.95 then effectively means at most "0.05 of the maximum dissimilarity observed". An alternate version that should yield the same result is:
D = distance.squareform(distance.pdist(X))
S = np.max(D) - D
db = DBSCAN(eps=0.95 * np.max(D), min_samples=10).fit(S)
Whereas in the second example, fit(X) actually processes the raw input data, and not a distance matrix. IMHO that is an ugly hack, to overload the method this way. It's convenient, but it leads to misunderstandings and maybe even incorrect usage sometimes.
Overall, I would not take sklearn's DBSCAN as a referene. The whole API seems to be heavily driven by classification, not by clustering. Usually, you don't fit a clustering, you do that for supervised methods only. Plus, sklearn currently does not use indexes for acceleration, and needs O(n^2) memory (which DBSCAN usually would not).
In general, you need to make sure that your distance works. If your distance function doesn't work no distance-based algorithm will produce the desired results. On some data sets, naive distances such as Euclidean work better when you first normalize your data. On other data sets, you have a good understanding on what distance is (e.g. geographic data. Doing a standardization on this obivously does not make sense, nor does Euclidean distance!)

'Probability' of a K-nearest neighbor like classification

I've a small set of data points (around 10) in a 2D space, and each of them have a category label. I wish to classify a new data point based on the existing data point labels and also associate a 'probability' for belonging to any particular label class.
Is it appropriate to label the new point based on the label to its nearest neighbor( like a K-nearest neighbor, K=1)? For getting the probability I wish to permute all the labels and calculate all the minimum distance of the unknown point and the rest and finding the fraction of cases where the minimum distance is lesser or equal to the distance that was used to label it.
Thanks
The Nearest Neighbour method is already using the Bayes theorem to estimate the probability using the points in a ball containing your chosen K points. There is no need to transform, as the number of points in the ball of K points belonging to each label divided by the total number of points in that ball already is an approximation of the posterior probability of that label. In other words:
P(label|z) = P(z|label)P(label) / P(z) = K(label)/K
This is obtained using the Bayes rule of probability on an estimated probability estimated using a subset of the data. In particular, using:
VP(x) = K/N (this gives you the probability of a point in a ball of volume V)
P(x) = K/NV (from above)
P(x=label) = K(label)/N(label)V (where K(label) and N(label) are the number of points in the ball of that given class and the number of points in the total samples of that class)
and
P(label) = N(label)/N.
Therefore, just pick a K, calculate the distances, count the points and by checking their labels and recounting you will have your probability.
Roweis uses a probabilistic framework with KNN in his publication Neighbourhood Component Analysis. The idea is to use a "soft" nearest neighbour classification, where the probability that a point i uses another point j as its neighbour is defined by
,
where d_ij is the euclidean distance between point i and j.
The are no probabilities for such K-nearest classification method because it is discriminative classification as well as SVM. There are should be used postporcess for learning probabilities on unseen data with generative model like logistic regression.
1. learn K nearest classifier
2. Train logistic regression on distance and average distance to K nearest for validation data.
Check for details LibSVM article.
Sort the distances to the 10 centres; they could be
1 5 6 ... — one near, others far
1 1 1 5 6 ... — 3 near, others far
... lots of possibilities.
You could combine the 10 distances to a single number, e.g. 1 - (nearest / average) ** p,
but that's throwing away information.
(Different powers p makes the hills around the centres steeper or flatter.)
If your centres are really Gaussian hills though, take a look at
Multivariate kernel density estimation.
Added:
There are zillions of functions that go smoothly between 0 and 1,
but that doesn't make them probabilities of something.
"Probability" means either that chance, likelihood, is involved,
as in probability of rain;
or that you're trying to impress somebody.
Added again: scholar.google.com "(single|1) nearest neighbor classifier" gets > 300 hits;
"k nearest neighbor classifier" gets almost 3000.
It seems to me (non-expert) that, out of 10 different ways of mapping k-NN distances to labels,
each one might be better than the 9 others — for some data, with some error measure.
Anyway, you could try asking stats.stackexchange.com ,
The answer is : it depends.
Imagine your labels are the surname of a person, and the X,Y coordinates represent some essential characteristics of the person's DNA sequence. Clearly a more close DNA description enhance the probability of having the same surnames.
Now suppose the X,Y is the lat/long of the work office for that person. Working closer isn't related to label (surname) sharing.
So, it depends on the semantic of your tags and axes.
HTH!

Is linear regression the same thing as ordinary least squares in SPSS?

I want to use a linear regression model, but I want to use ordinary least squares, which I think it is a type of linear regression. The software I use is SPSS. It only has linear regression, partial least squares and 2-stages least squares. I have no idea which one is ordinary least squares (OLS).
Yes, although 'linear regression' refers to any approach to model the relationship between one or more variables, OLS is the method used to find the simple linear regression of a set of data.
Linear regression is a vast term that just says we are finding a relationship between the dependent and independent variable(s), no matter what technique we are using.
OLS is just one of the technique to do linear reg.
Lets say,
error(e) = (observed value - predicted value)
Observed values - blue dots in picture
predicted values - points on the line(vertically below to the observed values)
The vertical lines below represent 'e'. We square them -> add them and get total err. And we try to reduce this total error.
For OLS, as the name says (ordinary least squared method), here we reduce the sum of all e^2 i.e. we try to make the error least.

Resources