Linux x86 assembly printing problems - linux

I wrote this to print argv[0] in x86:
.section .data
newline: .int 0xa, 0
.section .text
.globl _start
_start:
sub %al, %al
movl 4(%esp), %edi /* Pointer to argv[0]. */
sub %ecx, %ecx /* Set %ecx to 0.*/
not %ecx /* Set %ecx to -1.*/
repne scasb /* Search for %al over and over.*/
not %ecx /* Set %ecx to |%ecx| - 1.*/
dec %ecx
movl %ecx, %edx /* Move the strlen of argv[0] into %edx.*/
movl $4, %eax
movl $1, %ebx
movl 4(%esp), %ecx
int $0x80
movl $newline, %ecx
movl $1, %edx
int $0x80
movl $1, %eax
movl $0, %ebx
int $0x80
When I run this file ("print"), the output is this:
[08:27 assembly]$ ./print test
./print[08:30 assembly]$
When I ran this through gdb, the actual string length held in edx is 27, and the string it's checking is "/home/robert/assembly/print", not "./print". So I changed the %esp offsets to 8, to check argv[1]. With the same command as before, the output is this:
test
[08:33 assembly]$
Why does checking argv[0] cause the strange output, when argv[1] does as expected?

I think gdb is "helping" you by adding the full path to argv[0]. After printing, %eax holds the number of characters printed, so you'll want to reload %eax for sys_write again to print the $newline (%ebx should still be okay) - by luck, "test" is the right length. Lord knows what system call you're getting with that longer string!
I'd say you're doing good! (might be a good idea to check argc to make sure argv[1] is there before you try to print it).

Related

X86: making system calls without referring the standard library

I wrote the code that reads from stdin and writes to the stdout:
#include <stdio.h>
#include <unistd.h>
int main() /* copy input to output */
{
char buf[BUFSIZ];
int n;
while ((n = read(0, buf, BUFSIZ)) > 0)
write(1, buf, n);
return 0;
}
After I converted into the assembly code (a .s file) in 32-bit AT&T syntax:
.text
.globl _start
_start:
pushl %ebp
movl %esp, %ebp
andl $-16, %esp #16 bit alignment
subl $8224, %esp #space for local variables
jmp _READ
_WRITE:
movl 8220(%esp), %eax
movl %eax, 8(%esp)
leal 28(%esp), %eax
movl %eax, 4(%esp)
movl $1, (%esp)
call write
int $0x80
_READ:
movl $8192, 8(%esp) #buffer length
leal 28(%esp), %eax
movl %eax, 4(%esp)
movl $0, (%esp)
call read
movl %eax, 8220(%esp)
cmpl $0, 8220(%esp)
jg _WRITE
movl $0, %eax
leave
ret
It works fine, but I'm not sure how to making the "read" and "write" system calls using plain assembly(i.e. moving numbers into certain registers and use "int 0x80" to execute the system calls).
My goal is to make it work even if it is compiled with the "-nostdlib" option.
Hint: 32-bit x86 is old, slow, weird and deprecated. You should use amd64 instead.
The list of system calls for Linux i386 is available in Linux source code:
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_32.tbl
Or in glibc headers in asm/unistd_32.h. You can and should #include <asm/unistd.h> so you can use $__NR_write instead of $4 to make your asm source code self-documenting.
The system call number goes in eax. Parameter sequence is always ebx, ecx, edx, esi, edi, ebp. So code becomes:
.text
.globl _start
_start:
pushl %ebp
movl %esp, %ebp
andl $-16, %esp #16 bit alignment
subl $8224, %esp #space for local variables
jmp _READ
_WRITE:
movl 8220(%esp), %edx
leal 28(%esp), %ecx
movl $1, %ebx
movl $4, %eax
int $0x80
_READ:
movl $8192, %edx #buffer length
leal 28(%esp), %ecx
movl $0, %ebx
movl $3, %eax
int $0x80
movl %eax, 8220(%esp)
cmpl $0, 8220(%esp)
jg _WRITE
movl $1, %eax
movl $0, %ebx
int $0x80
Assemble and link with:
$ as --32 hel.s -o hel.o
$ ld -melf_i386 hel.o -o hel
http://www.linuxjournal.com/article/4048
See also
What are the calling conventions for UNIX & Linux system calls on i386 and x86-64
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/

Not sure how to flush buffer string x86

The goal of my code below to mimmic the cat program. It takes an input, and then spits it back out.
Such as:
$ Hi how are you
$ Hi how are you
$ good
$ good
What is happening though is:
$ Hi how are you
$ Hi how are you
$ good
$ good
$ow are you
My string is not being removed from my buffer and so if the input is shorter the second time, it will spit out the extra characters that have not been written over. I was wondering if anyone knew how to clear the buffer so this would not occur. Thanks
.file "rand.c"
.section .data
.buffer:
.space 10
.len:
.space 1
.globl _start
_start:
pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $16, %esp
loop:
movl $3, %eax
movl $1, %ebx
movl $.buffer, %ecx
movl $100, %edx
int $0x80
movl $4, %eax
movl $1, %ebx
movl $.buffer, %ecx
movl $100, %edx
int $0x80
jmp loop
movl $1, %eax
movl $0, %ebx
int $0x80

Getting ASCII number value

Hi Guys I got some annoying problem ,so I try to write a code just to reverse small string sequential
I Already got this :
.section .data
string:
.ascii "AAAAAABBBBBB"
length:
.quad . -string #Dot = 'here'
.section .text
.globl _start #Make entry point visible to linker
_start:
movl $4, %eax #4=write
movl $1, %ebx #1=stdout
movl $string, %ecx
movl length, %edx
int $0x80 #Call Operating System
movl length,%edi #counter
shrl $1,%edi #half of string
movl $0,%ecx #start from index one
movl length,%edx #start from end
reverse:
movl string(,%ecx,1),%eax
movl string(,%edx,1),%ebx
movl %eax,string(,%edx,1)
movl %ebx,string(,%ecx,1)
inc %ecx
dec %edx
dec %edi
loop reverse #looping
movl $4, %eax #4=write
movl $1, %ebx #1=stdout
movl $string, %ecx
movl length, %edx
int $0x80 #Call Operating System
movl $0, %ebx #Make program return syscall exit status
movl $1, %eax #1=exit
int $0x80 #Call System Again
And it's not working correctly , cuz in gbd i get wrong values in registers after making
movl string(,%ecx,1),%eax
or the next steps I think there should be in %eax value for A letter but its doesn't any ideas ?
Working at 64arch but emulating in as --32 so its problem with my addressing i guess
You should be processing bytes not longs, so use movb with 8 bit registers (al and bl, for example). Also, the LOOP instruction uses ECX automatically, you probably meant JNZ there to repeat until EDI reaches zero.

Assembler SegFail

So guys I got problem . I'm trying just to change one letter in this easy string "Hello World"
so I'm trying assign value to memory cell like this
.section .text
string:
.ascii "Hello, world!"
length:
.quad . -string #Dot = 'here'
.globl _start #Make entry point visible to linker
_start:
movl $4, %eax #4=write
movl $1, %ebx #1=stdout
movl $string, %ecx
movl length, %edx
int $0x80 #Call Operating System
movl $98,4(%ecx) #Critical moment why cannot I do this?
movl $98,string(,%ebx,1) #cannot do this too ;(
movl $4, %eax #4=write
movl $1, %ebx #1=stdout
movl $string, %ecx
movl length, %edx
int $0x80
movl $0, %ebx #Make program return syscall exit status
movl $1, %eax #1=exit
int $0x80 #Call System Again
and additional info I'm working at x64(linux) and assembling it in emulation mode x32 by linux gas so should be all right , TY for replies
You have put your string into the .text section, which is read-only. You should put it into the .data section (but don't forget to switch back to .text for the program code).

Printing Range Of ASCII Characters From Registers in x86 Assembly

I'm trying to print a range of ascii characters with this assembly program.
I'm trying to do it using only the registers, but haven't been having much luck. Everything looks fine to me, but I'm a novice at assembly programming and might have missed something obvious. Any insight will be appreciated. Thanks :)
emphasized text
.text
.global _start
_start:
movl $1, %edx
movl $65, %ebx
start_loop:
addl $1, %ebx
movl $0x04, %eax
int $0x80
cmpl $126, %ebx
jle start_loop
jmp start_loop
exit
movl $0, %ebx
movl $1, %eax
int $0x80
You are invoking the sys_write system call. sys_write() takes three arguments, file descriptor of the output device(it should be 1 for stdout),address of the buffer where you stored the value to be printed, and the size of the data to be printed. So you have to store file descriptor in %ebx, and store address of the buffer in %ecx and size of the data in %edx. To store the file descriptor you can use the following instruction.
movl $1, %ebx // store 1 (stdout) in ebx)
To store the size of the data you can use:
movl $1, %edx // size is 1 byte
Now, you have to store the address of the buffer, you need to put your data in the memory some where and need to store the address of the memory in %ecx. Assume that you want store the data in the stack it self, then you can do like this:
subl $4, %esp // get 4 bytes of memory in the stack
movl $65, (%esp) // store data in the memory where esp points to
movl %esp, %ecx // store address of the data in the ecx
Now you can issue the int 0x80.
movl $04, %eax // store syscall number in eax
int $0x80 // issue the trap interrupt
As a whole you can write the following code:
movl $1, %ebx
subl $0x4, %esp
movl $64, (%esp)
start_loop:
movl (%esp), %eax
addl $1, %eax
movl %eax, (%esp)
movl %esp, %ecx
movl $1, %edx
movl $0x04, %eax
int $0x80
movl (%esp), %eax
cmpl $126, %eax
jle start_loop
addl $0x4, %esp
See Linux System Calls Part2 at http://www.rulingminds.com/syscallspart2 to know more about registers and system calls usage.
"Thank you very much for the informative answer, but is there a way to store and retrieve the value to be printed in a register without pointing to it?" -- this should probably have been edited into the question.
If you insist on using only syscalls (int $0x80) to interface with the system then the answer is no. You have to somehow pass a buffer to write and rullingminds answer applies.
Using the libc putchar(3) it's straight forward. I use %ebx to keep the ascii code as this register is on linux preserved between function calls. Simply assemble using gcc filename.S (remembering to use -m32 if you are on x86_64).
.text
.extern putchar
.global main
main:
# make room for argument to putchar on the stack
sub $4, %esp
# initialize ebx with first value to print
mov $'A', %ebx
1:
# give character to print as argument
mov %ebx, (%esp)
call putchar
# move to next character
inc %ebx
# are we done?
cmp $'~', %ebx
jle 1b
# print newline
movl $10, (%esp)
call putchar
# adjust stack back to normal
add $4, %esp
# return 0 from main
mov $0, %eax
ret

Resources