Inbound and outbound call - voip

After googling I come to know some basic definition as,
Outbound calls - A call center agent or representative contacts the customer.
Inbound calls - A call center agent or representative takes calls coming into the contact center.
My questions are,
1 Are these terms applicable to call centre setup only ?
2 Routing of inbound call is diffrent from routing of outbound call(Technical aspects like protocol, switching methods etc)?
3 Whether calls are handled diffrently based on inbound & outbound, by network elements?

These are not specific to callcenters only.
-Outbound calls means all calls from your internal network routed outside (to the public internet or to another carriers). Usually more complex routing rules are applied for this (for example you might route prefix A to carrier X and prefix B to carrier Y)
-Inbound calls are the opposite. Usually there are no any routing rules (except authentication) and you just try to match the incoming call with one of your extension. If the target is not present in your network then you might reject the call or forward to the appropriate network

Related

How to prevent malicious costly querying on cloud platforms?

Assume the Joker is a maximally sophisticated, well-equipped and malicious user of Batman's start up batmanrules.com hosted by, say, AWS infrastructure. The business logic of batmanrules.com requires that unregistered users be able to send http requests to the REST API layer of batman.com, which lead to the invocation (in one way or another) of queries against an AWS-based DB. Batman doesn't want to be constrained by DB type (it can be either SQL or noSQL).
The Joker wants to ruin batman financially by sending as many http requests as he can in order to run up Batman's AWS bill. The Joker uses all the latest tricks in the book using DDOS-like methods to send http requests from different IP addresses that target all sorts of mechanisms within batman.com's business logic.
Main Question: how does Batman prevent financial ruin while keeping his service running smoothly for his normal users?
Assume a lot of traffic is going on, how can you weed out the 'malicious' queries from the non-malicious, especially when users arent being registered? I know you can do rate-limiting against IP addresses, but cant the Joker (who is maximally sophisticated and well-equipped) find clever ways to issue requests from ever-changing IP addresses, and or to tweak the requests so that no two are exactly the same?
Note: my question focuses not on denial of service -- let's assume it's ok if the site goes down for a while -- but, rather, on Batman's financial loss. Batman has done a great job on making the architecture scale up and down with varying load, his only concern is that high loads (induced by Joker's shenanigans) entail high cost.
My instinct tells me that there is no silver bullet here, and that batman would have to build safeguards into his business logic (e.g. shut down if traffic spikes within certain parameters) AND/OR to require reCAPTCHA tokens on all non-trivial requests submitted to the REST API.
You can use AWS WAF and configure rules to block malicious users.
For example a straight forward rule would be to do a rate base blocking where if you could find its highly unlikely to get above X amount of requests concurrently from a same IP address.
For advanced use cases you can implement custom rules by analyzing the request logs with Lambda and to apply the block in WAF.
In addition, as you clearly identified it is not possible to prevent all the malicious requests. The goal should be to inspect and prevent which is an ongoing process with the right architecture in place to block requests on need basis.

What are the differences between On-net calls and Off-net calls?

What are the differences between On-net calls and Off-net calls?
How could I make international call under On-net call?
The 'On-Net' is used when your call or message originates on your home operator's network and terminates to another mobile number that resides with your operator. It does not matter if the person you are calling is using the home network or is off Island roaming with a different provider. 'Off-Net' applies when the call or message is made on a different network, e.g. whilst you are roaming, or if you are using your home network and make a call or send a message to a number that resides with a different network provider

Custom Load Balancer with capability to Specify Server that Should Process Request

How to implement a custom load-balancing decision method to specify which exactly server should process a request?
Currently, I am working with Azure, so the MS solutions are more preferable (ARR or WLBS).
Each server instance may have several unique resources ("unique" means that only this particular server instance has it).
An application creates a unique ResourceID for each resource and gives this ResourceID to a client "on demand".
The client's further requests are specified by the ResourceID.
The custom load balancer decision method should allow me to specify how:
To get the ResourceID from the request (should work on Layer 7).
To get the ServerInstanceID (or IP or whatever is required) based on the ResourceID (from my custom table).
To notify the load balancer which exactly application server instance should process this request (pass the ServerInstanceID).
P.S. May be I should say "proxy" here instead of the "load balancer". But for the sake of high availability, it will require several proxy servers and the load balancer to spread traffic between them. So, a pure proxy solution will just bring another one tier to the application.
I have found two useful threads on the IIS.NET Forums:
Custom load balancing decision function
using URL Rewrite Module for custom load balancing
Two main approaches are recommended:
To use custom load balancing.
To use custom Application Request Routing (ARR).
The most interesting thing is that different threads recommend using each other :)
Nevertheless, I will review both the suggested approaches.

Node script - Failover from one server to another server

I have a nodejs script - lets call it "process1" on server1, and same script is running on server2 - "process2" (just with flag=false).
Process1 will be preforming actions and will be in "running" state at the beginning. process2 will be running but in "block" state with flag programmed within it.
What i want to acomplish is to, implement failover/fallback for this process. If process1 goes down flag on process2 will change, and process2 will take over all tasks from process1 (and vice versa when process1 cames back - fallback).
What is the best approach to do this? TCP connection between those?
NOTE: Even its not too much relevant, but i want to mention that these processes are going to work internally, establishing tcp connection with third server and parsing data we are getting from that server. Both of the processes will be running on both of the servers, but only ONE process at the time can be providing services - running with flag true (and not both of them)
Update: As per discussions bellow and internal research/test and monitoring of solution, using reverse proxy will save you a lot of time. Programming fail-over based on 2 servers only will cover 70% of the cases related with the internal process which is used on the both machines - but you will not be able to detect others 30% of the issues caused because of the issues with the network (especially if you are having a lot of traffic towards DATA RECEIVER).
This is more of an infrastructure problem than it is a Node one, and the same situation can be applied to almost any server.
What you basically need is some service that monitors Server 1 and determines whether it's "healthy" or "alive" and if so continue to direct traffic to it. If the service determines that the server is no longer in a stable condition (e.g. it takes too long to respond, returns an error) it will redirect any incoming traffic to Server 2. When it's happy Server 1 has returned to normal operating conditions it will redirect the traffic back onto it.
In most cases, the "service" in this scenario is a reverse proxy like Nginx or CloudFlare. In your situation, this server would act as a buffer between Data Reciever and your network (Server 1 / Server 2) and route the incoming traffic to the relevant server.
That looks like a classical use case for a reverse proxy. Using a well tested server such as nginx should provide plenty reliability the proxy won't fail (other than hardware failure) and you could put that infront of whatever cluster size you want. You'd even get the benefit of load-balancing if that is applicable and configured properly.
Alternatively and also leaning towards a load-balancing solution, you could have a front server push requests into a queue (ZMQ for example) and either push from the queue to the app server(s) or have your app-server(s) pull tasks from the queue independently.
In both solutions, if it's a requirement not to "push" 2 simultaneous results to your data receiver, you could use an outbound queue that all app-servers push into.

Peer to Peer: Methods of Finding Peers

Are there any known methods of finding peers without using a dedicated central server?
ie: If I have peers which are disconnecting and reconnecting to the internet but getting a new IP address each time, and I want to connect to them without setting up a dedicated server to register with.
I was thinking about using peers email address to send a manifest of connected peers periodically, with some sort of timecode, negating the need for a dedicated server. This would be a fallback if none of the peers could be connected to after trying all the previously known peer addresses. But existing models of finding peers would be preferable.
There's no way around having to know at least one initial peer to discover more.
Fully P2P protocols, such as Gnutella or Gnutella2, or the simpler Overnet (made famous by Storm Worm), are based on each client having a start-up list of a few peers. These can come off a web-based automated tracker for example. The client will discover the whole network or portions of it by asking other peers for more addresses, for example when delegating a file search.
If you truly can't have any kind of a centralized resource, the best you can do is find the first peer through broadcasted messages and ultimately IP address scanning. The first approach is well-meaning but in at least 98% of cases won't yield any results. The later approach, of course, is abusing the internet, as well as illegal in most countries.
I really would rethink having some kind of a central tracker. It can be something as simple as a PHP script on a webserver (the gnutella network, today, is held up by ten-twenty such scripts, hosted by people who don't even know each other). And this sure is more lightweight than email (which, due to spam filters at the very least, would not work anyway).
In the limited case of peers within an intranet, it is possible to send a broadcast UDP message to a known port asking for peers to report back.
The BitcoinQT client uses a variety of methods to find nodes, some of them might be useful to you.
Satoshi Client Node Discovery
IRC is no longer used, but might be the most easy to implement:
As of version 0.6.x the Bitcoin client no longer uses IRC bootstrapping by default, and as of version 0.8.2 support for IRC bootstrapping has been removed completely. This documentation below is accurate for most prior versions.
In addition to learning and sharing its own address, the node learned about other node addresses via an IRC channel. See irc.cpp.
After learning its own address, a node encoded its own address into a string to be used as a nickname. Then, it randomly joined an IRC channel named between #bitcoin00 and #bitcoin99. Then it issued a WHO command. The thread read the lines as they appeared in the channel and decoded the IP addresses of other nodes in the channel. It did this in a loop, forever, until the node was shutdown.
When the client discovered an address from IRC, it set the timestamp on the address to the current time, but it used a "penalty" of 51 minutes, which means it looked like it was actually seen almost an hour earlier.
Take advantage of any existing forum where data can posted. Think secret IRC channel, embedding data in photos and posting to photo sharing sites 4chan?, any site that would allow your application to login and post data without captia logins etc.
http://chatzilla.hacksrus.com/faq/#password
Another strategy might be to embedded messages in digital currency transactions. Pick a cheap coin that's likely to hang around ... DOGE or MOON coin maybe. Build wallet functionality into your app. such that you can post micro transactions back and forth between addresses that your app controls. There would still be a miners fee, but this is only fractions of pennies. Even if they later prohibit adding metadata to transactions, you could make a transaction equivalent to your IP address in MOON, and use vanity addresses in MOON coin for your app. such that when a new node comes online it knows what to search the blockchain for -- 2daMOON%bootStr#pM3. SEND - 104.003021133 MOON IP = 104.3.21.133 not an expensive proposition.
Old question but I've been thinking about this problem myself so will ad my 2-cents. In short, a central server is not required if a node is aware of at least one valid peer. New nodes must be added to the network by any current member (e.g. invited, or node spawns another node, depending on your application).
Assuming that:
agents keep track of peers; the size of this address book and how entries are managed will depend on the nature of the system; e.g. how long peers remain connected, if peers use stable addresses
agents share peer information with other peers
at least some agents remain available for relatively long periods of time relative to frequency node connects to network to update it's address book (or nodes have stable addresses)
in addition to peer addresses, availability information is also tracked (many options here depending on your system. examples include: whether peer has a stable address, when last seen, some availability metric, content/service type information, address valid-until time if known)
new agents are initialized with at least one valid peer (doesn't have to be a central node, can be any valid node)
trust mechanisms shall be required if malicious peers are a possibility
When a peer comes online, it queries the peers in it's peer table to discover which are active and perhaps removes expired dynamic addresses. Nodes exchange peer information and may become linked themselves. This peer discovery/exchange may continue a certain number of hops or via random walk until peer list if of sufficient size and/or quality.
A few more details:
Nodes connect and share peer information with frequency related to how often node addresses change, so address book doesn't become stale and node becomes disconnected because none of it's former peers are available at their last known addresses
Nodes may need to limit the number of peers they accept, to avoid tendency towards centralization around the most stable nodes.
Nodes should be selective about the peers they keep; i.e. ones in which they are more likely to exchange data (e.g. weight based upon history)
Node links may be asymmetric or symmetric depending on the application
Three ways, off the top of my head, though you're always going to need some central server to start the connection unless you went with option 3.
Central server that maintains known list of peers, with keep-alive.
One or more central servers that maintain some common resource peers can use to discover one another, but once connected no longer need the central server as long as the peer remains connected (something like BitTorrent); can chain peered connections as well.
Port/IP scanning (strongly not recommended).
In your example, you'd still have some kind of central server where the peers would be registered; the protocol is the only difference.
To put it simply no, there is no way to do this without a central sever.
If you want to do this you simply need one or more central servers, whether by dynamic dns or not. The clients need a method to discover where they should connect to, and the only truly sensible way to do this is with your own server, in the simplest scenario it only needs to send an IP address in response.
Virtual severs can be had for around $15/month, which IMO is considerably cheaper than trying to use or abuse someone else's bandwidth.
[Edit].
To put it simply, there is another way, as follows.
Upon reflection I think what I'd do is to designate a set of peers as cluster controllers and use a dynamic DNS service to allow other peers to discover the cluster controllers.
Choose a dynamic DNS provider I'll call it myc.ath.cx (I Use http://www.dyndns.com/).
Each peer has to be capable of becoming a cluster controller. A cluster controller will contain a list of all the other peers connected.
When a peer is started it looks up myc.ath.cx and attempts to connect. If connection cannot be made within a period, say 30 seconds, it takes over the registration of the DNS entry.
Any peer wishing to discover other peers can simply query myc.ath.cx and a list will be provided
All peers are responsible for periodically downloading the list of peers, in case they need to cluster controller.
The cluster controller will periodically query the DNS entry - if has changed from it's IP address then it knows that it is no longer the cluster controller - so it will contact the cluster controller that currently has the DNS entry and provide it's list of known hosts.
The cluster controller will periodically contact hosts on the list to ensure that they are still valid.
Your method of sending email does use a dedicated server, though; the peer's email server, to be precise.
Roughly, I don't think it's possible without using some sort of dedicated storage or server (which the email approach does, albeit obliquely) UNLESS you are able to characterize the connectivity to the internet that your peers are using.
Basically, if you have a set of X number of peers, that connect for Y amount of time, and they are then off the grid for Z amount of time... essentially, you can construct a probability equation about how likely it is that the set of peers that you last contacted is still available; where that probability approaches 1 (for a given set of X, Y, and Z above), you can most likely sustain a peer-to-peer network without using storage.
Possibly more in the spirit; instead of having a "dedicated central server", use simple online free service to specify a peer list. Set up a yahoo group, or something like that; clients can automatically look it up and get a peer address from which to query a set of peers; the client can be coded with the authentication to post to the group, and can post periodically its IP address so that others can request the set of known active peers.
If you want to get really tricky, you can start using basically steganographic methods to hide peer location information. I.e. get a google search for "blah"; find the first site listed in the results that has an unprotected (no CAPTCHA) message board; find the third (or whatever) post that starts with "Indubitably" (or whatever), and find the header of the first message there, and there's the IP address of a peer. If that doesn't work, go down the list of search terms to the next one.
But that's sneaky. :-)
Could you re-use an existing dedicated server for the purpose?
I am thinking in particular of registering each of the peers with a Dynamic DNS, but if you were willing to get a bit uglier, sharing access to a known Hotmail account or Google Doc or the like.
You can either use a central directory or some sort of broadcast protocol for service discovery. Assuming that you could get them indexed by Google, you could conceive of a system whereby each peer runs a web site with some unique, rare words contained on a specific page. You could then use Google search results based on these words to identify potential peers. This would essentially be a (noisy and slow) internet broadcast.
If the page structure was a well known pattern or contained identifiable connection information for that peer, it would be easy to distinguish them in the search results. Using such a public directory leaves you open to compromised nodes in the network that is formed, but this is pretty much true of any P2P network absent some security mechanism.
Getting the web sites crawled and highly ranked by Google (or some other search engine) for your particular arcane set of search terms would be the trick. I can think of a couple of ways, but they aren't ones that I would use. For a legitimate service, I'd rather spend the money or find a free web site that could function as a directory.
What about another P2P system built specifically to track online peers of other P2P systems?
Then we reduce the problem of finding peers for any new P2P system to simply finding peers for the 'main' P2P system, which will give you the addresses of online peers for the system you're interested in using...
This is a typical use of a distributed hash table algorithm. I'd suggest looking at something like pastry. It uses a overlay network (Application layer network) on top of other layers.
Each node has a GUID which is used to route requests across the peer network.
If you're loooking for an already established central server then see the metaserver entry on page here:
http://martindevans.appspot.com/
You can register peers on there and then other peers can find them. Obviously this is a central server, but it requires no maintenance on your part.

Resources