Deserializing an existential data type - haskell

I need to write a Serialize instance for the following data type:
data AnyNode = forall n . (Typeable n, Serialize n) => AnyNode n
Serializing this is no problem, but I can't implement deserialization, since the compiler has no way to resolve the specific instance of Serialize n, since the n is isolated from the outer scope.
There's been a related discussion in 2006. I am now wondering whether any sort of solution or a workaround has arrived today.

You just tag the type when you serialize, and use a dictionary to untag the type when you deserialize. Here's some pseudocode omitting error checking etc:
serialAnyNode (AnyNode x) = serialize (typeOf n, serialize x)
deserialAnyNode s = case deserialize s of
(typ,bs) -> case typ of
"String" -> AnyNode (deserialize bs :: String)
"Int" -> AnyNode (deserialize bs :: Int)
....
Note that you can only deserialize a closed universe of types with your function. With some extra work, you can also deserialize derived types like tuples, maybes and eithers.
But if I were to declare an entirely new type "Gotcha" deriving Typeable and Serialize, deserialAnyNode of course couldn't deal with it without extension.

You need to have some kind of centralised "registry" of deserialization functions so you can dispatch on the actual type (extracted from the Typeable information). If all types you want to deserialize are in the same module this is pretty easy to set up. If they are in multiple modules you need to have one module that has the mapping.
If your collection of types is more dynamic and not easily available at compile time, you can perhaps use the dynamic linking to gain access to the deserializers. For each type that you want to deserialize you export a C callable function with a name derived from the Typeable information (you could use TH to generate these). Then at runtime, when you want to deserialize a type, generate the same name and the use the dynamic linker to get hold of the address of the function and then an FFI wrapper to get a Haskell callable function. This is a rather involved process, but it can be wrapped up in a library. No, sorry, I don't have such a library.

It's hard to tell what you're asking here, exactly. You can certainly pick a particular type T, deserialize a ByteString to it, and store it in an AnyNode. That doesn't do the user of an AnyNode much good, though -- you still picked T, after all. If it wasn't for the Typeable constraint, the user wouldn't even be able to tell what the type is (so let's get rid of the Typeable constraint because it makes things messier). Maybe what you want is a universal instead of an existential.
Let's split Serialize up into two classes -- call them Read and Show -- and simplify them a bit (so e.g. read can't fail).
So we have
class Show a where show :: a -> String
class Read a where read :: String -> a
We can make an existential container for a Show-able value:
data ShowEx where
ShowEx :: forall a. Show a => a -> ShowEx
-- non-GADT: data ShowEx = forall a. Show a => ShowEx a
But of course ShowEx is isomorphic to String, so there isn't a whole lot point to this. But note that an existential for Read is has even less point:
data ReadEx where
ReadEx :: forall a. Read a => a -> ReadEx
-- non-GADT: data ReadEx = forall a. Read a => ReadEx a
When I give you a ReadEx -- i.e. ∃a. Read a *> a -- it means that you have a value of some type, and you don't know what the type is, but you can a String into another value of the same type. But you can't do anything with it! read only produces as, but that doesn't do you any good when you don't know what a is.
What you might want with Read would be a type that lets the caller choose -- i.e., a universal. Something like
newtype ReadUn where
ReadUn :: (forall a. Read a => a) -> ReadUn
-- non-GADT: newtype ReadUn = ReadUn (forall a. Read a => a)
(Like ReadEx, you could make ShowUn -- i.e. ∀a. Show a => a -- and it would be just as useless.)
Note that ShowEx is essentially the argument to show -- i.e. show :: (∃a. Show a *> a) -> String -- and ReadUn is essentially the return value of read -- i.e. read :: String -> (∀a. Read a => a).
So what are you asking for, an existential or a universal? You can certainly make something like ∀a. (Show a, Read a) => a or ∃a. (Show a, Read a) *> a, but neither does you much good here. The real issue is the quantifier.
(I asked a question a while ago where I talked about some of this in another context.)

Related

Clarification on Existential Types in Haskell

I am trying to understand Existential types in Haskell and came across a PDF http://www.ii.uni.wroc.pl/~dabi/courses/ZPF15/rlasocha/prezentacja.pdf
Please correct my below understandings that I have till now.
Existential Types not seem to be interested in the type they contain but pattern matching them say that there exists some type we don't know what type it is until & unless we use Typeable or Data.
We use them when we want to Hide types (ex: for Heterogeneous Lists) or we don't really know what the types at Compile Time.
GADT's provide the clear & better syntax to code using Existential Types by providing implicit forall's
My Doubts
In Page 20 of above PDF it is mentioned for below code that it is impossible for a Function to demand specific Buffer. Why is it so? When I am drafting a Function I exactly know what kind of buffer I gonna use eventhough I may not know what data I gonna put into that.
What's wrong in Having :: Worker MemoryBuffer Int If they really want to abstract over Buffer they can have a Sum type data Buffer = MemoryBuffer | NetBuffer | RandomBuffer and have a type like :: Worker Buffer Int
data Worker x = forall b. Buffer b => Worker {buffer :: b, input :: x}
data MemoryBuffer = MemoryBuffer
memoryWorker = Worker MemoryBuffer (1 :: Int)
memoryWorker :: Worker Int
As Haskell is a Full Type Erasure language like C then How does it know at Runtime which function to call. Is it something like we gonna maintain few information and pass in a Huge V-Table of Functions and at runtime it gonna figure out from V-Table? If it is so then what sort of Information it gonna store?
GADT's provide the clear & better syntax to code using Existential Types by providing implicit forall's
I think there's general agreement that the GADT syntax is better. I wouldn't say that it's because GADTs provide implicit foralls, but rather because the original syntax, enabled with the ExistentialQuantification extension, is potentially confusing/misleading. That syntax, of course, looks like:
data SomeType = forall a. SomeType a
or with a constraint:
data SomeShowableType = forall a. Show a => SomeShowableType a
and I think the consensus is that the use of the keyword forall here allows the type to be easily confused with the completely different type:
data AnyType = AnyType (forall a. a) -- need RankNTypes extension
A better syntax might have used a separate exists keyword, so you'd write:
data SomeType = SomeType (exists a. a) -- not valid GHC syntax
The GADT syntax, whether used with implicit or explicit forall, is more uniform across these types, and seems to be easier to understand. Even with an explicit forall, the following definition gets across the idea that you can take a value of any type a and put it inside a monomorphic SomeType':
data SomeType' where
SomeType' :: forall a. (a -> SomeType') -- parentheses optional
and it's easy to see and understand the difference between that type and:
data AnyType' where
AnyType' :: (forall a. a) -> AnyType'
Existential Types not seem to be interested in the type they contain but pattern matching them say that there exists some type we don't know what type it is until & unless we use Typeable or Data.
We use them when we want to Hide types (ex: for Heterogeneous Lists) or we don't really know what the types at Compile Time.
I guess these aren't too far off, though you don't have to use Typeable or Data to use existential types. I think it would be more accurate to say an existential type provides a well-typed "box" around an unspecified type. The box does "hide" the type in a sense, which allows you to make a heterogeneous list of such boxes, ignoring the types they contain. It turns out that an unconstrained existential, like SomeType' above is pretty useless, but a constrained type:
data SomeShowableType' where
SomeShowableType' :: forall a. (Show a) => a -> SomeShowableType'
allows you to pattern match to peek inside the "box" and make the type class facilities available:
showIt :: SomeShowableType' -> String
showIt (SomeShowableType' x) = show x
Note that this works for any type class, not just Typeable or Data.
With regard to your confusion about page 20 of the slide deck, the author is saying that it's impossible for a function that takes an existential Worker to demand a Worker having a particular Buffer instance. You can write a function to create a Worker using a particular type of Buffer, like MemoryBuffer:
class Buffer b where
output :: String -> b -> IO ()
data Worker x = forall b. Buffer b => Worker {buffer :: b, input :: x}
data MemoryBuffer = MemoryBuffer
instance Buffer MemoryBuffer
memoryWorker = Worker MemoryBuffer (1 :: Int)
memoryWorker :: Worker Int
but if you write a function that takes a Worker as argument, it can only use the general Buffer type class facilities (e.g., the function output):
doWork :: Worker Int -> IO ()
doWork (Worker b x) = output (show x) b
It can't try to demand that b be a particular type of buffer, even via pattern matching:
doWorkBroken :: Worker Int -> IO ()
doWorkBroken (Worker b x) = case b of
MemoryBuffer -> error "try this" -- type error
_ -> error "try that"
Finally, runtime information about existential types is made available through implicit "dictionary" arguments for the typeclasses that are involved. The Worker type above, in addtion to having fields for the buffer and input, also has an invisible implicit field that points to the Buffer dictionary (somewhat like v-table, though it's hardly huge, as it just contains a pointer to the appropriate output function).
Internally, the type class Buffer is represented as a data type with function fields, and instances are "dictionaries" of this type:
data Buffer' b = Buffer' { output' :: String -> b -> IO () }
dBuffer_MemoryBuffer :: Buffer' MemoryBuffer
dBuffer_MemoryBuffer = Buffer' { output' = undefined }
The existential type has a hidden field for this dictionary:
data Worker' x = forall b. Worker' { dBuffer :: Buffer' b, buffer' :: b, input' :: x }
and a function like doWork that operates on existential Worker' values is implemented as:
doWork' :: Worker' Int -> IO ()
doWork' (Worker' dBuf b x) = output' dBuf (show x) b
For a type class with only one function, the dictionary is actually optimized to a newtype, so in this example, the existential Worker type includes a hidden field that consists of a function pointer to the output function for the buffer, and that's the only runtime information needed by doWork.
In Page 20 of above PDF it is mentioned for below code that it is impossible for a Function to demand specific Buffer. Why is it so?
Because Worker, as defined, takes only one argument, the type of the "input" field (type variable x). E.g. Worker Int is a type. The type variable b, instead, is not a parameter of Worker, but is a sort of "local variable", so to speak. It can not be passed as in Worker Int String -- that would trigger a type error.
If we instead defined:
data Worker x b = Worker {buffer :: b, input :: x}
then Worker Int String would work, but the type is no longer existential -- we now always have to pass the buffer type as well.
As Haskell is a Full Type Erasure language like C then How does it know at Runtime which function to call. Is it something like we gonna maintain few information and pass in a Huge V-Table of Functions and at runtime it gonna figure out from V-Table? If it is so then what sort of Information it gonna store?
This is roughly correct. Briefly put, each time you apply constructor Worker, GHC infers the b type from the arguments of Worker, and then searches for an instance Buffer b. If that is found, GHC includes an additional pointer to the instance in the object. In its simplest form, this is not too different from the "pointer to vtable" which is added to each object in OOP when virtual functions are present.
In the general case, it can be much more complex, though. The compiler might use a different representation and add more pointers instead of a single one (say, directly adding the pointers to all the instance methods), if that speeds up code. Also, sometimes the compiler needs to use multiple instances to satisfy a constraint. E.g., if we need to store the instance for Eq [Int] ... then there is not one but two: one for Int and one for lists, and the two needs to be combined (at run time, barring optimizations).
It is hard to guess exactly what GHC does in each case: that depends on a ton of optimizations which might or might not trigger.
You could try googling for the "dictionary based" implementation of type classes to see more about what's going on. You can also ask GHC to print the internal optimized Core with -ddump-simpl and observe the dictionaries being constructed, stored, and passed around. I have to warn you: Core is rather low level, and can be hard to read at first.

Cloud Haskell - How to write "pure" for Closures?

I've been playing with Cloud Haskell. I've noticed in the hackage documentation there's a kind of applicative interface. But in particular I'm trying to find or write a function closurePure with the following signature:
closurePure :: (Typeable a, Binary a) => a -> Closure a
This is basically a restricted version of pure.
Whilst the Closure datatype itself is abstract, the following closure provided:
closure :: Static (ByteString -> a) -> ByteString -> Closure a
So I can get this far:
closurePure :: (Typeable a, Binary a) => a -> Closure a
closurePure x = closure ??? (encode x)
The problem is what to put where the ???s are.
My first attempt was the following:
myDecode :: (Typeable a, Binary a) => Static (ByteString -> a)
myDecode = staticPtr (static decode)
But upon reading the GHC docs on static pointers, the show example suggested to me that you can't have a constraint because a constrained function doesn't have a Typeable instance. So I tried the work around suggested using Dict:
myDecode :: Typeable a => Static (Dict (Binary a) -> ByteString -> a)
myDecode = staticPtr (static (\Dict -> decode))
But now I've got the wrong type that doesn't fit into the closure function above.
Is there anyway to write closurePure or something similar (or have I missed it in the Cloud Haskell docs)? Raising binary plain types to Closures seems essential to using the applicative interface given, but I can't work out how to do it.
Note that I can do this:
class StaticDecode a where
staticPtrDecode :: StaticPtr (ByteString -> a)
instance StaticDecode Int where
staticPtrDecode = static Data.Binary.decode
instance StaticDecode Float where
staticPtrDecode = static Data.Binary.decode
instance StaticDecode Integer where
staticPtrDecode = static Data.Binary.decode
-- More instances etc...
myPure :: forall a. (Typeable a, StaticDecode a, Binary a) => a -> Closure a
myPure x = closure (staticPtr staticPtrDecode) (encode x)
Which works well but basically requires me to repeat an instance for each Binary instance. It seems messy and I'd prefer another way.
You're right, Closure has an applicative-like structure, a fact made even more explicit in both the interface and the implementation of distributed-closure. It's not quite applicative, because in the pure case we do have the additional constraint that the argument must somehow be serializable.
Actually, we have a stronger constraint. Not only must the argument be serializable, but the constraint must itself be serializable. Just like it's hard to serialize functions directly, you can imagine that it's hard to serialize constraints. But just like for functions, the trick is to serialize a static pointer to the constraint itself, if such a static pointer exists. How do we know that such a pointer exists? We could introduce a type class with a single method that gives us the name of the pointer, given a constraint:
class GimmeStaticPtr c where
gimmeStaticPtr :: StaticPtr (Dict c)
There's a slight technical trick going on here. The kind of the type index for StaticPtr is the kind *, whereas a constraint has kind Constraint. So we reuse a trick from the constraints library that consists in wrapping a constraint into a data type (Dict above), which like all data types is of kind *. Constraints that have an associated GimmeStaticPtr instance are called static constraints.
In general, it's sometimes useful to compose static constraints to get more static constraints. StaticPtr is not composable, but Closure is. so what distributed-closure actually does is define a similar class, that we'll call,
class GimmeClosure c where
gimmeClosure :: Closure (Dict c)
Now we can define closurePure in a similar way that you did:
closurePure :: (Typeable a, GimmeClosure (Binary a)) => a -> Closure a
It would be great if in the future, the compiler could resolve GimmeClosure constraints on-the-fly by generating static pointers as needed. But for now, the thing that comes closest is Template Haskell. distributed-closure provides a module to autogenerate GimmeClosure (Cls a) constraints at the definition site for class Cls. See withStatic here.
Incidentally, Edsko de Vries gave a great talk about distributed-closure and the ideas embodied therein.
Let's take a moment to consider what you are asking for. Recall that typeclasses are basically shorthand for dictionary passing. So let's rewrite:
data BinaryDict a = BinaryDict
{ bdEncode :: a -> ByteString
, bdDecode :: ByteString -> a
}
Now you wish to write a function:
closurePure :: (Typeable a) => BinaryDict a -> a -> Closure a
Your attempt is:
closurePure bdict = closure (staticPtr (static (bdDecode bdict))) . bdEncode bdict
Now that we can see what's going on explicitly, we can see that static's argument cannot be closed. If BinaryDicts were allowed to be created willy nilly, say from user data, this function would be impossible. We would instead need:
closurePure :: (Typeable a) => Static (BinaryDict a) -> a -> Closure a
That is, we need entries for the needed Binary instances in the static pointer table. Hence your enumeration solution, and why I suspect that such a solution is required. We also can't expect to enumerate it too automatically, because there are infinitely many instances.
It seems silly to me, however, since instances seem like just the sorts of things that you would want to be static automatically. They are static by nature (what's that, reflection? I can't hear you). This was probably at least ruminated about in the distributed Haskell papers (I haven't read them).
We could solve this problem in general by simply creating a class that concretely enumerates every instance of every class (déjà vu?).
class c => StaticConstraint c where
staticConstraint :: StaticPtr (Dict c)
instance StaticConstraint (Show Int) where
staticConstraint = static Dict
-- a handful more lines...
Somewhat more seriously, if you really don't want to enumerate (I don't blame you), you can at least ease the pain with a calling convention:
closurePure :: (Typeable a, Binary a) => StaticPtr (ByteString -> a) -> a -> Closure a
closurePure decodePtr = closure (staticPtr decodePtr) . encode
someClosure :: Closure Int
someClosure = closurePure (static decode) 42
This nonsense is necessary because static is a "syntactic form" rather than a function -- by mentioning it, we indicate that the Binary instance for Int must actually be generated and recorded in the static pointer table.
If you are feeling cheeky you could enable {-# LANGUAGE CPP #-} and
-- PURE :: (Binary a, Typeable a) => a -> Closure a, I promise
#define PURE (closurePure (static decode))
someClosure :: Closure Int
someClosure = PURE 42
Maybe someday Haskell will take the next step and graduate to the time-tested Segmentation fault (core dumped) of its predecessors instead of spouting off those arrogant type errors.

Haskell: Filtering by type

For any particular type A:
data A = A Int
is is possible to write this function?
filterByType :: a -> Maybe a
It should return Just . id if value of type A is given, and Nothing for value of any other types.
Using any means (GHC exts, TH, introspection, etc.)
NB. Since my last question about Haskell typesystem was criticized by the community as "terribly oversimplified", I feel the need to state, that this is a purely academic interest in Haskell typesystem limitations, without any particular task behind it that needs to be solved.
You are looking for cast at Data.Typeable
cast :: forall a b. (Typeable a, Typeable b) => a -> Maybe b
Related question here
Example
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Typeable
data A = A Int deriving (Show, Typeable)
data B = B String deriving (Show, Typeable)
showByType :: Typeable a =>a ->String
showByType x = case (cast x, cast x) of
(Just (A y), _) ->"Type A: " ++ show y
(_, Just (B z)) ->"Type B: " ++ show z
then
> putStrLn $ showByType $ A 4
Type A: 4
> putStrLn $ showByType $ B "Peter"
Type B: "Peter"
>
Without Typeable derivation, no information exists about the underlying type, you can anyway perform some cast transformation like
import Unsafe.Coerce (unsafeCoerce)
filterByType :: a -> Maybe a
filterByType x = if SOMECHECK then Just (unsafeCoerce x) else Nothing
but, where is that information?
Then, you cannot write your function (or I don't know how) but in some context (binary memory inspection, template haskell, ...) may be.
No, you can't write this function. In Haskell, values without type class constraints are parametric in their type variables. This means we know that they have to behave exactly the same when instantiated at any particular type¹; in particular, and relevant to your question, this means they cannot inspect their type parameters.
This design means that that all types can be erased at run time, which GHC does in fact do. So even stepping outside of Haskell qua Haskell, unsafe tricks won't be able to help you, as the runtime representation is sort of parametric, too.
If you want something like this, josejuan's suggestion of using Typeable's cast operation is a good one.
¹ Modulo some details with seq.
A function of type a -> Maybe a is trivial. It's just Just. A function filterByType :: a -> Maybe b is impossible.
This is because once you've compiled your program, a and b are gone. There is no run time type information in Haskell, at all.
However, as mentioned in another answer you can write a function:
cast :: (Typeable a, Typeable b) => a -> Maybe b
The reason you can write this is because the constraint Typeable a tells the compiler to, where ever this function is called, pass along a run-time dictionary of values specified by Typeable. These are useful operations that can build up and tear down a great range of Haskell types. The compiler is incredibly smart about this and can pass in the right dictionary for virtually any type you use the function on.
Without this run-time dictionary, however, you cannot do anything. Without a constraint of Typeable, you simply do not get the run-time dictionary.
All that aside, if you don't mind my asking, what exactly do you want this function for? Filtering by a type is not actually useful in Haskell, so if you're trying to do that, you're probably trying to solve something the wrong way.

Showing the type A -> A

data A = Num Int
| Fun (A -> A) String deriving Show
instance Show (Fun (A -> A) String) where
show (Fun f s) = s
I would like to have an attribute for a function A -> A to print it, therefore there is a String type parameter to Fun. When I load this into ghci, I get
/home/kmels/tmp/show-abs.hs:4:16:
Not in scope: type constructor or class `Fun'
I guess this could be achieved by adding a new data type
data FunWithAttribute = FA (A -> A) String
adding data A = Num Int | Fun FunWithAttribute and writing an instance Show FunWithAttribute. Is the additional data type avoidable?
Instances are defined for types as a whole, not individual constructors, which is why it complains about Fun not being a type.
I assume your overall goal is to have a Show instance for A, which can't be derived because functions can't (in general) have a Show instance. You have a couple options here:
Write your own Show instance outright:
That is, something like:
instance Show A where
show (Num n) = "Num " ++ show n
show (Fun _ s) = s
In many cases, this makes the most sense. But sometimes it's nicer to derive Show, especially on complex recursive types where only one case of many is not automatically Show-able.
Make A derivable:
You can only derive Show for types that contain types that themselves have Show instances. There's no instance for A -> A, so deriving doesn't work. But you can write one that uses a placeholder of some sort:
instance Show (A -> A) where
show _ = "(A -> A)"
Or even just an empty string, if you prefer.
Note that this requires the FlexibleInstances language extension; it's one of the most harmless and commonly used extensions, is supported by multiple Haskell implementations, and the restrictions it relaxes are (in my opinion) a bit silly to begin with, so there's little reason to avoid it.
An alternate approach would be to have a wrapper type, as you mention in the question. You could even make this more generic:
data ShowAs a = ShowAs a String
instance Show (ShowAs a) where
show (ShowAs _ s) = s
...and then use (ShowAs (A -> A)) in the Fun constructor. This makes it a bit awkward by forcing you to do extra pattern matching any time you want to use the wrapped type, but it gives you lots of flexibility to "tag" stuff with how it should be displayed, e.g. showId = id `ShowAs` "id" or suchlike.
Perhaps I'm not following what you are asking for. But the above code could be written like this in order to compile:
data A = Num Int
| Fun (A -> A) String
instance Show A where
show (Fun f s) = s
show (Num i) = show i
Some explanation
It looked like you were trying to write a show instance for a constructor (Fun). Class instances are written for the entire data type (there might be exceptions, dunno). So you need to write one show matching on each constructor as part of the instance. Num and Fun are each constructors of the data type A.
Also, deriving can't be used unless each parameter of each constructor is, in turn, member of, in this case, Show. Now, your example is a bit special since it wants to Show (A -> A). How to show a function is somewhat explained in the other responses, although I don't think there is an exhaustive way. The other examples really just "show" the type or some place holder.
A Show instance (or any class instance) needs to be defined for a data type, not for a type constructor. That is, you need simply
instance Show A where
Apparently, you're trying to get this instance with the deriving, but that doesn't work because Haskell doesn't know how to show A->A. Now it seems you don't even want to show that function, but deriving Show instances always show all available information, so you can't use that.
The obvious, and best, solution to your problem is worldsayshi's: don't use deriving at all, but define a proper instance yourself. Alternatively, you can define a pseudo-instance for A->A and then use deriving:
{-# LANGUAGE FlexibleInstances #-}
data A = Num Int | Fun (A->A) String deriving(Show)
instance Show (A->A) where show _ = ""
This works like
Prelude> Fun (const $ Num 3) "bla"
Fun "bla"

Programmatic type annotations in Haskell

When metaprogramming, it may be useful (or necessary) to pass along to Haskell's type system information about types that's known to your program but not inferable in Hindley-Milner. Is there a library (or language extension, etc) that provides facilities for doing this—that is, programmatic type annotations—in Haskell?
Consider a situation where you're working with a heterogenous list (implemented using the Data.Dynamic library or existential quantification, say) and you want to filter the list down to a bog-standard, homogeneously typed Haskell list. You can write a function like
import Data.Dynamic
import Data.Typeable
dynListToList :: (Typeable a) => [Dynamic] -> [a]
dynListToList = (map fromJust) . (filter isJust) . (map fromDynamic)
and call it with a manual type annotation. For example,
foo :: [Int]
foo = dynListToList [ toDyn (1 :: Int)
, toDyn (2 :: Int)
, toDyn ("foo" :: String) ]
Here foo is the list [1, 2] :: [Int]; that works fine and you're back on solid ground where Haskell's type system can do its thing.
Now imagine you want to do much the same thing but (a) at the time you write the code you don't know what the type of the list produced by a call to dynListToList needs to be, yet (b) your program does contain the information necessary to figure this out, only (c) it's not in a form accessible to the type system.
For example, say you've randomly selected an item from your heterogenous list and you want to filter the list down by that type. Using the type-checking facilities supplied by Data.Typeable, your program has all the information it needs to do this, but as far as I can tell—this is the essence of the question—there's no way to pass it along to the type system. Here's some pseudo-Haskell that shows what I mean:
import Data.Dynamic
import Data.Typeable
randList :: (Typeable a) => [Dynamic] -> IO [a]
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (dynListToList dl :: [<tr>]) -- This thing should have the type
-- represented by `tr`
(Assume randItem selects a random item from a list.)
Without a type annotation on the argument of return, the compiler will tell you that it has an "ambiguous type" and ask you to provide one. But you can't provide a manual type annotation because the type is not known at write-time (and can vary); the type is known at run-time, however—albeit in a form the type system can't use (here, the type needed is represented by the value tr, a TypeRep—see Data.Typeable for details).
The pseudo-code :: [<tr>] is the magic I want to happen. Is there any way to provide the type system with type information programatically; that is, with type information contained in a value in your program?
Basically I'm looking for a function with (pseudo-) type ??? -> TypeRep -> a that takes a value of a type unknown to Haskell's type system and a TypeRep and says, "Trust me, compiler, I know what I'm doing. This thing has the value represented by this TypeRep." (Note that this is not what unsafeCoerce does.)
Or is there something completely different that gets me the same place? For example, I can imagine a language extension that permits assignment to type variables, like a souped-up version of the extension enabling scoped type variables.
(If this is impossible or highly impractical,—e.g., it requires packing a complete GHCi-like interpreter into the executable—please try to explain why.)
No, you can't do this. The long and short of it is that you're trying to write a dependently-typed function, and Haskell isn't a dependently typed language; you can't lift your TypeRep value to a true type, and so there's no way to write down the type of your desired function. To explain this in a little more detail, I'm first going to show why the way you've phrased the type of randList doesn't really make sense. Then, I'm going to explain why you can't do what you want. Finally, I'll briefly mention a couple thoughts on what to actually do.
Existentials
Your type signature for randList can't mean what you want it to mean. Remembering that all type variables in Haskell are universally quantified, it reads
randList :: forall a. Typeable a => [Dynamic] -> IO [a]
Thus, I'm entitled to call it as, say, randList dyns :: IO [Int] anywhere I want; I must be able to provide a return value for all a, not simply for some a. Thinking of this as a game, it's one where the caller can pick a, not the function itself. What you want to say (this isn't valid Haskell syntax, although you can translate it into valid Haskell by using an existential data type1) is something more like
randList :: [Dynamic] -> (exists a. Typeable a => IO [a])
This promises that the elements of the list are of some type a, which is an instance of Typeable, but not necessarily any such type. But even with this, you'll have two problems. First, even if you could construct such a list, what could you do with it? And second, it turns out that you can't even construct it in the first place.
Since all that you know about the elements of the existential list is that they're instances of Typeable, what can you do with them? Looking at the documentation, we see that there are only two functions2 which take instances of Typeable:
typeOf :: Typeable a => a -> TypeRep, from the type class itself (indeed, the only method therein); and
cast :: (Typeable a, Typeable b) => a -> Maybe b (which is implemented with unsafeCoerce, and couldn't be written otherwise).
Thus, all that you know about the type of the elements in the list is that you can call typeOf and cast on them. Since we'll never be able to usefully do anything else with them, our existential might just as well be (again, not valid Haskell)
randList :: [Dynamic] -> IO [(TypeRep, forall b. Typeable b => Maybe b)]
This is what we get if we apply typeOf and cast to every element of our list, store the results, and throw away the now-useless existentially typed original value. Clearly, the TypeRep part of this list isn't useful. And the second half of the list isn't either. Since we're back to a universally-quantified type, the caller of randList is once again entitled to request that they get a Maybe Int, a Maybe Bool, or a Maybe b for any (typeable) b of their choosing. (In fact, they have slightly more power than before, since they can instantiate different elements of the list to different types.) But they can't figure out what type they're converting from unless they already know it—you've still lost the type information you were trying to keep.
And even setting aside the fact that they're not useful, you simply can't construct the desired existential type here. The error arises when you try to return the existentially-typed list (return $ dynListToList dl). At what specific type are you calling dynListToList? Recall that dynListToList :: forall a. Typeable a => [Dynamic] -> [a]; thus, randList is responsible for picking which a dynListToList is going to use. But it doesn't know which a to pick; again, that's the source of the question! So the type that you're trying to return is underspecified, and thus ambiguous.3
Dependent types
OK, so what would make this existential useful (and possible)? Well, we actually have slightly more information: not only do we know there's some a, we have its TypeRep. So maybe we can package that up:
randList :: [Dynamic] -> (exists a. Typeable a => IO (TypeRep,[a]))
This isn't quite good enough, though; the TypeRep and the [a] aren't linked at all. And that's exactly what you're trying to express: some way to link the TypeRep and the a.
Basically, your goal is to write something like
toType :: TypeRep -> *
Here, * is the kind of all types; if you haven't seen kinds before, they are to types what types are to values. * classifies types, * -> * classifies one-argument type constructors, etc. (For instance, Int :: *, Maybe :: * -> *, Either :: * -> * -> *, and Maybe Int :: *.)
With this, you could write (once again, this code isn't valid Haskell; in fact, it really bears only a passing resemblance to Haskell, as there's no way you could write it or anything like it within Haskell's type system):
randList :: [Dynamic] -> (exists (tr :: TypeRep).
Typeable (toType tr) => IO (tr, [toType tr]))
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (tr, dynListToList dl :: [toType tr])
-- In fact, in an ideal world, the `:: [toType tr]` signature would be
-- inferable.
Now, you're promising the right thing: not that there exists some type which classifies the elements of the list, but that there exists some TypeRep such that its corresponding type classifies the elements of the list. If only you could do this, you would be set. But writing toType :: TypeRep -> * is completely impossible in Haskell: doing this requires a dependently-typed language, since toType tr is a type which depends on a value.
What does this mean? In Haskell, it's perfectly acceptable for values to depend on other values; this is what a function is. The value head "abc", for instance, depends on the value "abc". Similarly, we have type constructors, so it's acceptable for types to depend on other types; consider Maybe Int, and how it depends on Int. We can even have values which depend on types! Consider id :: a -> a. This is really a family of functions: id_Int :: Int -> Int, id_Bool :: Bool -> Bool, etc. Which one we have depends on the type of a. (So really, id = \(a :: *) (x :: a) -> x; although we can't write this in Haskell, there are languages where we can.)
Crucially, however, we can never have a type that depends on a value. We might want such a thing: imagine Vec 7 Int, the type of length-7 lists of integers. Here, Vec :: Nat -> * -> *: a type whose first argument must be a value of type Nat. But we can't write this sort of thing in Haskell.4 Languages which support this are called dependently-typed (and will let us write id as we did above); examples include Coq and Agda. (Such languages often double as proof assistants, and are generally used for research work as opposed to writing actual code. Dependent types are hard, and making them useful for everyday programming is an active area of research.)
Thus, in Haskell, we can check everything about our types first, throw away all that information, and then compile something that refers only to values. In fact, this is exactly what GHC does; since we can never check types at run-time in Haskell, GHC erases all the types at compile-time without changing the program's run-time behavior. This is why unsafeCoerce is easy to implement (operationally) and completely unsafe: at run-time, it's a no-op, but it lies to the type system. Consequently, something like toType is completely impossible to implement in the Haskell type system.
In fact, as you noticed, you can't even write down the desired type and use unsafeCoerce. For some problems, you can get away with this; we can write down the type for the function, but only implement it with by cheating. That's exactly how fromDynamic works. But as we saw above, there's not even a good type to give to this problem from within Haskell. The imaginary toType function allows you to give the program a type, but you can't even write down toType's type!
What now?
So, you can't do this. What should you do? My guess is that your overall architecture isn't ideal for Haskell, although I haven't seen it; Typeable and Dynamic don't actually show up that much in Haskell programs. (Perhaps you're "speaking Haskell with a Python accent", as they say.) If you only have a finite set of data types to deal with, you might be able to bundle things into a plain old algebraic data type instead:
data MyType = MTInt Int | MTBool Bool | MTString String
Then you can write isMTInt, and just use filter isMTInt, or filter (isSameMTAs randomMT).
Although I don't know what it is, there's probably a way you could unsafeCoerce your way through this problem. But frankly, that's not a good idea unless you really, really, really, really, really, really know what you're doing. And even then, it's probably not. If you need unsafeCoerce, you'll know, it won't just be a convenience thing.
I really agree with Daniel Wagner's comment: you're probably going to want to rethink your approach from scratch. Again, though, since I haven't seen your architecture, I can't say what that will mean. Maybe there's another Stack Overflow question in there, if you can distill out a concrete difficulty.
1 That looks like the following:
{-# LANGUAGE ExistentialQuantification #-}
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
However, since none of this code compiles anyway, I think writing it out with exists is clearer.
2 Technically, there are some other functions which look relevant, such as toDyn :: Typeable a => a -> Dynamic and fromDyn :: Typeable a => Dynamic -> a -> a. However, Dynamic is more or less an existential wrapper around Typeables, relying on typeOf and TypeReps to know when to unsafeCoerce (GHC uses some implementation-specific types and unsafeCoerce, but you could do it this way, with the possible exception of dynApply/dynApp), so toDyn doesn't do anything new. And fromDyn doesn't really expect its argument of type a; it's just a wrapper around cast. These functions, and the other similar ones, don't provide any extra power that isn't available with just typeOf and cast. (For instance, going back to a Dynamic isn't very useful for your problem!)
3 To see the error in action, you can try to compile the following complete Haskell program:
{-# LANGUAGE ExistentialQuantification #-}
import Data.Dynamic
import Data.Typeable
import Data.Maybe
randItem :: [a] -> IO a
randItem = return . head -- Good enough for a short and non-compiling example
dynListToList :: Typeable a => [Dynamic] -> [a]
dynListToList = mapMaybe fromDynamic
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
randList dl = do
tr <- randItem $ map dynTypeRep dl
return . TypeableList $ dynListToList dl -- Error! Ambiguous type variable.
Sure enough, if you try to compile this, you get the error:
SO12273982.hs:17:27:
Ambiguous type variable `a0' in the constraint:
(Typeable a0) arising from a use of `dynListToList'
Probable fix: add a type signature that fixes these type variable(s)
In the second argument of `($)', namely `dynListToList dl'
In a stmt of a 'do' block: return . TypeableList $ dynListToList dl
In the expression:
do { tr <- randItem $ map dynTypeRep dl;
return . TypeableList $ dynListToList dl }
But as is the entire point of the question, you can't "add a type signature that fixes these type variable(s)", because you don't know what type you want.
4 Mostly. GHC 7.4 has support for lifting types to kinds and for kind polymorphism; see section 7.8, "Kind polymorphism and promotion", in the GHC 7.4 user manual. This doesn't make Haskell dependently typed—something like TypeRep -> * example is still out5—but you will be able to write Vec by using very expressive types that look like values.
5 Technically, you could now write down something which looks like it has the desired type: type family ToType :: TypeRep -> *. However, this takes a type of the promoted kind TypeRep, and not a value of the type TypeRep; and besides, you still wouldn't be able to implement it. (At least I don't think so, and I can't see how you would—but I am not an expert in this.) But at this point, we're pretty far afield.
What you're observing is that the type TypeRep doesn't actually carry any type-level information along with it; only term-level information. This is a shame, but we can do better when we know all the type constructors we care about. For example, suppose we only care about Ints, lists, and function types.
{-# LANGUAGE GADTs, TypeOperators #-}
import Control.Monad
data a :=: b where Refl :: a :=: a
data Dynamic where Dynamic :: TypeRep a -> a -> Dynamic
data TypeRep a where
Int :: TypeRep Int
List :: TypeRep a -> TypeRep [a]
Arrow :: TypeRep a -> TypeRep b -> TypeRep (a -> b)
class Typeable a where typeOf :: TypeRep a
instance Typeable Int where typeOf = Int
instance Typeable a => Typeable [a] where typeOf = List typeOf
instance (Typeable a, Typeable b) => Typeable (a -> b) where
typeOf = Arrow typeOf typeOf
congArrow :: from :=: from' -> to :=: to' -> (from -> to) :=: (from' -> to')
congArrow Refl Refl = Refl
congList :: a :=: b -> [a] :=: [b]
congList Refl = Refl
eq :: TypeRep a -> TypeRep b -> Maybe (a :=: b)
eq Int Int = Just Refl
eq (Arrow from to) (Arrow from' to') = liftM2 congArrow (eq from from') (eq to to')
eq (List t) (List t') = liftM congList (eq t t')
eq _ _ = Nothing
eqTypeable :: (Typeable a, Typeable b) => Maybe (a :=: b)
eqTypeable = eq typeOf typeOf
toDynamic :: Typeable a => a -> Dynamic
toDynamic a = Dynamic typeOf a
-- look ma, no unsafeCoerce!
fromDynamic_ :: TypeRep a -> Dynamic -> Maybe a
fromDynamic_ rep (Dynamic rep' a) = case eq rep rep' of
Just Refl -> Just a
Nothing -> Nothing
fromDynamic :: Typeable a => Dynamic -> Maybe a
fromDynamic = fromDynamic_ typeOf
All of the above is pretty standard. For more on the design strategy, you'll want to read about GADTs and singleton types. Now, the function you want to write follows; the type is going to look a bit daft, but bear with me.
-- extract only the elements of the list whose type match the head
firstOnly :: [Dynamic] -> Dynamic
firstOnly [] = Dynamic (List Int) []
firstOnly (Dynamic rep v:xs) = Dynamic (List rep) (v:go xs) where
go [] = []
go (Dynamic rep' v:xs) = case eq rep rep' of
Just Refl -> v : go xs
Nothing -> go xs
Here we've picked a random element (I rolled a die, and it came up 1) and extracted only the elements that have a matching type from the list of dynamic values. Now, we could have done the same thing with regular boring old Dynamic from the standard libraries; however, what we couldn't have done is used the TypeRep in a meaningful way. I now demonstrate that we can do so: we'll pattern match on the TypeRep, and then use the enclosed value at the specific type the TypeRep tells us it is.
use :: Dynamic -> [Int]
use (Dynamic (List (Arrow Int Int)) fs) = zipWith ($) fs [1..]
use (Dynamic (List Int) vs) = vs
use (Dynamic Int v) = [v]
use (Dynamic (Arrow (List Int) (List (List Int))) f) = concat (f [0..5])
use _ = []
Note that on the right-hand sides of these equations, we are using the wrapped value at different, concrete types; the pattern match on the TypeRep is actually introducing type-level information.
You want a function that chooses a different type of values to return based on runtime data. Okay, great. But the whole purpose of a type is to tell you what operations can be performed on a value. When you don't know what type will be returned from a function, what do you do with the values it returns? What operations can you perform on them? There are two options:
You want to read the type, and perform some behaviour based on which type it is. In this case you can only cater for a finite list of types known in advance, essentially by testing "is it this type? then we do this operation...". This is easily possible in the current Dynamic framework: just return the Dynamic objects, using dynTypeRep to filter them, and leave the application of fromDynamic to whoever wants to consume your result. Moreover, it could well be possible without Dynamic, if you don't mind setting the finite list of types in your producer code, rather than your consumer code: just use an ADT with a constructor for each type, data Thing = Thing1 Int | Thing2 String | Thing3 (Thing,Thing). This latter option is by far the best if it is possible.
You want to perform some operation that works across a family of types, potentially some of which you don't know about yet, e.g. by using type class operations. This is trickier, and it's tricky conceptually too, because your program is not allowed to change behaviour based on whether or not some type class instance exists – it's an important property of the type class system that the introduction of a new instance can either make a program type check or stop it from type checking, but it can't change the behaviour of a program. Hence you can't throw an error if your input list contains inappropriate types, so I'm really not sure that there's anything you can do that doesn't essentially involve falling back to the first solution at some point.

Resources