Is the unit of VmData in proc/[pid]/status stored elsewhere? - linux

Is it safe to assume that the VmData, VmStk and VmExe (Size of data, stack, and text segments)
are always expressed in kBs ? Is this unit stored somewhere or are these values the only places where unit information is stored ?

I can't find any documentation that says for certain it is in kBs, however, it is my best guess that it is. Here are some programs I ran across that depend on it being in kBs:
https://github.com/pmav/procvm/blob/master/procvm.sh
Look at the first code here:
http://locklessinc.com/articles/memory_usage/
Search for "Checking memory from a serial C program" here:
http://www.umbc.edu/hpcf/resources-tara/checking-memory-usage.html

Related

What is the reason of Corrupted fields problem in SPLUNK?

I have a problem on this search below for last 25 days:
index=syslog Reason="Interface physical link is down" OR Reason="Interface physical link is up" NOT mainIfname="Vlanif*" "nw_ra_a98c_01.34_krtti"
Normally field7 values are like these ones:
Region field7 Date mainIfname Reason count
ASYA nw_ra_m02f_01.34pndkdv may 9 GigabitEthernet0/3/6 Interface physical link is up 3
ASYA nw_ra_m02f_01.34pldtwr may 9 GigabitEthernet0/3/24 Interface physical link is up 2
But recently they wee like this:
00:00:00.599 nw_ra_a98c_01.34_krtti
00:00:03.078 nw_ra_a98c_01.34_krtti
I think problem may be related to:
It started to happen after the disk free alarm. (-Cri- Swap reservation, bottleneck situation, current value: 95.00% exceeds configured threshold: 90.00%. : 07:17 17/02/20)
Especially This is not about disk, it's about swap space, the application finishes memory and then goes to swap use. There was memory increase before, but obviously it was insufficient, it is switching to swap again.
I need to understand: ''Why they use so many resources?''
Problematic one:
Normal one:
You need to provide example events, one from the normal situation, and one from the problematic situation.
It appears that someone in your environment has developed a field extraction for field7, which is incorrectly parsing the event.
Alternatively, it could the device that is sending the syslog data, may have an issue with it and it is reporting an error. Depending on the device, you may be better using a TA from splunkbase.splunk.com to extract the relevant information from the event

FIO repeatable buffer fill

Is it possible to have a pseudo-random buffer fill pattern using FIO? ie, the fill pattern for a block would incorporate a seed + block number or offset into a pseudo-random fill generator. This way the entire fill data could be 100% repeatable and verifiable, but more varied than the static pattern provided by --verify=pattern.
My guess at the commands would be something like:
Write pseudo-random data out in verifiable manner
fio --filename=/home/test.bin --direct=1 --rw=write --bs=512 --size=1M --name=verifiable_write --verify=psuedo_rand --verify_psuedo_rand_seed=0xdeadbeef --do_verify=0
Read back pseudo-random data and verify
fio --filename=/home/test.bin --direct=1 --rw=read --bs=512 --size=1M --name=verify_written_data --verify=psuedo_rand --verify_psuedo_rand_seed=0xdeadbeef --do_verify=1
Obviously, I'm making up some options here, but I'm hoping it may get the point across.
(This isn't the right site for this type of question because it's not about programming - Super User or Serverfault look more appropriate)
The fio documentation for buffer_pattern says you can choose a fixed string or number (given in decimal or hex). However look at your examples shows you are doing a verify so the documentation for verify_pattern is relevant. That states you can use %o that sets the block offset. However once you set a fixed pattern that's it - there are no more variables beyond %o. That means with current fio (3.17 at the time of writing) if are choose to use a fixed pattern (e.g. via verify_pattern) there's no way to include seeded random data that can be verified.
If you don't use a fixed pattern and specify verify by checksum then fio will actually use seeded random data but I don't think split verification will check the seed - just that the checksum written into the block matches the data of the rest of the block.
Is it possible to have a pseudo-random buffer fill pattern using FIO?
If the default random buffer fill is OK then yes but if you want to include something like block offset and other additional data alongside that then no at the time of writing (unless you patch the fio source).

How do I seek for holes and data in a sparse file in golang [duplicate]

I want to copy files from one place to another and the problem is I deal with a lot of sparse files.
Is there any (easy) way of copying sparse files without becoming huge at the destination?
My basic code:
out, err := os.Create(bricks[0] + "/" + fileName)
in, err := os.Open(event.Name)
io.Copy(out, in)
Some background theory
Note that io.Copy() pipes raw bytes – which is sort of understandable once you consider that it pipes data from an io.Reader to an io.Writer which provide Read([]byte) and Write([]byte), correspondingly.
As such, io.Copy() is able to deal with absolutely any source providing
bytes and absolutely any sink consuming them.
On the other hand, the location of the holes in a file is a "side-channel" information which "classic" syscalls such as read(2) hide from their users.
io.Copy() is not able to convey such side-channel information in any way.
IOW, initially, file sparseness was an idea to just have efficient storage of the data behind the user's back.
So, no, there's no way io.Copy() could deal with sparse files in itself.
What to do about it
You'd need to go one level deeper and implement all this using the syscall package and some manual tinkering.
To work with holes, you should use the SEEK_HOLE and SEEK_DATA special values for the lseek(2) syscall which are, while formally non-standard, are supported by all major platforms.
Unfortunately, the support for those "whence" positions is not present
neither in the stock syscall package (as of Go 1.8.1)
nor in the golang.org/x/sys tree.
But fear not, there are two easy steps:
First, the stock syscall.Seek() is actually mapped to lseek(2)
on the relevant platforms.
Next, you'd need to figure out the correct values for SEEK_HOLE and
SEEK_DATA for the platforms you need to support.
Note that they are free to be different between different platforms!
Say, on my Linux system I can do simple
$ grep -E 'SEEK_(HOLE|DATA)' </usr/include/unistd.h
# define SEEK_DATA 3 /* Seek to next data. */
# define SEEK_HOLE 4 /* Seek to next hole. */
…to figure out the values for these symbols.
Now, say, you create a Linux-specific file in your package
containing something like
// +build linux
const (
SEEK_DATA = 3
SEEK_HOLE = 4
)
and then use these values with the syscall.Seek().
The file descriptor to pass to syscall.Seek() and friends
can be obtained from an opened file using the Fd() method
of os.File values.
The pattern to use when reading is to detect regions containing data, and read the data from them – see this for one example.
Note that this deals with reading sparse files; but if you'd want to actually transfer them as sparse – that is, with keeping this property of them, – the situation is more complicated: it appears to be even less portable, so some research and experimentation is due.
On Linux, it appears you could try to use fallocate(2) with
FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE to try to punch a hole at the
end of the file you're writing to; if that legitimately fails
(with syscall.EOPNOTSUPP), you just shovel as many zeroed blocks to the destination file as covered by the hole you're reading – in the hope
the OS will do the right thing and will convert them to a hole by itself.
Note that some filesystems do not support holes at all – as a concept.
One example is the filesystems in the FAT family.
What I'm leading you to is that inability of creating a sparse file might
actually be a property of the target filesystem in your case.
You might find Go issue #13548 "archive/tar: add support for writing tar containing sparse files" to be of interest.
One more note: you might also consider checking whether the destination directory to copy a source file resides in the same filesystem as the source file, and if this holds true, use the syscall.Rename() (on POSIX systems)
or os.Rename() to just move the file across different directories w/o
actually copying its data.
You don't need to resort to syscalls.
package main
import "os"
func main() {
f, _ := os.Create("/tmp/sparse.dat")
f.Write([]byte("start"))
f.Seek(1024*1024*10, 0)
f.Write([]byte("end"))
}
Then you'll see:
$ ls -l /tmp/sparse.dat
-rw-rw-r-- 1 soren soren 10485763 Jun 25 14:29 /tmp/sparse.dat
$ du /tmp/sparse.dat
8 /tmp/sparse.dat
It's true you can't use io.Copy as is. Instead you need to implement an alternative to io.Copy which reads a chunk from the src, checks if it's all '\0'. If it is, just dst.Seek(len(chunk), os.SEEK_CUR) to skip past that part in dst. That particular implementation is left as an exercise to the reader :)

Check ISO is valid or not

Is there any C# way to check an ISO file is valid or not i.e. valid Iso format or any other check possible or not.
The scenario is like, if any text file(or any other format file) is renamed to ISO and given it for further processing. I want to check weather this ISO file is a valid ISO file or not? Is there any way exist programmatically like to check any property of the file or file header or any other things
Thanks for any reply in advance
To quote the wiki gods:
There is no standard definition for ISO image files. ISO disc images
are uncompressed and do not use a particular container format; they
are a sector-by-sector copy of the data on an optical disc, stored
inside a binary file. ISO images are expected to contain the binary
image of an optical media file system (usually ISO 9660 and its
extensions or UDF), including the data in its files in binary format,
copied exactly as they were stored on the disc. The data inside the
ISO image will be structured according to the file system that was
used on the optical disc from which it was created.
reference
So you basically want to detect whether a file is an ISO file or not, and not so much check the file, to see if it's valid (e.g. incomplete, corrupted, ...) ?
There's no easy way to do that and there certainly is not a C# function (that I know of) that can do this.
The best way to approach this is to guess the amount of bytes per block stored in the ISO.
Guess, or simply try all possible situations one by one, unless you have an associated CUE file that actually stores this information. PS. If the ISO is accompanied by a same-name .CUE file then you can be 99.99% sure that it's an ISO file anyway.
Sizes would be 2048 (user data) or 2352 (raw or audio) bytes per block. Other sizes are possible as well !!!! I just mentioned the two most common ones. In case of 2352 bytes per block the user data starts at an offset in this block. Usually 16 or 24 depending on the Mode.
Next I would try to detect the CD/DVD file-systems. Assume that the image starts at sector 0 (although you could for safety implement a scan that assumes -150 to 16 for instance).
You'll need to look into specifics of ISO9660 and UDF for that. Sectors 16, 256 etc. will be interesting sectors to check !!
Bottom line, it's not an easy task to do and you will need to familiarize yourself with optical disc layouts and optical disc file-systems (ISO9660, UDF but possibly also HFS and even FAT on BD).
If you're digging into this I strongly suggest to get IsoBuster (www.isobuster.com) to help you see what the size per block is, what file systems there are, to inspect the different key blocks etc.
In addition to the answers above (and especially #peter's answer): I recently made a very simple Python tool for the detection of truncated/incomplete ISO images. Definitely not validation (which as #Jake1164 correctly points out is impossible), but possibly useful for some scenarios nevertheless. It also supports ISO images that contain Apple (HFS) partitions. For more details see the following blog post:
Detecting broken ISO images: introducing Isolyzer
And the software's Github repo is here:
Isolyzer
You may run md5sum command to check the integrity of an image
For example, here's a list of ISO: http://mirrors.usc.edu/pub/linux/distributions/centos/5.4/isos/x86_64/
You may run:
md5sum CentOS-5.4-x86_64-LiveCD.iso
The output is supposed to be the same as 1805b320aba665db3e8b1fe5bd5a14cc, which you may find from here:
http://mirrors.usc.edu/pub/linux/distributions/centos/5.4/isos/x86_64/md5sum.txt

Doing file operations with 64-bit addresses in C + MinGW32

I'm trying to read in a 24 GB XML file in C, but it won't work. I'm printing out the current position using ftell() as I read it in, but once it gets to a big enough number, it goes back to a small number and starts over, never even getting 20% through the file. I assume this is a problem with the range of the variable that's used to store the position (long), which can go up to about 4,000,000,000 according to http://msdn.microsoft.com/en-us/library/s3f49ktz(VS.80).aspx, while my file is 25,000,000,000 bytes in size. A long long should work, but how would I change what my compiler(Cygwin/mingw32) uses or get it to have fopen64?
The ftell() function typically returns an unsigned long, which only goes up to 232 bytes (4 GB) on 32-bit systems. So you can't get the file offset for a 24 GB file to fit into a 32-bit long.
You may have the ftell64() function available, or the standard fgetpos() function may return a larger offset to you.
You might try using the OS provided file functions CreateFile and ReadFile. According to the File Pointers topic, the position is stored as a 64bit value.
Unless you can use a 64-bit method as suggested by Loadmaster, I think you will have to break the file up.
This resource seems to suggest it is possible using _telli64(). I can't test this though, as I don't use mingw.
I don't know of any way to do this in one file, a bit of a hack but if splitting the file up properly isn't a real option, you could write a few functions that temp split the file, one that uses ftell() to move through the file and swaps ftell() to a new file when its reaching the split point, then another that stitches the files back together before exiting. An absolutely botched up approach, but if no better solution comes to light it could be a way to get the job done.
I found the answer. Instead of using fopen, fseek, fread, fwrite... I'm using _open, lseeki64, read, write. And I am able to write and seek in > 4GB files.
Edit: It seems the latter functions are about 6x slower than the former ones. I'll give the bounty anyone who can explain that.
Edit: Oh, I learned here that read() and friends are unbuffered. What is the difference between read() and fread()?
Even if the ftell() in the Microsoft C library returns a 32-bit value and thus obviously will return bogus values once you reach 2 GB, just reading the file should still work fine. Or do you need to seek around in the file, too? For that you need _ftelli64() and _fseeki64().
Note that unlike some Unix systems, you don't need any special flag when opening the file to indicate that it is in some "64-bit mode". The underlying Win32 API handles large files just fine.

Resources