Does Cassandra Store Columns from Composite Keys on Different Nodes - cassandra

I'm reading documentation on the Datastax site at http://www.datastax.com/documentation/cassandra/1.2/cassandra/cql_reference/create_table_r.html
and I see:
"When you use a composite partition key, Cassandra treats the columns in nested parentheses as partition keys and stores columns of a row on more than one node. "
The example given is:
CREATE TABLE Cats (
block_id uuid,
breed text,
color text,
short_hair boolean,
PRIMARY KEY ((block_id, breed), color, short_hair)
);
I understand how the cluster columns (in this case, color and short_hair) work in regard to how they are actually stored on disk as contiguous "columns" for the given row. What I don't understand is the line "...stores columns of a row on more than one node". Is this right?
For a given block_id and breed, doesn't this composite key just make a partition key similar to "block_id + breed", in which case the columns/clusters would be in the same row, whose physical location is determined by the partition key (block_id + breed) ?
Or is there some kind of splitting in this row going on because the primary key is based on two fields?
EDIT:
I think Richard's answer below is probably right, but I've also come across this in the Datastax documentation for 1.2 which enforces the first quote I posted:
"composite partition key - Stores columns of a row on more than one node using partition keys declared in nested parentheses of the PRIMARY KEY definition of a table."
Why would it say using plural partition key*s*... The fields that make up the composite key make up the only row key, as far as I know, and they are all used to make the key.
Then they say, the columns of a row can be split, which to me means a single row (with a given partition key) could have its columns split up on different nodes, which would mean the fields of the composite key are being handled separately.
Still a little confused on the Datastax documentation and whether it's actually right.

I think what it means is that rows with the same block_id are stored on different nodes. As you say, the partition key is like "block_id + breed", so columns with the same block_id but different breed will in general be stored on different nodes. But columns with the same block_id and breed will be stored on the same node.
Basically, the nodes that store a partition are found by a function of the partition key only. Whether it is composite or not, nothing else can join together or split rows.

Related

cassandra: `sstabledump` output questions

I'm inspecting the output of sstabledump, to gain better understanding of the cassandra data model, and I have some questions
From the output of of sstabledump it seems that
a table is a list of partitions (split by partition key)
a partition is a list of rows (split according to clustering key)
a row is a map of key-value pairs, where the keys belong in a predefined list
Question 1: For each partition, as well as for each row inside a partition, there is a position key. What does this value correspond to? Physical storage details? And how exactly?
Question 2: Each row inside each partition has a type: row key-value pair. Could this type be anything else? If yes, what? If not
why have a value that is always the same?
why is cassandra is classified as wide-column and other similar terms? Looks more like a two-level row storage.
Partition key is the murmur3 hash of whatever you assigned as the primary key. Consistent hashing is used with that hash to determine which node in the cluster that partition belongs to and its replicas. Within each partition data is sorted by clustering key, and then by cell name within the row. The structure is used so redundant things like timestamps if inserted for a row at once is only inserted once as a vint delta sequence from the partitions to save space.
On disk the partitions are sorted in order of this hashed key. The output of the position key is just referring to where in the sstable's data file its located (decompressed byte offset). type can also identify in that spot as a static block, which is located at the beginning of each partition for any static cells or a ranged tombstone marker (beginning or end). Note that values are sometimes for sstabledump repeated in json for readability even if not physically written on disk (ie repeated timestamps).
You can have many of these rows inside a partition, a common datamodel for time series for example is to use timestamp as the clustering key which makes very wide partitions with millions of rows. Pre 3.0 as well the data storage was closer to big table's design. It was essentially a Map<byte[], SortedMap<byte[], Cell>> where the Comparator of the sorted map was changed based on schema. It did not differentiate rows and columns within a partition, and it lead to massive amounts redundant data and was redesigned to fit the query language better.
Some more references:
Explanation of motivation of 3.0 change by DataStax here
Blog post by TLP has a good detailed explanation of the new disk format
CASSANDRA-8099

Cassandra Primary Key with no Clustering Key

I have a table that contains words with their frequencies in Cassandra table(word, frequenc0y, frequency1).
Can I make the primary key consisting of only word as Partition key? if not, can I use word also as Clustering key?
You have no constraints, except that you cannot reuse your columns, so you can put only a single column in your PRIMARY KEY definition, that will specifically be your PARTITION KEY.
BTW, if that's all you need, and depending on your UPDATE capabilities on the frequency0 and frequency1 columns, that could be a job for counter columns. Have a look at the official documentation about counters:
Creating a counter table
Using a counter
HTH.

Are sorted columns in Cassandra using just one set of nodes? (one set = repeat factor)

Using older versions of Cassandra, we were expected to create our own sorted rows using a special row of columns, because columns are saved sorted in Cassandra.
Is Cassandra 3.0 with CQL using the same concept when you create a PRIMARY KEY?
Say, for example, that I create a table like so:
CREATE TABLE my_table (
created_on timestamp,
...,
PRIMARY KEY (created_on)
);
Then I add various entries like so:
INSERT INTO my_table (created_on, ...) VALUES (1, ...);
...
INSERT INTO my_table (created_on, ...) VALUES (9, ...);
How does Cassandra manage the sort on the PRIMARY KEY? Will that happens on all nodes, or only one set (what I call a set is the number of replicates, so if you have a cluster of 100 nodes with a replication factor of 4, would the primary key appear on 100 nodes, 25, or just 4? With older versions, it would only be on 4 nodes.)
In your case the primary key is the partition key, which used to be the row key. Which means the data your are inserting will be present on 4 out of 100 nodes if the replication factor is set to 4.
In CQL you can add more columns to the primary key, which are called clustering keys. When querying C* with CQL the result set might contain more than one row for a partition key. Those rows are logical and are stored in the partition of which they share the partition key (but vary in their clustering key values). The data in those logical rows is replicated as the partition is.
Have a look at the example for possible primary keys in the official documentation of the CREATE TABLE statement.
EDIT (row sorting):
C* keeps the partitions of a table in the order of their partition key values' hash code. The ordering is therefor not straight forward and results for range queries by partition key values are not what you would expect them to be. But as partitions are in fact ordered you still can do server side pagination with the help of the token function.
That said, you could employ the ByteOrderedPartitioner to achieve lexical ordering of your partitions. But it is very easy to create hotspots with that partitioner and it is generally discouraged to use it.
The rows of a given partition are ordered by the actual values of their clustering keys. Range queries on those behave as you'd expect them to.

What is the difference between a clustering column and secondary index in cassandra

I'm trying to understand the difference between these two and the scenarios in which you would prefer to use one over the other.
My specific use case is using cassandra as an event ingestion system backed by an analytics engine that interprets the event.
My model includes
event id (the partition key)
event time (a clustering column)
event type (i'm not sure whether to use clustering column or secondary index)
I figure the most common read scenario will be to get the events over a time range hence event time is the clustering column. A less frequent read scenario might involve further filtering the event query by event type.
A secondary index is pretty similar to what we know from regular relational databases. If you have a query with a where clause that uses column values that are not part of the primary key, lookup would be slow because a full row search has to be performed. Secondary indexes make it possible to service such queries efficiently. Secondary indexes are stored as extra tables, and just store extra data to make it easy to find your way in the main table.
So that's a good ol' index, which we already know about. So far, there's nothing new to cassandra and its distributed nature.
Partitioning and clustering is all about deciding how rows from the main table are spread among the nodes. This is unique to cassandara since it determines the distribution of data. So, the primary key consists of at least one column. The first column in the primary key is used as the partition key. The partition key is used to decide which node to store a row. If the primary key has additional columns, the columns are used to cluster the data on a given node - the data is stored in lexicographic order on a node by clustering columns.
This question has more specifics on clustering columns: Clustering Keys in Cassandra
So an index on a given column X makes the lookup X --> primary key efficient. The partition key (first column in the primary key) determines which node a row is stored on. Clustering columns (additional columns in the primary key) determine which order rows are stored in on their assigned node.
So your intuition sounds about right - the event ID is presumably guaranteed unique, so is great for building a primary key. Event time is a great way to order rows on disk on a given node.
If you never needed to lookup data by event type, eg, never had a query like SELECT * FROM Events WHERE Type = Warning, then you have no need for your additional indexes, but your demands for partitioning don't change. Indexes make it easy to serve queries with different predicates. Since you mentioned that you indeed were planning on performing queries like that, you do in fact likely want an index on your EventType column.
Check out the cassandra documentation: http://www.datastax.com/documentation/cql/3.0/cql/ddl/ddl_compound_keys_c.html
Cassandra uses the first column name in the primary key definition as the partition key.
...
In the case of the playlists table, the song_order is the clustering column. The data for each partition is clustered by the remaining column or columns of the primary key definition. On a physical node, when rows for a partition key are stored in order based on the clustering columns

Why many refer to Cassandra as a Column oriented database?

Reading several papers and documents on internet, I found many contradictory information about the Cassandra data model. There are many which identify it as a column oriented database, other as a row-oriented and then who define it as a hybrid way of both.
According to what I know about how Cassandra stores file, it uses the *-Index.db file to access at the right position of the *-Data.db file where it is stored the bloom filter, column index and then the columns of the required row.
In my opinion, this is strictly row-oriented. Is there something I'm missing?
If you take a look at the Readme file at Apache Cassandra git repo, it says that,
Cassandra is a partitioned row store. Rows are organized into tables
with a required primary key.
Partitioning means that Cassandra can distribute your data across
multiple machines in an application-transparent matter. Cassandra will
automatically repartition as machines are added and removed from the
cluster.
Row store means that like relational databases, Cassandra organizes
data by rows and columns.
Column oriented or columnar databases are stored on disk column wise.
e.g: Table Bonuses table
ID Last First Bonus
1 Doe John 8000
2 Smith Jane 4000
3 Beck Sam 1000
In a row-oriented database management system, the data would be stored like this: 1,Doe,John,8000;2,Smith,Jane,4000;3,Beck,Sam,1000;
In a column-oriented database management system, the data would be stored like this:
1,2,3;Doe,Smith,Beck;John,Jane,Sam;8000,4000,1000;
Cassandra is basically a column-family store
Cassandra would store the above data as,
"Bonuses" : {
row1 : { "ID":1, "Last":"Doe", "First":"John", "Bonus":8000},
row2 : { "ID":2, "Last":"Smith", "First":"Jane", "Bonus":4000}
...
}
Also, the number of columns in each row doesn't have to be the same. One row can have 100 columns and the next row can have only 1 column.
Read this for more details.
Yes, the "column-oriented" terminology is a bit confusing.
The model in Cassandra is that rows contain columns. To access the smallest unit of data (a column) you have to specify first the row name (key), then the column name.
So in a columnfamily called Fruit you could have a structure like the following example (with 2 rows), where the fruit types are the row keys, and the columns each have a name and value.
apple -> colour weight price variety
"red" 100 40 "Cox"
orange -> colour weight price origin
"orange" 120 50 "Spain"
One difference from a table-based relational database is that one can omit columns (orange has no variety), or add arbitrary columns (orange has origin) at any time. You can still imagine the data above as a table, albeit a sparse one where many values might be empty.
However, a "column-oriented" model can also be used for lists and time series, where every column name is unique (and here we have just one row, but we could have thousands or millions of columns):
temperature -> 2012-09-01 2012-09-02 2012-09-03 ...
40 41 39 ...
which is quite different from a relational model, where one would have to model the entries of a time series as rows not columns. This type of usage is often referred to as "wide rows".
You both make good points and it can be confusing. In the example where
apple -> colour weight price variety
"red" 100 40 "Cox"
apple is the key value and the column is the data, which contains all 4 data items. From what was described it sounds like all 4 data items are stored together as a single object then parsed by the application to pull just the value required. Therefore from an IO perspective I need to read the entire object. IMHO this is inherently row (or object) based not column based.
Column based storage became popular for warehousing, because it offers extreme compression and reduced IO for full table scans (DW) but at the cost of increased IO for OLTP when you needed to pull every column (select *). Most queries don't need every column and due to compression the IO can be greatly reduced for full table scans for just a few columns. Let me provide an example
apple -> colour weight price variety
"red" 100 40 "Cox"
grape -> colour weight price variety
"red" 100 40 "Cox"
We have two different fruits, but both have a colour = red. If we store colour in a separate disk page (block) from weight, price and variety so the only thing stored is colour, then when we compress the page we can achieve extreme compression due to a lot of de-duplication. Instead of storing 100 rows (hypothetically) in a page, we can store 10,000 colour's. Now to read everything with the colour red it might be 1 IO instead of thousands of IO's which is really good for warehousing and analytics, but bad for OLTP if I need to update the entire row since the row might have hundreds of columns and a single update (or insert) could require hundreds of IO's.
Unless I'm missing something I wouldn't call this columnar based, I'd call it object based. It's still not clear on how objects are arranged on disk. Are multiple objects placed into the same disk page? Is there any way of ensuring objects with the same meta data go together? To the point that one fruit might contain different data than another fruit since its just meta data or xml or whatever you want to store in the object itself, is there a way to ensure certain matching fruit types are stored together to increase efficiency?
Larry
The most unambiguous term I have come across is wide-column store.
It is a kind of two-dimensional key-value store, where you use a row key and a column key to access data.
The main difference between this model and the relational ones (both row-oriented and column-oriented) is that the column information is part of the data.
This implies data can be sparse. That means different rows don't need to share the same column names nor number of columns. This enables semi-structured data or schema free tables.
You can think of wide-column stores as tables that can hold an unlimited number of columns, and thus are wide.
Here's a couple of links to back this up:
This mongodb article
This Datastax article mentions it too, although it classifies Cassandra as a key-value store.
This db-engines article
This 2013 article
Wikipedia
Column Family does not mean it is column-oriented. Cassandra is column family but not column-oriented. It stores the row with all its column families together.
Hbase is column family as well as stores column families in column-oriented fashion. Different column families are stored separately in a node or they can even reside in different node.
IMO that's the wrong term used for Cassandra. Instead, it is more appropriate to call it row-partition store. Let me provide you some details on it:
Primary Key, Partitioning Key, Clustering Columns, and Data Columns:
Every table must have a primary key with unique constraint.
Primary Key = Partition key + Clustering Columns
# Example
Primary Key: ((col1, col2), col3, col4) # primary key uniquely identifies a row
# we need to choose its components partition key
# and clustering columns so that each row can be
# uniquely identified
Partition Key: (col1, col2) # decides on which node to store the data
# partitioning key is mandatory, and it
# can be made up of one column or multiple
Clustering Columns: col3, col4 # decides arrangement within a partition
# clustering columns are optional
Partition key is the first component of Primary key. Its hashed value is used to determine the node to store the data. The partition key can be a compound key consisting of multiple columns. We want almost equal spreads of data, and we keep this in mind while choosing primary key.
Any fields listed after the Partition Key in Primary Key are called Clustering Columns. These store data in ascending order within the partition. The clustering column component also helps in making sure the primary key of each row is unique.
You can use as many clustering columns as you would like. You cannot use the clustering columns out of order in the SELECT statement. You may choose to omit using a clustering column in you SELECT statement. That's OK. Just remember to sue them in order when you are using the SELECT statement. But note that, in your CQL query, you can not try to access a column or a clustering column if you have not used the other defined clustering columns. For example, if primary key is (year, artist_name, album_name) and you want to use city column in your query's WHERE clause, then you can use it only if your WHERE clause makes use of all of the columns which are part of primary key.
Tokens:
Cassandra uses tokens to determine which node holds what data. A token is a 64-bit integer, and Cassandra assigns ranges of these tokens to nodes so that each possible token is owned by a node. Adding more nodes to the cluster or removing old ones leads to redistributing these token among nodes.
A row's partition key is used to calculate a token using a given partitioner (a hash function for computing the token of a partition key) to determine which node owns that row.
Cassandra is Row-partition store:
Row is the smallest unit that stores related data in Cassandra.
Don't think of Cassandra's column family (that is, table) as a RDBMS table, but think of it as a dict of a dict (here dict is data structure similar to Python's OrderedDict):
the outer dict is keyed by a row key (primary key): this determines which partition and which row in partition
the inner dict is keyed by a column key (data columns): this is data in dict with column names as keys
both dict are ordered (by key) and are sorted: the outer dict is sorted by primary key
This model allows you to omit columns or add arbitrary columns at any time, as it allows you to have different data columns for different rows.
Cassandra has a concept of column families(table), which originally comes from BigTable. Though, it is really misleading to call them column-oriented as you mentioned. Within each column family, they store all columns from a row together, along with a row key, and they do not use column compression. Thus, the Bigtable model is still mostly row-oriented.

Resources