The code below would result in moneyDouble = 365.24567874299998 and I need it to be exactly 365.245678743
I wouldn't mind having to set a precision and getting some extra zeros to the right.
This number is used to calculate money transaction so it needs to be exact.
std::string money ("365.245678743");
std::string::size_type sz; // alias of size_t
double moneyDouble = std::stod (money,&sz);
Floating-point numbers and exact precision don't mix, period [link]. For this reason, monetary calculations should never be done in floating-point [link]. Use a fixed-point arithmetic library, or just use integer arithmetic and interpret it as whatever fractional part you need. Since your precision requirements seem to be very high (lots of decimals), a big number library might be necessary.
While library recommendations are off-topic on Stack Overflow, this old question seems to offer a good set of links to libraries you might find useful.
The result of your erroneous output of moneyDouble is because moneyDouble is a floating point number. They cannot express tenths, hundredths, thousandths, etc exactly.
Furthermore, floating-point numbers are really expressed in binary form, meaning that only (some) binary numbers can be expressed exactly in floating point. Not to mention that they have finite accuracy, so they can only store only a limited number of digits (including those after the decimal point).
Your best bet is to use fixed-point arithmetic, integer arithmetic, or implement a rational-number class, and you might need number libraries since you may have to deal with very big numbers in very high precision.
See Is floating point math broken? for more information about the unexpected results of floating-point accuracy.
This question already has answers here:
Is floating point math broken?
(31 answers)
Closed 6 years ago.
I've been trying to use Fortran for my research project, with the GNU Fortran compiler (gfortran), latest version,
but I've been encountering some problems in the way it processes real numbers. If you have for example the code:
program test
implicit none
real :: y = 23.234, z
z = y * 100000
write(*,*) y, z
end program
You'll get as output:
23.23999 2323400.0
I find this really strange.
Can someone tell me what's exactly happening here? Looking at z I can see that y does retain its precision, so for calculations that shouldn't be a problem I suppose. But why is the output of y not exactly the same as the value that I've specified, and what can I do to make it exactly the same?
This is not a problem - all you see is floating-point representation of the number in the computer. The computer cannot handle real numbers exactly, but only approximations of them. A good read about this can be found here: What Every Computer Scientist Should Know About Floating-Point Arithmetic.
Simply by replacing real with double precision, you can increase the number of significant decimal places from about six to about 15 on most platforms.
The general issue is not limited to Fortran, but the representation of base 10 real numbers in another base of finite precision. This computer science question is asked many times here.
For the specifically Fortran aspects, the declaration "real" will likely give you a single precision floating point. As will expressing a constant as "23.234" without a type qualifier. The constant "100000" without a decimal point is an integer so the expression "y * 100000" is causing an implicit conversion of an integer to a real because "y" is a real variable.
For previous some previous discussions of these issues see Extended double precision , Fortran: integer*4 vs integer(4) vs integer(kind=4) and Is There a Better Double-Precision Assignment in Fortran 90?
The problem here is not with Fortran, in fact it is not a problem at all. This is just a feature of floating-point arithmetic. If you think about how you would represent 23.234 as a 'single float' in binary, you would see that the number has to be saved to only so many decimals of precision.
The thing to remember about float point number is: numbers that look round and even in base-10 probably won't in binary.
For a brief overview of floating-point topics, check the Wikipedia article. And for a VERY thorough explanation, check out the canonical paper by Goldberg (PDF).
I've been working with System.Numerics.Complex recently, and I've started to notice the typical floating-point "drift" where the value stored gets calculated a tenth of a millionth off or something like that, which is well-known and common with the float type and even the double type. I looked into the Complex struct, and sure enough, it used double variables. Why does it use double values to store its data and not decimal values, which are designed to prevent this? How do I work around this?
To answer your question:
doubles are several orders of magnitude faster, as operations are done at the hardware level
base-2 floats can actually be more accurate for large computations, as there is less "wobble" when shifting up and down exponents: 1 bit of precision is less than 1 decimal digit. Moreover, base-2 can use an implicit leading bit, which means they can represent more numbers than other bases.
complex numbers are typically used for scientific/engineering applications, where small relative errors of approx 10-16 are outweighed by other sources of error (e.g. due to measurement or the model).
decimals on the other hand are typically used for "accounting" type operations, where round-off error is typically negligible (i.e. addition of small numbers, multiplication by integers, etc.)
I would like to do smth like:
x `mod` 1.0 == 0 // => int
but it seems mod works only for int... help!
EDIT:
I am trying to check if given number is triangle, http://en.wikipedia.org/wiki/Triangle_number so my idea was to check if n1 is Int...
(n*(n+1))/2 = s => n1 = (-1 +sqrt(1 +
8s))/2
To determine whether a certain Float or Double is indistinguishable from an Integer in Haskell, use floor and ceiling together. Something like:
if floor n == ceiling n
then "It was some integer."
else "It's between integers."
There might also be some fancy stuff you can do with the float's representation in binary, exposed by the RealFloat typeclass:
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#t%3ARealFloat
A better way to check if a number is triangular is to generate a list of triangular numbers and then see if your candidate is in it. Since this is a learning problem I'm going to give hints rather than the answer.
Use a list comprehension to generate the triangular numbers.
Since they will be in order you can find out if you have gone past them.
An alternative approach if you are working with big numbers would be to use a binary search to narrow down the number of rows that might give rise to your candidate.
Total edit:
Okay, I'm still not sure what you're trying to accomplish here.
First, anything modulo 1 is going to be zero, because the modulo function only makes sense on integers. If you want to take the modulo of a fractional type you can convert to an integer first. Edit: Although for what it's worth, Data.Fixed does have a mod' function for non-integral values.
I also don't know what you mean by "check if n1 is Int". Either it is or it isn't; you don't need to check at run time. Edit: Okay, I see now that you're just checking to see if a value has a fractional component. Paul Johnson correctly points out above that it's wise to be careful doing such things with floating point values.
If you want to mix mod and sqrt operations in the same calculation, you'll have to manually convert between appropriate types. fromIntegral will convert any integer type into any number type, floor, ceiling, and round will convert fractional types to integral types.
What programming languages support arbitrary precision arithmetic and could you give a short example of how to print an arbitrary number of digits?
Some languages have this support built in. For example, take a look at java.math.BigDecimal in Java, or decimal.Decimal in Python.
Other languages frequently have a library available to provide this feature. For example, in C you could use GMP or other options.
The "Arbitrary-precision software" section of this article gives a good rundown of your options.
Mathematica.
N[Pi, 100]
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
Not only does mathematica have arbitrary precision but by default it has infinite precision. It keeps things like 1/3 as rationals and even expressions involving things like Sqrt[2] it maintains symbolically until you ask for a numeric approximation, which you can have to any number of decimal places.
In Common Lisp,
(format t "~D~%" (expt 7 77))
"~D~%" in printf format would be "%d\n". Arbitrary precision arithmetic is built into Common Lisp.
Smalltalk supports arbitrary precision Integers and Fractions from the beginning.
Note that gnu Smalltalk implementation does use GMP under the hood.
I'm also developping ArbitraryPrecisionFloat for various dialects (Squeak/Pharo Visualworks and Dolphin), see http://www.squeaksource.com/ArbitraryPrecisionFl.html
Python has such ability. There is an excellent example here.
From the article:
from math import log as _flog
from decimal import getcontext, Decimal
def log(x):
if x < 0:
return Decimal("NaN")
if x == 0:
return Decimal("-inf")
getcontext().prec += 3
eps = Decimal("10")**(-getcontext().prec+2)
# A good initial estimate is needed
r = Decimal(repr(_flog(float(x))))
while 1:
r2 = r - 1 + x/exp(r)
if abs(r2-r) < eps:
break
else:
r = r2
getcontext().prec -= 3
return +r
Also, the python quick start tutorial discusses the arbitrary precision: http://docs.python.org/lib/decimal-tutorial.html
and describes getcontext:
the getcontext() function accesses the
current context and allows the
settings to be changed.
Edit: Added clarification on getcontext.
Many people recommended Python's decimal module, but I would recommend using mpmath over decimal for any serious numeric uses.
COBOL
77 VALUE PIC S9(4)V9(4).
a signed variable witch 4 decimals.
PL/1
DCL VALUE DEC FIXED (4,4);
:-) I can't remember the other old stuff...
Jokes apart, as my example show, I think you shouldn't choose a programming language depending on a single feature. Virtually all decent and recent language support fixed precision in some dedicated classes.
Scheme (a variation of lisp) has a capability called 'bignum'. there are many good scheme implementations available both full language environments and embeddable scripting options.
a few I can vouch for
MitScheme (also referred to as gnu scheme)
PLTScheme
Chezscheme
Guile (also a gnu project)
Scheme 48
Ruby whole numbers and floating point numbers (mathematically speaking: rational numbers) are by default not strictly tied to the classical CPU related limits. In Ruby the integers and floats are automatically, transparently, switched to some "bignum types", if the size exceeds the maximum of the classical sizes.
One probably wants to use some reasonably optimized and "complete", multifarious, math library that uses the "bignums". This is where the Mathematica-like software truly shines with its capabilities.
As of 2011 the Mathematica is extremely expensive and terribly restricted from hacking and reshipping point of view, specially, if one wants to ship the math software as a component of a small, low price end, web application or an open source project. If one needs to do only raw number crunching, where visualizations are not required, then there exists a very viable alternative to the Mathematica and Maple. The alternative is the REDUCE Computer Algebra System, which is Lisp based, open source and mature (for decades) and under active development (in 2011). Like Mathematica, the REDUCE uses symbolic calculation.
For the recognition of the Mathematica I say that as of 2011 it seems to me that the Mathematica is the best at interactive visualizations, but I think that from programming point of view there are more convenient alternatives even if Mathematica were an open source project. To me it seems that the Mahtematica is also a bit slow and not suitable for working with huge data sets. It seems to me that the niche of the Mathematica is theoretical math, not real-life number crunching. On the other hand the publisher of the Mathematica, the Wolfram Research, is hosting and maintaining one of the most high quality, if not THE most high quality, free to use, math reference sites on planet Earth: the http://mathworld.wolfram.com/
The online documentation system that comes bundled with the Mathematica is also truly good.
When talking about speed, then it's worth to mention that REDUCE is said to run even on a Linux router. The REDUCE itself is written in Lisp, but it comes with 2 of its very own, specific, Lisp implementations. One of the Lisps is implemented in Java and the other is implemented in C. Both of them work decently, at least from math point of view. The REDUCE has 2 modes: the traditional "math mode" and a "programmers mode" that allows full access to all of the internals by the language that the REDUCE is self written in: Lisp.
So, my opinion is that if one looks at the amount of work that it takes to write math routines, not to mention all of the symbolic calculations that are all MATURE in the REDUCE, then one can save enormous amount of time (decades, literally) by doing most of the math part in REDUCE, specially given that it has been tested and debugged by professional mathematicians over a long period of time, used for doing symbolic calculations on old-era supercomputers for real professional tasks and works wonderfully, truly fast, on modern low end computers. Neither has it crashed on me, unlike at least one commercial package that I don't want to name here.
http://www.reduce-algebra.com/
To illustrate, where the symbolic calculation is essential in practice, I bring an example of solving a system of linear equations by matrix inversion. To invert a matrix, one needs to find determinants. The rounding that takes place with the directly CPU supported floating point types, can render a matrix that theoretically has an inverse, to a matrix that does not have an inverse. This in turn introduces a situation, where most of the time the software might work just fine, but if the data is a bit "unfortunate" then the application crashes, despite the fact that algorithmically there's nothing wrong in the software, other than the rounding of floating point numbers.
The absolute precision rational numbers do have a serious limitation. The more computations is performed with them, the more memory they consume. As of 2011 I don't know any solutions to that problem other than just being careful and keeping track of the number of operations that has been performed with the numbers and then rounding the numbers to save memory, but one has to do the rounding at a very precise stage of the calculations to avoid the aforementioned problems. If possible, then the rounding should be done at the very end of the calculations as the very last operation.
In PHP you have BCMath. You not need to load any dll or compile any module.
Supports numbers of any size and precision, represented as string
<?php
$a = '1.234';
$b = '5';
echo bcadd($a, $b); // 6
echo bcadd($a, $b, 4); // 6.2340
?>
Apparently Tcl also has them, from version 8.5, courtesy of LibTomMath:
http://wiki.tcl.tk/5193
http://www.tcl.tk/cgi-bin/tct/tip/237.html
http://math.libtomcrypt.com/
There are several Javascript libraries that handle arbitrary-precision arithmetic.
For example, using my big.js library:
Big.DP = 20; // Decimal Places
var pi = Big(355).div(113)
console.log( pi.toString() ); // '3.14159292035398230088'
In R you can use the Rmpfr package:
library(Rmpfr)
exp(mpfr(1, 120))
## 1 'mpfr' number of precision 120 bits
## [1] 2.7182818284590452353602874713526624979
You can find the vignette here: Arbitrarily Accurate Computation with R:
The Rmpfr Package
Java natively can do bignum operations with BigDecimal. GMP is the defacto standard library for bignum with C/C++.
If you want to work in the .NET world you can use still use the java.math.BigDecimal class. Just add a reference to vjslib (in the framework) and then you can use the java classes.
The great thing is, they can be used fron any .NET language. For example in C#:
using java.math;
namespace MyNamespace
{
class Program
{
static void Main(string[] args)
{
BigDecimal bd = new BigDecimal("12345678901234567890.1234567890123456789");
Console.WriteLine(bd.ToString());
}
}
}
The (free) basic program x11 basic ( http://x11-basic.sourceforge.net/ ) has arbitrary precision for integers. (and some useful commands as well, e.g. nextprime( abcd...pqrs))
IBM's interpreted scripting language Rexx, provides custom precision setting with Numeric. https://www.ibm.com/docs/en/zos/2.1.0?topic=instructions-numeric.
The language runs on mainframes and pc operating systems and has very powerful parsing and variable handling as well as extension packages. Object Rexx is the most recent implementation. Links from https://en.wikipedia.org/wiki/Rexx
Haskell has excellent support for arbitrary-precision arithmetic built in, and using it is the default behavior. At the REPL, with no imports or setup required:
Prelude> 2 ^ 2 ^ 12
1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085903001302413467189726673216491511131602920781738033436090243804708340403154190336
(try this yourself at https://tryhaskell.org/)
If you're writing code stored in a file and you want to print a number, you have to convert it to a string first. The show function does that.
module Test where
main = do
let x = 2 ^ 2 ^ 12
let xStr = show x
putStrLn xStr
(try this yourself at code.world: https://www.code.world/haskell#Pb_gPCQuqY7r77v1IHH_vWg)
What's more, Haskell's Num abstraction lets you defer deciding what type to use as long as possible.
-- Define a function to make big numbers. The (inferred) type is generic.
Prelude> superbig n = 2 ^ 2 ^ n
-- We can call this function with different concrete types and get different results.
Prelude> superbig 5 :: Int
4294967296
Prelude> superbig 5 :: Float
4.2949673e9
-- The `Int` type is not arbitrary precision, and we might overflow.
Prelude> superbig 6 :: Int
0
-- `Double` can hold bigger numbers.
Prelude> superbig 6 :: Double
1.8446744073709552e19
Prelude> superbig 9 :: Double
1.3407807929942597e154
-- But it is also not arbitrary precision, and can still overflow.
Prelude> superbig 10 :: Double
Infinity
-- The Integer type is arbitrary-precision though, and can go as big as we have memory for and patience to wait for the result.
Prelude> superbig 12 :: Integer
1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085903001302413467189726673216491511131602920781738033436090243804708340403154190336
-- If we don't specify a type, Haskell will infer one with arbitrary precision.
Prelude> superbig 12
1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085903001302413467189726673216491511131602920781738033436090243804708340403154190336