Find contour of 2D unorganized pointcloud - geometry

I have a set of 2D points, unorganized, and I want to find the "contour" of this set (not the convex hull). I can't use alpha shapes because I have a speed objective (less than 10ms on an average computer).
My first approach was to compute a grid and find the outline squares (squares which have an empty square as a neighbor). So I think I downsized efficiently my numbers of points (from 22000 to 3000 roughly). But I still need to refine this new set.
My question is : how do I find the real outlines points among my green points ?

After a weekend full of reflexions, I may have found a convenient solution.
So we need a grid, we need to fill it with our points, no difficulty here.
We have to decide which squares are considered as "Contour". Our criteria is : at least one empty neighbor and at least 3 non empty neighbors.
We lack connectivity information. So we choose a "Contour" square which as 2 "Contour" neighbors or less. We then pick one of the neighbor. From that, we can start the expansion. We just circle around the current square to find the next "Contour" square, knowing the previous "Contour" squares. Our contour criteria prevent us from a dead end.
We now have vectors of connected squares, and normally if our shape doesn't have a hole, only one vector of connected squares !
Now for each square, we need to find the best point for the contour. We select the one which is farther from the barycenter of our plane. It works for most of the shapes. Another technique is to compute the barycenter of the empty neighbors of the selected square and choose the nearest point.
The red points are the contour of the green one. The technique used is the plane barycenter one.
For a set of 28000 points, this techniques take 8 ms. CGAL's Alpha shapes would take an average 125 ms for 28000 points.
PS : I hope I made myself clear, English is not my mothertongue :s

You really should use the alpha shapes. Maybe use only green points as inputs of the alpha alpha algorithm.

Related

How to calculate what percentage of a pixel is within the bounds of a shape

I have a 2d grid where pixel centers are at the intersection of two half-grid lines, as shown below.
I also have a shape that is drawn on this grid. In my case the shape is a glyph, and is described by segments. Each segment has a start point, end point and a number of off-curve points. These segments can be quadratic curves or lines. What's important is that I can know the points and functions that make up the outline of the shape.
The rule for deciding which pixels should be turned on is simple: if the center of the pixel falls within the shape outline, turn that pixel on. The following image shows an example of applying this rule.
Now the problem I'm facing has to do with anti aliasing. What I'd like to do is to calculate what percentage of the area of a given pixel falls within the outline. As an example, in the image above, I've drawn a red square around a pixel that would be about 15% inside the shape.
The purpose of this would be so that I can then turn that pixel on only by 15% and thus get some cleaner edges for the final raster image.
While I was able to find algorithms for determining if a given point falls within a polygon (ray casting), I wasn't able to find anything about this type of problem.
Can someone can point me toward some algorithms to achieve this? Also let me know if I'm going about this problem in the wrong way!
This sounds like an X, Y problem.
You are asking for a way to calculate the perecentage of pixel coverage, but based on your question, it sounds that what you want to do is anti alias a polygon.
If you are working only with single color 2D shapes (i.e red, blue, magenta... squares, lines, curves...) A very simple solution is to create your image and blur the result afterwards.
This will automatically give you a smooth outline and is simple to implement in many languages.

Determining a bounding polygon surrounding specific points

I've been trying to figure out how to determine a bounding polygon around a specific set of points (set A) from another set of points (set B) such that the polygon only contains points in set A. For simplicity, we can assume the polygon will be convex, set A will only include 2 points, and a solution will exist from the given data.
For example, given:
these points, I want to create a polygon around the blue points from the red points like this. This could be done by finding the next point with the greatest angle while not cutting through the blue points, but I don't want the result to be too minimal like this.
Any suggestions or algorithms for solving this problem?
Seems that if you calculate triangulation over all (red and blue) points, then triangles containing blue vertices, form the first approximation of needed region. This approximation usually would be concave, so one need to cut off "ears".
If result looks too small, it is possible to add the third vertices of outer border triangles if they don't violate convexity.

How do tree searches deal with edge errors in nearest-neighbor searches?

Concerning tree searching algorithms, particularly quad-tree and r-tree, how do they account for edge errors when finding nearest neighbors. I'm not good at explaining this with words so I made some pictures.
For the picture the input coordinate to find the nearest neighbor is green, what I would assume end up being the "found" nearest neighbor is red. The actual nearest neighbor is blue.
In this quad-tree, the blue lower-right quadrant would be searched in with only that one red point while in actuality, the input coordinate (green) is so close to the edge it's actually closer to the blue point.
Similar with an R-tree if the coordinate is within one rectangle but so close to the edge it's closer to a point in another rectangle like below, where white dot is given coordinate:
It's wholly within the red box but closer to a point in the magenta box.
In both cases it is necessary to do a fine-grain distance check between elements - the boxes or divisions just help find candidates for the real distance check.
A way to look at it is, use the boxes to tell you what NOT to check. If an entire box is farther away than something you already know, you don't need to check anything in that box. If some of the box is close, better check the elements in it.
If you would bother to read the R-tree publication...
It uses a minimum distance, of the query point to a neighboring page.
If mindist(query, rectangle) <= dist(query, known neighbor) then the search needs to continue in the other rectangle, because there could be a better neighbor there.
It's actually quite straightforward, and should be explained in any book on R-trees and similar indexes.

fast calculation of the intersection area of a triangle and the unit square

In my current project I need to calculate the intersection area of triangles and the unit squares in an infinite grid.
For every triangle (given by three pairs of floating point numbers) I need to know the area (in the interval (0,1]) it has in common with every square it intersects.
Right now I convert both (the triangle and the square) to polygons and use Sutherland-Hodgman polygon clipping to calculate the intersection polygon, which I then use to calculate its area.
This approach now shows to be a performance bottleneck in my application. I guess a more specialized (analytical) algorithm would be much faster. Is there a standard solution for this problem, or do you have any idea? I only need the areas, not the shape of the intersections.
Your polygon are convex. There are some algorithms for convex polygons faster than general ones. I've used O'Rourke algorithm with success (code from his book here, I believe that good description exists). Note that some values may be precomputed for your squares.
If your polygons not always intersect, then you may at first check the fact of intersection with separating axes method.
Another option to try- Liang-Barski algorithm for clipping every triangle edge by square.
Edit: You can quickly find all intersections of triangle edges with grid using algorthm of Amanatides and Woo (example in grid traversal section here)
To process this task with hi performance , i suggest some modifications of
Vatti line sweep clipping.
http://en.wikipedia.org/wiki/Vatti_clipping_algorithm
Stepping from minimal Y vertex of your Triangle make such steps:
sort vertexes by Y coordinate
step Y higher to MIN(nextVertex.Y, nextGridBottom)
Calculate points of intersection of grid with edges.
Collect current trapezoid
repeat from step2 until vertex with highest Y coordinate.
Split trapezoids by X coordinate if required.
here is example of Trapezoidalization in X direction
http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/PolyPart/polyPartition.htm
It illustrate main idea of line sweep algorithm. Good luck.
You are not mentioning what precision you are looking for. In case you are looking for a analytical method, disregard this answer, but if you just want to do antialiasing I suggest a scanline edge-flag algorithm by Kiia Kallio. I have used it a few times and it is quite fast and can be set up for very high precision. I have a java implementation if you are interested.
You can take advantage of the regular pattern of squares.
I'm assuming the reason this is a bottleneck is because you have to wait while your algorithm finds all squares intersecting any of the triangles and computes all the areas of intersection. So we'll compute all the areas, but in batches for each triangle in order to get the most information from the fewest calculations.
First, as explained by others, for each edge of the triangle, you can find the sequence of squares that edge passes through, as well as the points at which it crosses each vertical or horizontal edge of a square.
Do this for all three sides, keeping a list of all the squares you encounter, but keep only one copy of each square. It may be useful to store the squares in multiple lists, so that all squares on a given row are all kept in the same list.
When you've found all squares the triangle's edges pass through, if two of those squares were on the same row, any squares between those two that are not in the list are completely inside the triangle, so 100% of each of those squares is covered.
For the other squares, the calculation of area can depend on how many vertices of the triangle are in the square (0, 1, 2, or 3) and where the edges of the triangle intersect the sides of the square. You can summarize all the cases in a few pencil-and-paper drawings, and come up with calculations for each one. For example, when an edge of triangle crosses two sides of the square, with one corner of the square on the "outside" side of the edge, that corner is one angle of a small triangle "cut off" by that edge of the larger triangle; use the points of intersection on the square's sides to compute the area of the small triangle and deduct it from the area of the square. If two points instead of one are "outside", you have a trapezoid whose two base lengths are found from the points of intersection, and whose height is the width of the square; deduct its area from the square. If three points are outside, deduct the entire area of the square and then add the area of the small triangle.
One vertex of the large triangle inside the square, three corners of the square outside that angle: draw a line from the remaining corner to the triangle's vertex, so you have two small triangles, deduct the entire square and add those triangles' areas. Two corners of the square outside the angle, draw lines to the vertex to get three small triangles, etc.
I'm phrasing this so that you always assume you start with the entire area of the square and reduce the area by some amount depending on how the edge of the triangle intersects the square. That way, in the case where the edges of the triangle intersect the square more than twice--such as one edge cuts across one corner of the square and another edge cuts across a different corner, you can just deduct the area cut off by the first edge, then deduct the area cut off by the second edge.
This will be a considerable number of special cases, though you can take advantage of symmetry; for example, you don't have to write the complete calculation for "cut off a triangle in one corner" four times.
You'll write a lot more code than if you just took someone's convex-polygon library off the shelf, and you will want to test the living daylights out of it to make sure you didn't forget to code any cases, but once you get it working, it shouldn't take much more effort to make it reasonably fast.

How to find line segments intersecting a 2D viewport

In an infinite 2D space there are a set of lines, each line having a start and end point, and a time of creation: Line(p0, p1, t).
I want to find the lines that should be rendered in a top-down view of this 2D space (higher values of t show up closer to the viewport, not that it should be relevant.)
The intuitive answer is "check if either point is within the viewport coordinates," but this falls down when the points are further apart than the viewport area covers.
The other idea I had was using something like geohash, this would limit precision i.e. maximum zoom level of the viewport. The idea is enumerating the hashes of the cells intersected and storing them. This way querying is a matter of asking the right question.
Are there any ideal solutions? Has this been solved before?
I think you need to check two conditions: one that the rectangle of viewport overlaps the rectangle with corners (p0,p1) and the second that some corners of viewport rectangle are on the different sides of the whole line which contains line segment (p0,p1).
The task of finding rectangle overlap can be solved very effectively for very large number of rectangles using R-trees (http://en.wikipedia.org/wiki/R-tree).
The second task can be reduced to checking signs of the cross product of (p1-p0) x (corner_coordinate-p0)
(all three quantities taken as 3-d vectors with third coordinate equal to zero, the result will be vector along the perpendicular direction). There should be corners with the opposite sign of this cross product.

Resources