From the UML bible, about role:
Role: A role name explains how an object participates in the relationship.
Each object needs to hold a reference to the associated object or objects. The reference is held in an attribute value within the object. When there is only one association then there is only one attribute holding a reference.
What does this sentence mean?
Can anyone please offer an example to explain it?
Roles:A role name explains how an object participates in the relationship.
You have two classes, Professor and Book and they are associated as in the following diagram:
The role gives a description of the association between Professor and Book. In this case Professor is the writer of the associated book.
Each object needs to hold a reference to the associated object or objects. The reference is held in an attribute value within the object.
For this I will use another example with a one to one multiplicity.
The diagram shows that Query builder has a Query (and vice versa). How is this association depicted in the code?
You have a class QueryBuilder that has an attribute of type Query named query. In code:
class QueryBuilder {
Query query;
}
And you have a class Query that has an attribute of type QueryBuilder named qbuilder
In code:
class Query {
QueryBuilder qbuilder;
}
The attribute (query for class QueryBuilder and qbuilder for class Query) is the reference to the associated object
When there is only one association then there is only one attribute holding a reference
In the previous example, there was one association, so we had one attribute (field) in the class to keep the reference of the associated object.
In the following diagram Acount has two associations with BookItem.
So, in class Account we will have two fields, one field for each association.
class Account {
BookItem[] borrowed;
BookItem[] reserved;
}
Note that these associations are one to many, so the fields that we have for the associations are arrays that can keep more than one BookItems.
Here you can find a good article where I borrowed most examples for this answer.
EDIT: Explanation of the association between Author and Book.
The line that connects Author and Book in the diagram is the visualization of the association. This is a bidirectional association, which means that Author one or more Book objects (the books written by the author) but also Book has one or more Author objects (because book can have more than one author). An association with multiplicity many (one or more) is usually implemented with a collection or an array. Class Author has a field that can be a collection or array of Book. The diagram does not provide the name of this fields.
The first diagram that associates Professor with Book provides also the names of these fields. Professor has a field with the name textbook to keep its Book objects. Book has a field with the name author to keep its Author objects. The type of these fields is not provided by the diagram. The field textbook could be declared as anything from the following:
Book[] textbook;
or
Set<Book> textbook;
or
List<Book> textbook;
or
Collection<Book> textbook;
Also the visibility of the fields is not provided (could be default, private or public).
There is a very good reason why this information is omitted from the class diagram: The author of the diagram did not consider it important for the message he wants to communicate with the diagram. We must not forget that UML diagrams are used to help understanding of a system by visualizing some of its aspects. Usually we create more than one diagrams in order to provide different perspectives of a system. In most cases the most important element of information is the relationship between the classes. So the implementation details are often omitted. Note there there are a lot of implementation details regarding the Book-Author association that are omitted from these diagrams. How to force that Book will always have at least one Author or how to ensure that if a Book has an Author then also the Author has this Book are among the details that are omitted.
As a programmer of UML to Code generators, I do not recommend association names as "implicite" role-names and therefore properties dependent to the additional reading direction (in this way "Professor--Book" is the better sample than "Account--BookItem" above). For bi-directional properties the association-name would help only in one direction (and is often easier explained in prosa way by Business Analysts).
DO always set the concrete role-name at each relevant Association-End to make it clear in what way the other end sees the relationship (and can manifest 1:1 in code)!
However the association-name may become the AssociationClass name of an n:n relationship where the reading direction would be in both ways the same. Like:
Bank[0..]--Contract(AssociationClass)--[0..]Person
Related
Here I am, with another question about aggregation and association. I wanted to learn some basics of UML, so I started reading "UML distilled" by Martin Fowler. I read both chapters about classes, and there is one thing that I can't fully grasp I think, and that is aggregation vs association. In the book there is this quote:
In the pre-UML days, people were usually rather vague on what was aggregation and what was
association. Whether vague or not, they were always inconsistent with everyone else. As a result,
many modelers think that aggregation is important, although for different reasons. So the UML
included aggregation (Figure 5.3) but with hardly any semantics. As Jim Rumbaugh says, "Think of it
as a modeling placebo" [Rumbaugh, UML Reference].
As I understand from this quote and topics that I read on Stack Overflow it doesn't matter which one of those two relations I use, they mean basically the same, or is there any situation where the usage of aggregation instead of association would be justified and/or I could not change one to the other without changing the "meaning" of a class diagram?
I am asking this, because this book is from 2003 and some things could have changed during those few years.
Maybe this can help you, but i don't think you will find the perfect explanation:
The difference is one of implication. Aggregation denotes whole/part
relationships whereas associations do not. However, there is not
likely to be much difference in the way that the two relationships are
implemented. That is, it would be very difficult to look at the code
and determine whether a particular relationship ought to be
aggregation or association. For this reason, it is pretty safe to
ignore the aggregation relationship altogether. [Robert C. Martin | UML]
And an example for each situation:
a) Association is a relationship where all object have their own
lifecycle and there is no owner. Let’s take an example of Teacher and
Student. Multiple students can associate with a single teacher and
single student can associate with multiple teachers, but there is no
ownership between the objects and both have their own lifecycle. Both
can create and delete independently.
b) Aggregation is a specialized form of Association where all object have their own lifecycle but there is ownership and child
object can not belong to another parent object. Let’s take an example
of Department and teacher. A single teacher can not belong to
multiple departments, but if we delete the department, the teacher object
will not be destroyed. We can think about “has-a” relationship.[Maesh | GeeksWithBlogs]
Rumbaugh's statement is the most telling and Uncle Bob's good advice. As I've said elsewhere, Aggregation is semantically so weak as to offer nothing practically beneficial. It only has one valid corner case (acyclicity of recursive relationships) however few people know and understand that. So you end up having to point out in comments anyway.
I just don't use it. And have never felt any loss. Stick with simple binary associations and focus on what really matters - getting the cardinality and naming right. You'll get far more from that than trying to decide the undecidable association vs. aggregation.
hth.
I tend to use Aggregation to show a relation that is the same as a Composition with one big distinction: the containing class is NOT responsible for the life-cycle of the contained object. Typically, a (non-null) pointer or reference to the object-to-be-contained is passed to the containing class's constructor. The containing object, for the duration of its life-cycle, depends upon the contained object existing. The containing object cannot do its job (fully) without the contained object. This is my interpretation of the "Part/Whole" relationship implied by Aggregation.
This term often gets confused.
Aggregation and composition are some of the types of association. There is
hardly a difference between aggregations and associations during
implementation, and many will skip aggregation relations altogether in
their diagrams with association relation.
You can get the idea from this analogy.
Class:A(person) and Class:B(car) has association relation, if
Class:A has a Class:B declaration, and also Class:B(car) object is not essential to create a Class:A(person) object.
Class:A(car) and Class:B(tyre) has aggregation relation, if
Class:A has a Class:B declaration, and also Class:B(tyre) object is essential to create a Class:A(car) object.
Cheers!
In UML aggregation is under-defined and since they haven't got any clearly defined semantic.
A valid use-case of an aggregation is the encapsulation of a several classes, as stated in "Domain Driven Design" by Eric Evans.
E.g. a car has four wheels.
You might want to calculate the total amount of meters each wheel has driven, for each car.
This calculation is done by the car-entity, since it knows which wheels it has and you don't care which wheels belong to which car.
The car is the aggregation-root for all it's parts, like wheels, and you can't access the parts of a car from outside the aggregation, just the root.
So basically an aggregation encapsulates a set of classes which belong to each other.
They do not mean the same! I can put it in this way:
Association relationship: A class references another class. Actually it shows that a class is related to another class but they
don't necessarily have attributes to show this relationship... e.g
'Teacher' and 'Student' classes, although 'Teacher' class has no
attribute that refer to students, but we do know that in reality a
teacher do have students... And also 'School' class has 'teachers' and
'students' properties that now make those two classes related to each
other.
Aggregation relationship: A class contains another class. But if the container(ClassRoom) is destroyed, the contained(Chair) is not.
Actually the ClassRoom owns the Chair. Aggregation is a more stronger
relationship than the Association relationship.
Here is also a tutorial about it and the whole UML2.0 which explains everything easy and simple, you may find it useful: https://github.com/imalitavakoli/learn-uml2
TIP: Also let me mention that because the Association relationship exists between classes most of the times, we sometimes don't draw it to prevent unnecessary complexity.
Implementation wise there is not much of a difference but conceptually there is big difference: aggregations are used to express a hierarchy. When you work with a hierarchy of components there are certain type of operations you need to have in the root interface:
find subcomponents in the hierarchy
add/remove subcomponents to/from the hierarchy
change common attributes of all components
traverse the hierarchy recursively (Visitor pattern)
reconfigure the hierarchy and the links (associations) between the components
Most of these operations are not needed when dealing with associations.
To add, I would just suggest to download the UML specification from the OMG site: best reference and see p 110.
None indicates that the property has no aggregation semantics.
Shared indicates that the property has shared aggregation semantics. Precise semantics of shared aggregation varies by application area and modeler.
Composite indicates that the property is aggregated compositely, i.e., the composite object has responsibility for
the existence and storage of the composed objects (see the definition of parts in 11.2.3).
Here I am, with another question about aggregation and association. I wanted to learn some basics of UML, so I started reading "UML distilled" by Martin Fowler. I read both chapters about classes, and there is one thing that I can't fully grasp I think, and that is aggregation vs association. In the book there is this quote:
In the pre-UML days, people were usually rather vague on what was aggregation and what was
association. Whether vague or not, they were always inconsistent with everyone else. As a result,
many modelers think that aggregation is important, although for different reasons. So the UML
included aggregation (Figure 5.3) but with hardly any semantics. As Jim Rumbaugh says, "Think of it
as a modeling placebo" [Rumbaugh, UML Reference].
As I understand from this quote and topics that I read on Stack Overflow it doesn't matter which one of those two relations I use, they mean basically the same, or is there any situation where the usage of aggregation instead of association would be justified and/or I could not change one to the other without changing the "meaning" of a class diagram?
I am asking this, because this book is from 2003 and some things could have changed during those few years.
Maybe this can help you, but i don't think you will find the perfect explanation:
The difference is one of implication. Aggregation denotes whole/part
relationships whereas associations do not. However, there is not
likely to be much difference in the way that the two relationships are
implemented. That is, it would be very difficult to look at the code
and determine whether a particular relationship ought to be
aggregation or association. For this reason, it is pretty safe to
ignore the aggregation relationship altogether. [Robert C. Martin | UML]
And an example for each situation:
a) Association is a relationship where all object have their own
lifecycle and there is no owner. Let’s take an example of Teacher and
Student. Multiple students can associate with a single teacher and
single student can associate with multiple teachers, but there is no
ownership between the objects and both have their own lifecycle. Both
can create and delete independently.
b) Aggregation is a specialized form of Association where all object have their own lifecycle but there is ownership and child
object can not belong to another parent object. Let’s take an example
of Department and teacher. A single teacher can not belong to
multiple departments, but if we delete the department, the teacher object
will not be destroyed. We can think about “has-a” relationship.[Maesh | GeeksWithBlogs]
Rumbaugh's statement is the most telling and Uncle Bob's good advice. As I've said elsewhere, Aggregation is semantically so weak as to offer nothing practically beneficial. It only has one valid corner case (acyclicity of recursive relationships) however few people know and understand that. So you end up having to point out in comments anyway.
I just don't use it. And have never felt any loss. Stick with simple binary associations and focus on what really matters - getting the cardinality and naming right. You'll get far more from that than trying to decide the undecidable association vs. aggregation.
hth.
I tend to use Aggregation to show a relation that is the same as a Composition with one big distinction: the containing class is NOT responsible for the life-cycle of the contained object. Typically, a (non-null) pointer or reference to the object-to-be-contained is passed to the containing class's constructor. The containing object, for the duration of its life-cycle, depends upon the contained object existing. The containing object cannot do its job (fully) without the contained object. This is my interpretation of the "Part/Whole" relationship implied by Aggregation.
This term often gets confused.
Aggregation and composition are some of the types of association. There is
hardly a difference between aggregations and associations during
implementation, and many will skip aggregation relations altogether in
their diagrams with association relation.
You can get the idea from this analogy.
Class:A(person) and Class:B(car) has association relation, if
Class:A has a Class:B declaration, and also Class:B(car) object is not essential to create a Class:A(person) object.
Class:A(car) and Class:B(tyre) has aggregation relation, if
Class:A has a Class:B declaration, and also Class:B(tyre) object is essential to create a Class:A(car) object.
Cheers!
In UML aggregation is under-defined and since they haven't got any clearly defined semantic.
A valid use-case of an aggregation is the encapsulation of a several classes, as stated in "Domain Driven Design" by Eric Evans.
E.g. a car has four wheels.
You might want to calculate the total amount of meters each wheel has driven, for each car.
This calculation is done by the car-entity, since it knows which wheels it has and you don't care which wheels belong to which car.
The car is the aggregation-root for all it's parts, like wheels, and you can't access the parts of a car from outside the aggregation, just the root.
So basically an aggregation encapsulates a set of classes which belong to each other.
They do not mean the same! I can put it in this way:
Association relationship: A class references another class. Actually it shows that a class is related to another class but they
don't necessarily have attributes to show this relationship... e.g
'Teacher' and 'Student' classes, although 'Teacher' class has no
attribute that refer to students, but we do know that in reality a
teacher do have students... And also 'School' class has 'teachers' and
'students' properties that now make those two classes related to each
other.
Aggregation relationship: A class contains another class. But if the container(ClassRoom) is destroyed, the contained(Chair) is not.
Actually the ClassRoom owns the Chair. Aggregation is a more stronger
relationship than the Association relationship.
Here is also a tutorial about it and the whole UML2.0 which explains everything easy and simple, you may find it useful: https://github.com/imalitavakoli/learn-uml2
TIP: Also let me mention that because the Association relationship exists between classes most of the times, we sometimes don't draw it to prevent unnecessary complexity.
Implementation wise there is not much of a difference but conceptually there is big difference: aggregations are used to express a hierarchy. When you work with a hierarchy of components there are certain type of operations you need to have in the root interface:
find subcomponents in the hierarchy
add/remove subcomponents to/from the hierarchy
change common attributes of all components
traverse the hierarchy recursively (Visitor pattern)
reconfigure the hierarchy and the links (associations) between the components
Most of these operations are not needed when dealing with associations.
To add, I would just suggest to download the UML specification from the OMG site: best reference and see p 110.
None indicates that the property has no aggregation semantics.
Shared indicates that the property has shared aggregation semantics. Precise semantics of shared aggregation varies by application area and modeler.
Composite indicates that the property is aggregated compositely, i.e., the composite object has responsibility for
the existence and storage of the composed objects (see the definition of parts in 11.2.3).
I'm taking the Stanford edx course (Databases: Modeling and theory) and the lecturer mentioned this piece of information about association classes and what they imply in a diagram (in reference to an example of two classes "student" and "college" associated by a "applies to" association with the association class "appInfo" containing college application info):
Now what we're saying is that association is going to have affiliated with it a date and a decision. What we cannot describe in UML is the possibility of having more than one relationship or association between the same student and the same college.
So when we have an association, that assumes at most one relationship between two objects. So, for example, if we wanted to add the possibility that students could apply to the same college multiple times so maybe, you know, they wanted to apply for different majors, that would actually have to be captured quite differently. We'd have to add a separate class for the application information with separate relationships to the students and colleges.
but I didn't really get what she meant here, does having an association class create an automatic 1-1 coupling between two classes? or is it prohibited for two classes to have more than one relationship? or what exactly is being said here because it's a bit vague and I'm not experienced in UML data modeling.
The statement is either wrong or it’s taken out of a specific context that was not mentioned here. The reasons are:
there is no implicit one-to-one in an association; the multiplicities at both end of an association specifies if it’s a one to one, a one to many, a many to many association or anything in between.
the same applies to an association class, which is both: an association and a class at the same time.
in a many to many association, there can very well be several times a link between the same objects. In fact, in a one-to-many or many-to-many association, you need to add an explicit constraint if you want to avoid this.
More information:
in this other answer, there are some more explanation about the semantic of association classes
an here a question related to uniqueness. as you will see, it is not that obvious to avoid multiple occurrences
I'm currently working on a UML class diagram for an application which is supposed to be like 'Duolingo'.
I am struggling on how to model a many to many relationship.
So, I imagine that you have many users which can take many courses (different languages that they wish to learn). For this reason I have decided to create a courseProgress class to model this many to many relationship.
What I was wondering is, do I need to store the userID and courseID in my courseProgress class? I think I'm getting mixed up here with how keys may be used in a database.
See below diagram:
Am I along the right tracks?
Also, I was wondering when exactly you would use private and public fields. Because to me it seems that you would always want all fields to be private and just use getters and setters to always access these fields?
N.B in the above diagram the fields are public as I have not yet changed them to private
In the diagram above, should I have the userID field and courseID field or should I have a user field of type User and course field of type Course?
You are indeed on the right track. The additional class CourseProgress helps you to better represent the many-to-many association between User and Course. An alternative could have been the use of an association class.
The choice between public, protected or private properties depends on your class design and how you want to expose this information in the object model. This is far too broad to be explained here. To simplify, if the properties are data that could be changed by other objects without any consequence, then you could let it public. If however some properties can only be changed according to some rules with pre-conditions, invariants or post-conditions to be guaranteed, you'd better control the change via a method and thus make the property proteted or private.
Whether or not to indicate the identifiers of the associated classes (i.e. courseId, UserId) depend on the purpose of your diagram.
Typically, for a domain model or a design model, you wouldn't add the properties for representing the classes you are associated with. This is an implementation detail of the association. Usually, you'd rather use the association end to indicate how the instance of the related class would be called.
For an implementation model (example for one-to-many or many-to-many), you may want to show this detail to allow an unambiguous mapping with database tables.
Sorry for this newb question, i'm new to UML.
The diagram for a system is this one:
From what I know of UML, none of the classes in this diagram can own instances of the associated class as there's no aggregate relationship with it.
Does this mean in an implementation of the system in Java, based on the diagram, an outside class has to own instances of the associated class?
Sorry if the answer is obvious. I've spent hours scratching my head over it.
First off, terminology. #Daniel is right, you don't have an association class. However, I don't think you mean Association Class:
Does this mean in an implementation of the system in Java, based on the diagram, an outside class has to own instances of the associated class?
If I understand correctly that's the nub of your question. In implementation terms, which class(es) have a member variable containing a list of references to instances of Associated Class?
Again - if I understand right - your question stems from the following logic:
In UML, "ownership" is commonly described as a quality of Aggregation (or Composition) relationships.
The relationship between Aggregated/Composite PART Class and Associated Class is a simple binary association - not Aggregate/Composite.
Therefore the "ownership" property doesn't apply
Therefore who owns the list of references to Associated Class instances?
If that's right then the issue is with the specific meaning of "ownership". Whilst not tightly defined in UML, "ownership" typically means responsibility for managing full lifecycle.
I think you're interpreting it more generally: that if an association isn't aggregate, then the participating classes can't hold references to each other.
That's not the case. It's perfectly reasonable for Aggregated/Composite PART Class to hold a reference (or list of references) to instances of Associated Class. The inverse is equally valid. In some cases both are valid (with the attendant need to maintain consistency).
So in summary: is it necessary for an outside class to own the instances of Associated Class? No. It's perfectly valid for either or both ends of a binary association to manage instances of the relationship.
hth and apologies if I misunderstood your question.
PS: a final observation: be very careful about what you mean when using Aggregation. It's notoriously imprecise in the UML spec. Composition has a more rigorous definition, and you can cover 99% plus of all modelling scenarios using Composition and plain Binary Associations. About the only place Aggregation has a well-defined meaning not completely covered by the other two is denoting when recursive relationships must be acyclic.
UML does not specify the full behaviour of a system. So what do you mean, when you say an object owns another object? Also instances AssociatedClass could be root objects that are not owned by any other object.
The diagram you provided doesn't really contain an association class. The class you named 'associated class' is just a normal class. It also isn't owned by anything (that we see in the diagram).
If what you had in mind was association class, then take a look at example diagram with association class:
In this example, the MilleageCredit is an association class. So for each distinct combination of Fligh-FrequentFlyer there is one MilleageCredit.
As for ownership, since the Association class represents a relation between 2 associated objects, it gets deleted when
the association is cleared
either or both of associated objects are deleted
So if you delete either the Flight or FrequentFlyer the MilleageCredit will be gone too.
Also if you unlink Flight from FrequentFlyer again the MilleageCredit will be delete.
There's plenty of good UML docs online, for example UML basics: The class diagram
Hope this helps, otherwise please provide more info in the question.