Process Scheduling from Processor point of view - linux

I understand that the scheduling is done by the kernel. Let us suppose a
process (P1) in Linux is currently executing on the processor.
Since the current process doesn't know anything about the time slice
and the kernel is currently not executing on the processor, how does the kernel schedule the next process to execute?
Is there some kind of interrupt to tell the processor to switch to execute the kernel or any other mechanism for the purpose?

In brief, it is an interrupt which gives control back to the kernel. The interrupt may appear due to any reason.
Most of the times the kernel gets control due to timer interrupt, or a key-press interrupt might wake-up the kernel.
Interrupt informing completion of IO with peripheral systems or virtually anything that changes the system state may
wake-up the kernel.
More about interrupts:
Interrupts as such are divided into top-half and bottom half. Bottom Halves are for deferring work from interrupt context.
Top-half: runs with interrupts disabled hence should be superfast, relinquish the CPU as soon as possible, usually
1) stores interrupt state flag and disables the interrupts(reset
some pin on the processor),
2) communicates with the hardware, stores state information,
delegates remaining responsibility to bottom-half,
3) restores the interrupt state flag and enables the interrupt((set
some pin on the processor).
Bottom-half: Handles the deferred work(delegated work by the top-half) runs with interrupts enabled hence may take a while before completion.
Two mechanisms are used to implement bottom-half processing.
1) Tasklets
2) Work queues
.
If timer is the interrupt to switch back to kernel, is the interrupt a hardware interrupt???
The timer interrupt of interest under our context of discussion is the hardware timer interrupt,
Inside kernel, the word timer interrupt may either mean (architecture-dependent) hardware timer interrupts or software timer interrupts.
Read this for a brief overview.
More about timers
Remeber "Timers" are an advanced topic, difficult to comprehend.
is the interrupt a hardware interrupt??? if it is a hardware
interrupt, what is the frequency of the timer?
Read Chapter 10. Timers and Time Management
if the interval of the timer is shorter than time slice, will kernel give the CPU back the same process, which was running early?
It depends upon many factors for ex: the sheduler being used, load on the system, process priorities, things like that.
The most popular CFS doesn't really depend upon the notion of time slice for preemption!
The next suitable process as picked up by CFS will get the CPU time.
The relation between timer ticks, time-slice and context switching is not so straight-forward.
Each process has its own (dynamically calculated) time slice. The kernel keeps track of the time slice used by the process.
On SMP, the CPU specific activities such as monitoring the execution time of the currently running process is done by the interrupts raised by the local APIC timer.
The local APIC timer sends an interrupt only to its processor.
However, the default time slice is defined in include/linux/sched/rt.h
Read this.

Few things could happen -
a. The current process (p1) can finish up its timeslice and then the
scheduler will check is there is any other process that could be run.
If there's no other process, the scheduler will put itself in the
idle state. The scheduler will assign p1 to the CPU if p1 is a CPU hoggy
task or p1 didn't leave the CPU voluntarily.
b. Another possibility is - a high priority task has jumped in. On every
scheduler tick, the scheduler will check if there's any process which
needs the CPU badly and is likely to preempt the current task.
In other words, a process can leave the CPU in two ways - voluntarily or involuntarily. In the first case, the process puts itself to sleep and therefore releases the CPU (case a). In the other case, a process has been preempted with a higher priority task.
(Note: This answer is based on the CFS task scheduler
of the current Linux kernel)

Related

Is the scheduler built into the kernel a program or a process?

I looked up the CPU scheduler source code built into the kernel.
https://github.com/torvalds/linux/tree/master/kernel/sched
But I have a question.
There are mixed opinions on the cpu scheduler on the Internet.
I saw an opinion that CPU scheduler is a process.
Question: If so, when ps-ef on Linux, the scheduler process should be visible. It was difficult to find the PID and name of the scheduler process.
The PID for the CPU scheduler process is not on the internet either. However, the PID 0 SWAPPER process is called SCHED, but in Linux, PID 0 functions as an idle process.
I saw an opinion that CPU scheduler is not a process.
CPU scheduler is a passive source code built into the kernel, and user processes frequently enter the kernel and rotate the source code.
Question: How does the user process execute the kernel's scheduler source code on its own?
What if you created a user program without adding a system call using the scheduler of the kernel?
How does the user process self-rotate the scheduler in the kernel without such code?
You have 2 similar questions (The opinion that the scheduler built into the kernel is the program and the opinion that it is the process and I want to know how to implement the cpu scheduling process in Linux operating system) so I'll answer for both of these here.
The answer is that it doesn't work that way at all. The scheduler is not called by user mode processes by using system calls. The scheduler isn't a system call. There are timers that are programmed to throw interrupts after some time has elapsed. Timers are accessed using registers that are memory in RAM often called memory mapped IO (MMIO). You write to some position in RAM specified by the ACPI tables (https://wiki.osdev.org/ACPI) and it will allow to control the chips in the CPU or external PCI devices (PCI is everything nowadays).
When the timer reaches 0, it will trigger an interrupt. Interrupts are thrown by hardware (the CPU). The CPU thus includes special mechanism to let the OS determine the position at which it will jump on interrupt (https://wiki.osdev.org/Interrupt_Descriptor_Table). Interrupts are used by the CPU to notify the OS that an event happened. Without interrupts, the OS would have to reserve at least one core of the processor for a special kernel process that would constantly poll the registers of peripherals and other things. It would be impossible to implement. Also, if user mode processes did the scheduler system call by themselves, the kernel would be slave to user mode because it wouldn't be able to tell if a process is finished and processes could be selfish over CPU time.
I didn't look at the source code but I think the scheduler is also often called on some IO completion (also on interrupt but not always on timer interrupt). I am quite sure that the scheduler must not be preempted. That is interrupts (and other things) will be disabled while the schedule() function runs.
I don't think you can call the scheduler a process (not even a kernel thread). The scheduler can be called by kernel threads that are created by interrupts due to bottom half processing. In bottom half processing, the top "half" of the interrupt handler runs fast and efficiently while the bottom "half" is added to the queue of processes and runs when the scheduler decides it should be scheduled. This has the effect of creating some kernel threads. The scheduler can thus be called from kernel threads but not always from bottom half of interrupts. There has to be a mechanism to call the scheduler without the scheduler having to schedule the task itself. Otherwise, the kernel will stop functioning.

How does the scheduler know that a thread is blocked waiting for input?

When a thread executing user code is waiting for input, how does the scheduler know to interrupt it or how does the thread know to call the scheduler, seeing as the average programmer of a simple single threaded application is unlikely to insert sched_yield() everywhere. Does the compiler insert sched_yield() on optimisation or does the thread just spin lock until the general timer interrupt set by the scheduler fires, or does the user have to explicitly state wait(), sleep() functions in order for the context to switch?
This question is especially relevant if the scheduler is not preemptive because then it has to call the scheduler when it is waiting for input for throughput to be effective, but I'm not sure how it does this.
Be careful not to confuse preemption with the ability of a process to sleep. Processes can sleep even with a non-preempting scheduler. This is what happens when a process is waiting for I/O. The process makes a system call such as read() and the device determines no data is available. It then internally puts the process to sleep by updating a data structure used by the scheduler. The scheduler then executes other processes until an interrupt or some other event occurs that wakes the original process. The awoken process then becomes eligible again for scheduling.
On the other hand preemption is the ability of an architecture's scheduler to stop execution of a process without its cooperation. The interruption can occur anywhere in the program's instruction stream. Control returns to the scheduler which can then execute other processes and return to the interrupted (preempted) process later. Most schedulers allocate time slices where a process is allowed to run for up to a predetermined amount of time, after which it is preempted if higher-priority processes need time slices.
Unless you're writing drivers or kernel code, you don't need to worry about the underlying mechanisms too much. When writing user-space applications the key concepts are (1) that some system calls may block which means your process is put to sleep until an event occurs, and (2) on preemptible systems (all mainstream modern operating systems) your program may be preempted at any time so that other processes can run.
* Note that in some platforms, such as Linux, a thread is really just another process which shares its virtual address space with another process. Processes and threads are therefore treated exactly the same by the scheduler.
It is not clear to me whether your question is about theory or practice. In practice in every modern operating system, i/o operations are privileged. Meaning that in order for a user process or thread to access files, devices and so on it must issue a system call.
Then the kernel has the opportunity to do whatever it considers appropriate. For example it can check whether the I/o operation will block and, therefore switch the running (i.e. “call” the scheduler) process after issuing the operation.
Note that this mechanism can work even when there is no timer interruption handled by the kernel. Anyway in general it will depend upon your system. For example in an embedded system where no OS exits (or a minimal one) it could be the entire responsibility of the user’s code to invoke the scheduler before issueing a blocking operation.
Kernel can be preemptive, not scheduler.
First sched_yield() and wait() are types of voluntary preemption, when process itself gives out CPU even if kernel is non-preemptive.
If kernel has ability to switch to another process when time quantum has expired or higher priority process become runnable then we are talking about involuntary preemption, i.e preemptive kernel, and it can happen on different places explained below.
Difference is that insched_yield() process stays in runnable TASK_RUNNING state but just goes to the end of the run queue for it's static priority. Process must wait to get the CPU again.
On the other hand, wait() puts process to a sleep TASK_(UN)INTERRUPTABLE state, on a wait queue, calls schedule() and waits for an event to occur. When event occur, process are moved to run queue again. But that doesn't mean that they will get CPU immediately.
Here is explained when schedule() can be called after process is woken up:
Wakeups don't really cause entry into schedule(). They add a
task to the run-queue and that's it.
If the new task added to the run-queue preempts the current
task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
called on the nearest possible occasion:
If the kernel is preemptible (CONFIG_PREEMPT=y):
in syscall or exception context, at the next outmost
preempt_enable(). (this might be as soon as the wake_up()'s
spin_unlock()!)
in IRQ context, return from interrupt-handler to
preemptible context
If the kernel is not preemptible (CONFIG_PREEMPT is not set)
then at the next:
cond_resched() call
explicit schedule() call
return from syscall or exception to user-space
return from interrupt-handler to user-space

At what points in a program the system switch threads

I know that threads cannot actually run in parallel on the same core, but in a regular desktop system there is normally hundreds or even thousands of threads. Which is of course much more than today's average of 4 core CPU's. So the system actually running some thread for X time and then switches to run another thread for Y amount of time an so on.
My question is, how does the system decide how much time to execute each thread?
I know that when a program is calling sleep() on a thread for an amount of time, the operation system can use this time to execute other threads, but what happens when a program does not call sleep at all?
E.g:
int main(int argc, char const *argv[])
{
while(true)
printf("busy");
return 0;
}
When does the operating system decide to suspend this thread and excutre another?
The OS keeps a container of all those threads that can use CPU execution, (usually such threads are described as being'ready'). On most desktop systems, this is a very small fraction of the total number of threads. Most threads in such systems are waiting on either I/O, (this includes sleeping - waiting on timer I/O), or inter-thread signaling; such threads cannot use CPU execution and so the OS does not dispatch them onto cores.
A software syscall, (eg. a request to open a file, a request to sleep or wait for a signal from another thread), or a hardware interrupt from a peripheral device, (eg. a disk controller, NIC, KB, mouse), may cause the set of ready threads to change and so initiate a scheduling run.
When run, the shceduler decides on what set of ready threads to assign to the available cores. The algorithm it uses is a compromise that tries to optimize overall performance by balancing the need for expensive context-switches with the need for responsive I/O. The kernel CAN stop any thread on any core an preempt it, but it would surely prefer not to:)
So:
My question is, how does the system decide how much time to execute
each thread?
Essentially, it does not. If the set of ready threads is not greater than the number of cores, there is no need to stop/control/influence a CPU-intensive loop - it can be allowed to run on forever, taking up a whole core.
Note that your example is very poor - the printf() call will request output from the OS and, if not immediately available, the OS will block your seemingly 'CPU only' thread until it is.
but what happens when a program does not call sleep at all?
It's just one more thread. If it is purely CPU-intensive, then whether it runs continually depends upon the loading on the box and the number of cores available, as already described. It can, of course, get blocked by requesting I/O or electing to wait for a signal from another thread, so removing itself from the set of ready threads.
Note that one I/O device is a hardware timer. This is very useful for timing out system calls and providing Sleep() functionality. It usually does have a side-effect on those boxes where the number of ready threads is larger than the number of cores available to run them, (ie. the box is overloaded or the task/s it runs have no limits on CPU use). It can result in sharing out the available cores around the ready threads, so giving the illusion of running more threads than it's actually physically capable of, (try not to get hung up on Sleep() and the timer interrupt - it's one of many interrupts that can change thread state).
It is this behaviour of the timer hardware, interrupt and driver that gives rise to the apalling 'quantum', 'time-sharing', 'round-robin' etc. etc.etc. confusion and FUD that surrounds the operation of modern preemptive kernels.
A preemptive kernel, and it's drivers etc, is a state-machine. Syscalls from running threads and hardware interrupts from peripheral devices go in, a set of running threads comes out.
It depends which type of scheduling your OS is using for example lets take
Round Robbin:
In order to schedule processes fairly, a round-robin scheduler generally employs time-sharing, giving each job a time slot or quantum(its allowance of CPU time), and interrupting the job if it is not completed by then. The job is resumed next time a time slot is assigned to that process. If the process terminates or changes its state to waiting during its attributed time quantum, the scheduler selects the first process in the ready queue to execute.
There are others scheduling algorithms as well you will find this link useful:https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/5_CPU_Scheduling.html
The operating system has a component called the scheduler that decides which thread should run and for how long. There are essentially two basic kinds of schedulers: cooperative and preemptive. Cooperative scheduling requires that the threads cooperate and regularly hand control back to the operating system, for example by doing some kind of IO. Most modern operating systems use preemptive scheduling.
In preemptive scheduling the operating system gives a time slice for the thread to run. The OS does this by setting a handler for a CPU timer: the CPU regularly runs a piece of code (the scheduler) that checks if the current thread's time slice is over, and possibly decides to give the next time slice to a thread that is waiting to run. The size of the time slice and how to choose the next thread depends on the operating system and the scheduling algorithm you use. When the OS switches to a new thread it saves the state of the CPU (register contents, program counter etc) for the current thread into main memory, and restores the state of the new thread - this is called a context switch.
If you want to know more, the Wikipedia article on Scheduling has lots of information and pointers to related topics.

How does the OS scheduler regain control of CPU?

I recently started to learn how the CPU and the operating system works, and I am a bit confused about the operation of a single-CPU machine with an operating system that provides multitasking.
Supposing my machine has a single CPU, this would mean that, at any given time, only one process could be running.
Now, I can only assume that the scheduler used by the operating system to control the access to the precious CPU time is also a process.
Thus, in this machine, either the user process or the scheduling system process is running at any given point in time, but not both.
So here's a question:
Once the scheduler gives up control of the CPU to another process, how can it regain CPU time to run itself again to do its scheduling work? I mean, if any given process currently running does not yield the CPU, how could the scheduler itself ever run again and ensure proper multitasking?
So far, I had been thinking, well, if the user process requests an I/O operation through a system call, then in the system call we could ensure the scheduler is allocated some CPU time again. But I am not even sure if this works in this way.
On the other hand, if the user process in question were inherently CPU-bound, then, from this point of view, it could run forever, never letting other processes, not even the scheduler run again.
Supposing time-sliced scheduling, I have no idea how the scheduler could slice the time for the execution of another process when it is not even running?
I would really appreciate any insight or references that you can provide in this regard.
The OS sets up a hardware timer (Programmable interval timer or PIT) that generates an interrupt every N milliseconds. That interrupt is delivered to the kernel and user-code is interrupted.
It works like any other hardware interrupt. For example your disk will force a switch to the kernel when it has completed an IO.
Google "interrupts". Interrupts are at the centre of multithreading, preemptive kernels like Linux/Windows. With no interrupts, the OS will never do anything.
While investigating/learning, try to ignore any explanations that mention "timer interrupt", "round-robin" and "time-slice", or "quantum" in the first paragraph – they are dangerously misleading, if not actually wrong.
Interrupts, in OS terms, come in two flavours:
Hardware interrupts – those initiated by an actual hardware signal from a peripheral device. These can happen at (nearly) any time and switch execution from whatever thread might be running to code in a driver.
Software interrupts – those initiated by OS calls from currently running threads.
Either interrupt may request the scheduler to make threads that were waiting ready/running or cause threads that were waiting/running to be preempted.
The most important interrupts are those hardware interrupts from peripheral drivers – those that make threads ready that were waiting on IO from disks, NIC cards, mice, keyboards, USB etc. The overriding reason for using preemptive kernels, and all the problems of locking, synchronization, signaling etc., is that such systems have very good IO performance because hardware peripherals can rapidly make threads ready/running that were waiting for data from that hardware, without any latency resulting from threads that do not yield, or waiting for a periodic timer reschedule.
The hardware timer interrupt that causes periodic scheduling runs is important because many system calls have timeouts in case, say, a response from a peripheral takes longer than it should.
On multicore systems the OS has an interprocessor driver that can cause a hardware interrupt on other cores, allowing the OS to interrupt/schedule/dispatch threads onto multiple cores.
On seriously overloaded boxes, or those running CPU-intensive apps (a small minority), the OS can use the periodic timer interrupts, and the resulting scheduling, to cycle through a set of ready threads that is larger than the number of available cores, and allow each a share of available CPU resources. On most systems this happens rarely and is of little importance.
Every time I see "quantum", "give up the remainder of their time-slice", "round-robin" and similar, I just cringe...
To complement #usr's answer, quoting from Understanding the Linux Kernel:
The schedule( ) Function
schedule( ) implements the scheduler. Its objective is to find a
process in the runqueue list and then assign the CPU to it. It is
invoked, directly or in a lazy way, by several kernel routines.
[...]
Lazy invocation
The scheduler can also be invoked in a lazy way by setting the
need_resched field of current [process] to 1. Since a check on the value of this
field is always made before resuming the execution of a User Mode
process (see the section "Returning from Interrupts and Exceptions" in
Chapter 4), schedule( ) will definitely be invoked at some close
future time.

How does a kernel return from the thread

I am doing some study hardcore study on computers etc. so I can get started on my own mini Hello World OS.
I was looking a how kernels work and I was wondering how the kernel makes the current thread return to the kernel (so it can switch to another) even though the kernel isn't running and the thread has no instruction to do so.
Does it use some kind of CPU interrupt that goes back to the kernel after a few nanoseconds?
Does it use some kind of CPU interrupt that goes back to the kernel after a few nanoseconds?
It is during timer interrupts and (blocking) system calls that the kernel decides whether to keep executing the currently active thread(s) or switch to another thread. The timer interupt handler updates resource usages, such as consumed system and user time, for the currently running process and scheduler_tick() function that decides whether a process/tread need to be pre-empted.
See "Preemption and Context Switching" on page 62 of Linux Kernel Development book.
The kernel, however, must know when to call schedule(). If it called schedule() only
when code explicitly did so, user-space programs could run indefinitely. Instead, the kernel
provides the need_resched flag to signify whether a reschedule should be performed (see
Table 4.1).This flag is set by scheduler_tick() when a process should be preempted, and
by try_to_wake_up() when a process that has a higher priority than the currently run-
ning process is awakened.The kernel checks the flag, sees that it is set, and calls schedule() to switch to a new process.The flag is a message to the kernel that the scheduler should be invoked as soon as possible because another process deserves to run.
Does it use some kind of CPU interrupt
Yes! Modern preemptive kernels are absolutely dependent upon interrupts from hardware to deliver good I/O performance. Keyboard, mouse, disk, NIC, USB, etc. drivers are all entered from interrupts and can make threads that are waiting on them ready/running when required (e.g., when data is available).
Threads can also change state as a result of making an OS call that changes the caller's own state of that of another thread.
The interrupt from the hardware timer is one of many interrupt sources and is only special in that many system operations have timeouts that are signaled by this interrupt. Other than that, the timer interrupt just causes a reschedule which, in most cases, changes nothing re. the ready/running state of threads. If the machine is grossly CPU-overloaded to the point where there are more ready threads than there are cores, there is a side-effect of the timer interrupt that causes CPU time to be shared amongst the ready threads.
Do not fixate on the timer interrupt—the other driver interrupts are absolutely essential. It is not impossible to build a functional preemptive multithreaded kernel with no timer interrupt at all.

Resources